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We summarize the present report:

1. New solutions to the ultradiscrete soliton equations

(a) One is a “negative-soliton” which satisfies the ultmdiscrete $KdV$ equation(Box-
Ball system).
But there is not a corresponding traveling wave solution for the discrete $KdV$

equation.

(b) The other one is a “static-soliton”which satisfies the ultmdiscrete Toda equa-
tion.
But there is not a corresponding traveling wave solution to the discrete Toda
equation.

Ryogo Hirota (2009).

2. Pfaffian Expressions

(a) We know the solutions to the discrete equations are expressed by pfaffians.
However pfaffians cannot be ultradiscretized because of negative problem.

(b) We have found that Casorati permanents play the same role as the Wronskian
in the ultradiscrete equations.
D.Takahashi and R.Hirota,(2007).
H.Nagai, (2008).

3. Ultradiscrete Analogue of the Identities of Pfaffians (Determinants)
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(a) The Casorati permanent solves the ultradiscrete 2-D Toda equation.
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(b) Identities of ultradiscrete pfaffians

Ryogo Hirota,(2009).

4. Periodic Phase Solitons

(a) Shinya Nakamura (Waseda Univ.) has found that the ultradiscrete hungry
Lotka-Volterra eq.

$F_{n+1}^{m}+F_{n}^{m+1}= \max(F_{n}^{m}+F_{n+1}^{m+1}, F_{n-M}^{m}+F_{n+M+1}^{m+1}-1)$

exhibits “Periodic Phase Soliton” of the form

$F_{n}^{m}= \max(0,pm-qn+\phi(n))$ ,

where $\phi(n)$ is a periodic function of $n$ with a period $M$ .

But there is not a corresponding solution for the discrete hungry Lotka-Volterra
equation.

(b) He has found $\tau$ -function of $N$ periodic phase soliton expressed by the Casorati
permanent. and proved using “permanent technique” that the $\tau$ -function
solves the ultradiscrete hungry Lotka-Volterra equation for $M=2$ .

5. New Gauge Transformation

(a) The bilinear equations are invariant under the simple gauge transformation of
the exponential type.

$farrow f\exp(c_{0}+c_{1}l+c_{2}m+c_{3}n)$ .

(b) Inspired by Nakamura’s results I have found a discrete equation which is in-
variant under the new gauge transformation

$farrow f\phi(n)$ ,

where $\phi(n)$ is a periodic function of $n$ with a period M.

(c) The new gauge changes the interaction (phase shifts) of solitons drastically.

147



1 New Solutions
Solutions to the ultradiscrete soliton equations have been obtained by ultradiscretizing

the known solutions to the discrete equations.
I review “new solutions” to the ultradiscrete soliton equations,which have no correspond-
ing solutions to the discrete soliton equations.

1. Negative solutions to the ultradiscrete $KdV$ eq.
A discrete $KdV$ eq(Box and Ball system)

$\frac{1}{u_{n+1}^{m+1}}-\frac{1}{u_{n}^{m}}=\delta(u_{n+1}^{m}-u_{n}^{m+1})$

is transformed,through the dependent variable transformation

$u_{n}^{m}= \frac{f_{n+1}^{m}f_{n}^{m+1}}{f_{n}^{m}f_{n+1}^{m+1}}$ ,

into the bilinear eq.

$f_{n}^{m-1}f_{n+1}^{m+1}=\delta f_{n+1}^{m-1}f_{n}^{m+1}+(1-\delta)f_{n}^{m}f_{n+1}^{m}$ . (1)

We look for a “negative-soliton” traveling with the speed 1

$u_{n}^{m}= \frac{f_{n+1}^{m}f_{n}^{m+1}}{f_{n}^{m}f_{n+1}^{m+1}}\leq 1$ , $f_{n}^{m}=f(n-m)$ ,

which give the following relations

$\frac{f_{n+1}^{m-1}f_{n}^{m+1}}{f_{n+1}^{m}f_{n}^{m}}$ $=u_{n+1}^{m}u_{n}^{m}$ . (2)

