潜堤上における非線形内部波の伝播特性

鹿児島大学大学院理工学研究科 柿沼 太郎 (Taro Kakinuma)¹ 鹿児島大学大学院理工学研究科 山下 啓 (Kei Yamashita)¹ 北見工業大学社会環境工学科 中山 恵介 (Keisuke Nakayama)²

¹Dept. of Ocean Civil Engineering, Kagoshima University ²Dept. of Civil and Environmental Engineering, Kitami Institute of Technology

1.序 論

内部波を解析するために、様々な非線形内部波方程式が提案されている.しか しながら、その多くは、導出時の仮定に伴い、流体層の層厚比や、各層における 水深波長比、または、波高水深比に対して適用限界を有する.例えば、Choi・ Camassa (1999)のように、方程式系の導出において摂動展開を用いる場合、摂動 の核の設定に伴い、方程式系の適用対象が限られてくる.従って、潜堤やリーフ 周辺といった、水深が場所的に大きく変化する水域における内部波の伝播特性に 関しては、表面波に対する大山・灘岡(1991)のような詳細な研究があまり進ん でいない.そこで、本研究では、潜堤上を伝播する内部波を対象とし、波の強非 線形性及び強分散性を考慮した変分原理(柿沼、2001)より導出される非線形内 部波方程式系を適用して、浅水変形や分裂を含む内部波の伝播特性を検討する.

2. 非線形内部波方程式系

上・下面が固定水平板と接する 2 層流体の非回転運動を対象とする.流体は, 非粘性