$\frac{f_{n+1}^{m+1}f_{n}^{m-1}}{f_{n+1}^{m}f_{n}^{m}}$ $=$ 1. (3)

Equation (1) is rearranged as

$\frac{f_{n}^{m-1}f_{n+1}^{m+1}}{f_{n}^{m}f_{n+1}^{m}}=\delta\frac{f_{n+1}^{m-1}f_{n}^{m+1}}{f_{n}^{m}f_{n+1}^{m}}+1-\delta$ (4)

which is reduced using the relations (2) and (3) to

$1=\delta u_{n+1}^{m}u_{n}^{m}+1-\delta$ ,
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which is not satisfied by a negative-soliton $u_{n}^{m}\leq 1$ .

However, the above equation is reduced, in the ultradiscrete limit, to the following
form,

$0= \max(\hat{U}_{n}^{m}+\hat{U}_{n+1}^{m}-1,0)$ ,

which is satisfied by the negative-soliton

$\hat{U}_{n}^{m}\leq 0$ .

The negative-soliton plays an important role in the initial value problem of the Box-
Ball system.
It generates many balls in a box over the capacity of the box after colliding with a
soliton as is shown below.

$m=0\{0,1,1,1,1,1,0,0,0 , 0, -2,0 , 0,0 , 0 , 0,0,0,0,0,0,0,0\}$

$m=1\{0,0,0,0,0,0,1,1,1,1,1, -2,0,0,0,0,0,0,0,0,0,0,0\}$

$m=2\{0,0,0,0,0 , 0 , 0 , 0 , 0,0,0,3,0 , 0,0 , 0,0,0,0,0,0,0,0\}$

$m=3\{0 , 0,0 , 0,0,0 , 0,0 , 0 , 0,0, -2,1,1,1,1,1,0,0,0 , 0 , 0,0\}$

$m=4\{0,0,0,0 , 0 , 0,0,0 , 0,0,0,0, -2,0 , 0,0,0,1,1,1,1,1,0\}$

Three balls in a box of capacity 1.

2. Static solutions to the ultradiscrete Toda eq.

We have the discrete Toda equation in the bilinear form

$f_{n}^{m+1}f_{n}^{m-1}-(f_{n}^{m})^{2}=\delta^{2}[f_{n+1}^{m}f_{n-1}^{m}-(f_{n}^{m})^{2}]$ (5)

which is transformed into the discrete Toda equation

$\frac{V_{n}^{m+1}V_{n}^{m-1}}{(V_{n}^{m})^{2}}=\frac{(1+\hat{\delta}^{2}V_{n+1}^{m})(1+\hat{\delta}^{2}V_{n-1}^{m})}{(1+\hat{\delta}^{2}V_{n}^{m})^{2}}$ ,

$\hat{\delta}^{2}=\frac{\delta^{2}}{1-\delta^{2}}$ , (6)
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through the transformation

$V_{n}^{m}= \frac{f_{n+1}^{m}f_{n-1}^{m}}{(f_{n}^{m})^{2}}$ .

Let

$V_{n}^{m}=\exp(x_{n}^{m}\epsilon)$ , $\delta=\exp(-L\epsilon)$ .

Then we obtain an nonlinear discrete equation of $x_{n}^{m}$ ,

$x_{n}^{m+1}-2x_{n}^{m}+x_{n}^{m-1}$

$= \epsilon\log[\frac{(1+\hat{\delta}^{2}\exp(x_{n+1}^{m}/\epsilon))(1+\hat{\delta}^{2}\exp(x_{n-1}^{m}/\epsilon)}{(1+\hat{\delta}^{2}\exp(x_{n}^{m}’\epsilon))^{2}}]$ ,

which is reduced, in the small limit of $\epsilon$ , to the ultradiscrete Toda equation,

$x_{n}^{m+1}-2x_{n}^{m}+x_{n}^{m-1}$

$= \max(O, x_{n+1}^{m}-2L)-2\max(O, x_{n}^{m}-2L)+\max(0, x_{n-1}^{m}-2L)$ .

We look for a static solution $Vs(n)$ ,

$Vs(n)= \frac{f_{n+1}^{m}f_{n-1}^{m}}{(f_{n}^{m})^{2}}$ , $f_{n}^{m}=fs(n)$ ,

to the discrete Toda equation.

The bilinear equation (5) is rearranged as

$\frac{f_{n}^{m+1}f_{n}^{m-1}}{(f_{n}^{m})^{2}}+\delta^{2}=1+\delta^{2}\frac{f_{n+1}^{m}f_{n-1}^{m}}{(f_{n}^{m})^{2}}$,

which is reduced, for a static solution, to

$1+\delta^{2}=1+\delta^{2}Vs(n)$ .

Obviously $Vs(n)$ does not solve it except a trivial case $Vs(n)=1$ .

However the above equation is reduce, in the ultradiscrete limit, to

$\max(O, -2L)=\max(0, x_{s}(n)-2L)$

which is satisfied by $x_{s}(n)$ if

$x_{s}(n)\leq 2L$ , for all $n$ .
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The static solution plays an important role in the ultmdiscrete nonuniform Toda equation.

We have calculated a soliton $y_{n}^{m}$ passing through junctions in the nonuniform Toda
lattice.

The figure shows the non-uniformity $c(n)$ introduced to the discrete Toda lattice,where
the atoms located at $-5\leq n\leq 5$ are different from others.

$c(n)$

$\frac{42135\ovalbox{\tt\small REJECT}}{-20-10w_{1},-1020}$
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We observe a soliton passing through junctions generates ripples at the junctions.

We have calculated a soliton passing through junctions of the ultmdiscrete $nonunifom\iota$

Toda equation,

$y_{n}^{m+1}-2y_{n}^{m}+y_{n}^{m-1}$

$= \max[0, y_{n+1}^{m}-2L+c(n+1)]-2\max[0, y_{n}^{m}-2L+c(n)]$

$+ \max[0, y_{n-1}^{m}-2L+c(n-1)]$ .
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In the figures the solid lines express theoretical values of $y(m, n)$ as a function of $n$ , while
the dots indicates numerical values of $y_{n}^{m}$ .

All dots are on the solid lines.

Ryogo Hirota, “New Solutions to the Ultradiscrete Soliton Equations”,
STUDIES IN APPLIED MATHEMATICS $122:361- 376(2009)$ .
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2 Pfaffian Expressions
Multi-soliton solution to the soliton equation is expressed by the pfaffian and the bilinear
form of the soliton equation is reduced to the identity of pfaffians.
Multi-soliton to a soliton equation has two types of expression.

1. One is expressed by a sum of exponential functions which is obtained by a pertur-
bational method.

2. Another is expressed by a pfaffian (determinant).

The perturbational method of finding soliton solution is very powerful but difficulty of
finding solution iiicreases very rapidly as increasing number of solitons included in the
solution.

However we may assume an algebraic structure of solution by the perturbational method
and find a pfaffian expression for solution.

The $\tau$ -function $f_{n}^{m}$ in the perturbed form has the following form in general

$f_{n}^{m}=1+e^{\eta_{1}(m_{1}n)}+e^{\eta_{2}(m,n)}+a_{12}e^{\eta_{1}(m,n)+\eta_{2}(m,n)}$ ,

and is easily ultradiscretized.

However pfaffians (determinants) can not be ultradiscretized due to negative terms.

A remedy for the problem was found by Takahashi and Hirota.

D.Takahashi and R.Hirota:
“ Ultradiscrete Soliton Solution of Permanent Type”,
JPSJ 76 (2007) 104007.

We have expressed the multi-soliton solutions to an ultradiscrete soliton equation called
(Box and Ball system” by ultradiscretized permanents instead of determinants.

A permanent is a signature free determinant,

Nagai has shown that soliton solutions to the ultradiscrete Toda equation are expressed
by the ultradiscretized permanents.

H.Nagai:
“ A New Expression of Soliton Solution to the Ultradiscrete Toda Equation”,
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J.Phys. A 41 (2008) 235204,

These facts suggest that there must be an idenity of ultradiscretized permanents instead
of determinants.

More generally we expect an identity of ultradiscretized hafnians instead of pfaffians.
A hafnian is a signature free pfaffian introduced by Caieniello.

3 Ultradiscrete Analogue of Identities of Pfaffians
(a) Pl\"ucker relation:

We look for an ultradiscrete analogue of the following simple identity of determinants

$a_{1}b_{1}$ $a_{2}b_{2}||\begin{array}{ll}a_{3} a_{4}b_{3} b_{4}\end{array}|-|\begin{array}{ll}a_{1} a_{3}b_{1} b_{3}\end{array}||\begin{array}{ll}a_{2} a_{4}b_{2} b_{4}\end{array}|+|\begin{array}{ll}a_{1} a_{4}b_{1} b_{4}\end{array}||a_{2}b_{2}$
$a_{3}b_{3}$ $=0$ ,

which is one of the Pl\"ucker relations.

We replace the determinants by the corresponding permanents

$a_{1}b_{1}$ $a_{2}b_{2}|_{+}|\begin{array}{ll}a_{3} a_{4}b_{3} b_{4}\end{array}|-|\begin{array}{ll}a_{1} a_{3}b_{1} b_{3}\end{array}||\begin{array}{ll}a_{2} a_{4}b_{2} b_{4}\end{array}|+|\begin{array}{ll}a_{1} a_{4}b_{1} b_{4}\end{array}||a_{2}b_{2}$

$a_{3}b_{3}+^{=0}$ ’ (7)

Let each term in Eq.(7) be $q_{1},$ $q_{2}$ and $q_{3}$ ,namely

$q_{1}=$ $a_{1}b_{1}$ $a_{2}b_{2}|_{+}|\begin{array}{ll}a_{3} a_{4}b_{3} b_{4}\end{array}|=a_{1}a_{3}b_{2}b_{4}+a_{1}a_{4}b_{2}b_{3}+a_{2}a_{3}b_{1}b_{4}+a_{2}a_{4}b_{1}b_{3}$ ,

$q_{2}=$ $a_{1}b_{1}$ $a_{3}b_{3}|_{+}|\begin{array}{ll}a_{2} a_{4}b_{2} b_{4}\end{array}|=a_{1}a_{2}b_{3}b_{4}+a_{1}a_{4}b_{2}b_{3}+a_{2}a_{3}b_{1}b_{4}+a_{3}a_{4}b_{1}b_{2}$ ,

$q_{3}=$ $a_{1}b_{1}$ $a_{4}b_{4}|_{+}|\begin{array}{ll}a_{2} a_{3}b_{2} b_{3}\end{array}|=a_{1}a_{2}b_{3}b_{4}+a_{1}a_{3}b_{2}b_{4}+a_{2}a_{4}b_{1}b_{3}+a_{3}a_{4}b_{1}b_{2}$ ,

where $q_{1},$ $q_{2}$ and $q_{3}$ have no negative terms and can be ultradiscretized.

However the corresponding Pl\"ucker relation does not hold,

$q_{1}-q_{2}+q_{3}=2(a_{1}a_{3}b_{2}b_{4}+a_{2}a_{4}b_{1}b_{3})\neq 0$ . (8)
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We notice that the products of the permanents, $q_{1},$ $q_{2}$ and $q_{3}$ are decomposed into a sum of
common terms $q_{12},$ $q_{13}$ and $q_{23}$ ,where $q_{ij}$ is the common term of $q_{i}$ and $q_{j}$ for $i,$ $j=1,2,3$ ,

$q_{1}=q_{12}+q_{13}$ , $q_{2}=q_{12}+q_{23}$ , $q_{3}=q_{13}+q_{23}$ , (9)

where

$q_{12}=a_{1}a_{4}b_{2}b_{3}+a_{2}a_{3}b_{1}b_{4}$ ,
$q_{13}=a_{1}a_{3}b_{2}b_{4}+a_{2}a_{4}b_{1}b_{3}$ ,
$q_{23}=a_{1}a_{2}b_{3}b_{4}+a_{3}a_{4}b_{1}b_{2}$ .

An ultradiscrete analogue of the Pl\"ucker relation is obtained as follows.
Replacing the determinants by the correspoding permanents we have

$q_{1}+q_{3}=q_{2}$ . (10)

Let

$q_{i}=\exp(Q_{i}/\epsilon)$ for $i=1,2,3$ ,
$q_{ij}=\exp(Q_{ij}/\epsilon)$ for $i,j=1,2,3$ .

In the small limit of $\epsilon$ we have an ultradiscrete analogue of the Pl\"ucker relation, Eq.(10),

$Q_{2}= \max(Q_{1}, Q_{3})$ , (11)

which does not hold in general.
We investigate under what conditions on $Q_{1},$ $Q_{2}$ and $Q_{3}$ Eq(11) does hold. The ultradis-
crete form of Eq.(9) are

$Q_{1}= \max(Q_{12}, Q_{13})$ ,
$Q_{2}= \max(Q_{12}, Q_{23})$ ,
$Q_{3}= \max(Q_{13}, Q_{23})$ . (12)

Substituting these expressions into Eq.(ll) we obtain

$\max(Q_{12}, Q_{23})=\max(Q_{12}, Q_{13}, Q_{23})$ . (13)

Obviously Eq.(13) does hold if

$Q_{13} \leq\max(Q_{12}, Q_{23})$ .

But it does not hold if
$Q_{13}> \max(Q_{12}, Q_{23})$ .
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However if $Q_{13}> \max(Q_{12}, Q_{23})$ we find, using Eq. (12)

$Q_{1}=Q_{3}$ .

Hence we obtain the following algebraic identity of the ultradiscretized permanents,

$[Q_{2}- \max(Q_{1}, Q_{3})](Q_{1}-Q_{3})=0$ , (14)

which we call “ ultradiscrete analogue of the Pl\"ucker relation”

(b) Identities of pfaffians:

It is known that a variety of soliton equations exhibiting multi-soliton solutions ex-
pressed by pfaffians give rise to the following identity of pfaffians,

$pf(1,2,3,4,5,6, \cdots, 2n)pf(5,6, \cdots, 2n)=pf(1,2,5,6, \cdots, 2n)pf(3,4,5,6, \cdots, 2n)$

$-pf(1,3,5,6, \cdots, 2n)pf(2,4,5,6, \cdots, 2n)+pf(1,4,5,6, \cdots, 2n)pf(2,3,5,6, \cdots, 2n)$ .

I replace the above pfaffians by the corresponding hafnians.
Let the products of hafnians be

$f_{0}=(1,2,3,4,5,6, \cdots, 2n)(5,6, \cdots, 2n)$ ,
$f_{1}=(1,2,5,6, \cdots, 2n)(3,4,5,6, \cdots, 2n)$ ,
$f_{2}=(1,3,5,6, \cdots, 2n)(2,4,5,6, \cdots, 2n)$ ,
$f_{3}=(1,4,5,6, \cdots, 2n)(2,3,5,6, \cdots, 2n)$ .

I have proved by induction that the products of the hafnians are decomposed into the
following forms

$f_{0}=f_{01}+f_{02}+f_{03}$ ,
$f_{1}=f_{01}+f_{12}+f_{13}$ ,
$f_{2}=f_{02}+f_{12}+f_{23}$ ,
$f_{3}=f_{03}+f_{13}+f_{23}$ .

Consider a relation,

$f_{0}+f_{2}=f_{1}+f_{3}$ , (15)

which does hold for pfaffians but not for hafnians.
Following the same procedure as the one used before I find the algebraic idenity of the
ultradiscretized hafnians,

$( \max(F_{0}, F_{2})-\max(F_{1}, F_{3}))(F_{0}-F_{2})(F_{1}-F_{3})=0$ ,
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where $F_{0},$ $F_{1},$ $F_{2}$ and $F_{3}$ are the ultradiscrete form of $f_{0},$ $f_{1},$ $f_{2}$ and $f_{3},respectively$ .

We call it the ultradiscrete analogue of the identity of the pfaffians.

Ryogo Hirota, “Ultradiscrete analogue of the Identity of $Pfaffians$”, $RIMS$ K\^oky\^umku
Bessatsu $B13(2009),95- 124$ .

4 Periodic Phase Solitons
We know that the hungry Lotka-Volterra eq.

$(1+\delta_{1})f_{n+1}^{m}f_{n}^{m+1}=f_{n}^{m}f_{n+1}^{m+1}+\delta_{1}f_{n-M}^{m}f_{n+M+1}^{m+1}$ ,

exhibits 1-soliton solution for an integer $M$ ,

$f_{n}^{m}=1+r_{1}(m, n)$ , $r_{1}(m, n)=\omega_{1}^{m}k_{1}^{(n-n_{1})}$ ,

$\omega_{1}=\frac{1+\delta_{1}(1+k_{1}^{-1}+k_{1}^{-2}+.\cdot.\cdot.\cdot+k_{1}^{-M})}{1+\delta_{1}(1+k_{1}+k_{1}^{2}++k_{1}^{M})}$ .

The ultradiscrete hungry Lotka-Volterra eq.

$F_{n+1}^{m}+F_{n}^{m+1}=msx(F_{n}^{m}+F_{n+1}^{m+1}, F_{n-M}^{m}+F_{n+M+1}^{m+1}-1)$

is known to describes an extended “Box and Ball system”. In this system all balls are
numbered and the balls with the smaller number moves earlier.

D.Takahashi “On some soliton systems defined by using boxes and balls”,1993 Interna-
tional Symposium on Nonlinear Theory and its Applications(NOLTA’93) Hawaii,U.S.A.,
December 5-10,1993,

I have found numerically that the ultradiscrete hungry Lotka-Volterra equation exhibits
the following soliton solutions for $M=2$ .
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I called it ”Wiggler”.

(a) Shinya Nakamura (Waseda Univ.) discovered that ”Wiggler” is expressed by the
following $\tau$ -function,

$F_{n}^{m}= \max(0, s_{1}(m, n)+\phi_{1}(n))$ ,
$s_{1}(m, n)=p_{1}m-q_{1}(n-n_{1})$ ,
$p_{1}=Mq_{1}-1>0$ ,

under the condition

$q_{1}>\phi_{1}(n+1)-\phi_{1}(n)$ , for all $n$

where $\phi_{1}(n)$ is periodic function of $n$ of period $M$ ,

$\phi_{1}(n+M)=\phi_{1}(n)$ , for all $n$ .
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We now call it $($ periodic phase soliton” because of the periodic phase factor $\phi_{1}(n)$ .
We have found that there is not a corresponding solution for the discrete hungry
Lotka-Volterra equation.

(b) He has also found that $\tau$-function of $N$ periodic phase soliton expressed by the
Casorati permanent,

$F_{n}^{m}= \frac{1}{2}\max$

and proved using “permanent technique” that the $\tau$ -function solves the ultradis-
crete hungry Lotka-Volterra eq. for $M=2$ .

Shinya Nakamura: “A periodic phase soliton of the ultradiscrete hungry Lotka-Volterra
equation”, J.Phys. $A$ : Math.Theor.42(2009)49504

5 Gauge Transformations
The bilinear equations are known to be invariant under the simple gauge transformation
of the exponential type,

$farrow f\exp(c_{0}+c_{1}l+c_{2}m+c_{3}n)$ .

Inspired by Nakamura’s results I have found that a discrete equation

$f_{n+1}^{m}f_{n}^{m+1}=f_{n}^{m}f_{n+1}^{m+1}+\delta(f_{n-M}^{m}f_{n+M+1}^{m+1}-f_{n-M+1}^{m}f_{n+M}^{m+1})$ , (16)

is invariant under the new gauge transformation,

$farrow f\phi(n)$ ,

where $\phi(n)$ is a periodic function of $n$ with a period M.

The new gauge transforms Eq.(16) into

$f_{n+1}^{m}\phi(n+1)f_{n}^{m+1}\phi(n)=f_{n}^{m}\phi(n)f_{n+1}^{m+1}\phi(n+1)+\delta[f_{n-M}^{m}\phi(n-M)f_{n+M+1}^{m+1}\phi(n+M+1)$

$-f_{n-M+1}^{m}\phi(n-M+1)f_{n+M}^{m+1}\phi(n+M)]$ ,
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which is reduced, by the periodicity of $\phi(n)=\phi(n+M)$ , to Eq.(16).

I call Eq.(16) “Discrete Hungry Lotka-Voltera equation of BKP type” for an integer
$M$ , which was, for $M=2$ , called “Discrete Sawada-Kotera equation.

Let

$w_{n}^{m}= \frac{f_{n-M+1}^{m}f_{n+M}^{m+1}}{f_{n}^{m}f_{n+1}^{m+1}}$ ,

$x_{n}^{m}= \frac{f_{n-M}^{m}f_{n+M+1}^{m+1}}{f_{n}^{m}f_{n+1}^{m+1}}$ .

Then Eq.(16) is transformed into a coupled nonlinear discrete equations,

$w_{n}^{m+1}=w_{n}^{m} \prod_{j=1}^{M-1}\frac{1+\delta(x_{n-j}^{m}-w_{n-j}^{m})}{1+\delta(x_{n+j}^{m+1}-w_{n+j}^{m+1})}$ ,

$x_{n}^{m+1}=x_{n}^{m}(w_{n}^{m+1} \prime w_{n}^{m})\frac{1+\delta(x_{n-M}^{m}-w_{n-M}^{m})}{1+\delta(x_{n+M}^{m+1}-w_{n+M}^{m+1})}$ .

$\tau$ -function of one periodic phase soliton is given by

$f_{n}^{m}=1+r_{1}(m, n)$ ,
$r_{1}(m, n)=\omega_{1}^{m}k_{1}^{(n-n_{1})}\phi(n)$ ,

$\omega_{1}=\frac{1+\delta\prime k_{1}^{M}}{1+\delta k_{1}^{M}}$ .
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Periodic phase soliton of normal type ( $\phi(n)>0$ for all $n$ ).

$m=3$
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Periodic phase soliton of singular type ( $\phi(n)<0$ for some $n$ ).

In the figures the solid lines express theoretical values of $x(m, n)$ as a function of $n$ , while
the dots indicates numerical values of $x_{n}^{m}$ .

All dots are on the solid lines.

The new gauge changes the interaction (phase shifts) of solitons dmstically.

The usua12-soliton to Eq.(16) is given by

$f_{2}(m, n)=1+r_{1}(m, n)+r_{2}(m, n)$

$+a_{12}r_{1}(m, n)r_{2}(m, n)$ ,

where

$r_{j}(m, n)=\omega_{j}^{m}k_{j}^{(n-n_{j})}$ ,
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$\omega_{j}=\frac{1+\delta/k_{j}^{M}}{1+\delta k_{j}^{M}}$ ,

$a_{ij}= \frac{k_{i}^{M}-k_{j}^{M}}{(k_{i}k_{j})^{M}-1}\frac{k_{i}-k_{j}}{k_{i}k_{j}-1}$ .

for $i,j=1,2$ .

While 2-periodic phase soliton solution is given by

$f_{2}(m, n)=1+r_{1}(m, n)+r_{2}(m, n)+a_{12}(n)r_{1}(m, n)r_{2}(m, n)$ , (17)

where
$r_{j}(m, n)=\omega_{j}^{m}k_{j}^{(n-n_{j})}\phi_{j}(n)$ ,

$\omega_{j}=\frac{1+\delta/k_{j}^{M}}{1+\delta k_{j}^{M}}$ ,

$c_{ij}= \frac{k_{i}^{M}-k_{j}^{M}}{(k_{i}k_{j})^{M}-1}$ ,

$a_{ij}(n)=-(1 \triangle_{ij})[\sum_{n_{1}=1}^{M}b_{ij}(n_{1}+n)\prod_{2n=1}^{1}h_{ij}(n_{2}n-1+n)]$,

$\triangle_{ij}=[\prod_{n=1}^{M}h_{ij}(n)]-1$ ,

$b_{ij}(n)=-[h_{i}(n)-h_{j}(n)]c_{ij}$ ,
$h_{ij}(n)=h_{i}(n)h_{j}(n)$ ,
$h_{i}(n)=k_{i}\phi_{i}(n)’\phi_{i}(n-1)$ , for $i,j=1,2,3$ .

The usua13-soliton to Eq.(16) is given by

$f_{3}(m, n)=1+r_{1}(m, n)+r_{2}(m, n)+r_{3}(m, n)$

$+a_{12}r_{1}(m, n)r_{2}(m, n)+a_{13}r_{1}(m, n)r_{3}(m, n)+a_{23}r_{2}(m, n)r_{3}(m, n)$

$+a_{123}r_{1}(m, n)r_{2}(m, n)r_{3}(m, n)$ ,

where
$r_{j}(m, n)=\omega_{j}^{m}k_{j}^{(n-n_{j})}$ ,

$\omega_{j}=\underline{1+\delta’ k_{j}^{M}}$

$1+\delta k_{j}^{M}$
’

$a_{ij}= \frac{k_{i}^{M}-k_{j}^{M}}{(k_{i}k_{j})^{M}-1}\frac{k_{i}-k_{j}}{k_{i}k_{j}-1}$ .

$a_{123}=a_{12}a_{13}a_{23}$ ,
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for $i,$ $j=1,2,3$ .

While 3-periodic phase soliton solution is given by

$f_{3}(m, n)=1+r_{1}(m, n)+r_{2}(m, n)+r_{3}(m, n)$

$+a_{12}(n)r_{1}(m, n)r_{2}(m, n)+a_{13}(n)r_{1}(m, n)r_{3}(m, n)+a_{23}(n)r_{2}(m, n)r_{3}(m, n)$

$+a_{123}(n)r_{1}(m, n)r_{2}(m, n)r_{3}(m, n)$ ,

where

$a_{123}(n)=-(1/\triangle_{123})$

$\cross[\sum_{1n=1}^{M}b_{123}(n_{1}+n)\prod_{2n=1}^{n_{1}-1}h_{123}(n_{2}+n)]$ ,

$\triangle_{123}=[\prod_{n=1}^{M}h_{123}(n)]-1$ ,

$b_{123}=\overline{b}_{12}(n)-\overline{b}_{13}(n)+\overline{b}_{23}(n)$ ,
$h_{123}=h_{1}(n)h_{2}(n)h_{3}(n)$ ,
$\overline{b}_{12}(n)=[a_{12}(n)h_{12}(n)-a_{12}(n-1)h_{3}(n)]c_{13}c_{23}$ ,
$\overline{b}_{13}(n)=[a_{13}(n)h_{13}(n)-a_{13}(n-1)h_{2}(n)]c_{12}c_{23}$ ,
$\overline{b}_{23}(n)=[a_{23}(n)h_{23}(n)-a_{23}(n-1)h_{1}(n)]c_{12}c_{13}$ .

What we get,substituting the conjectured $\tau$ -function (17) into the bilinear form (16), is
not an explicit form of $a_{12}(n)$ nor $a_{12}(n+1)$ , but a relation between $a_{12}(n)$ and $a_{12}(n+1)$ .

We have totally $M$ such relations,which determine an individual $a_{12}(n)$ . $a_{12}$ is not a
scalar but a vector whose elements are $a_{12}(n)$ , for $n=1,2,$ $\cdots,$ $M$.
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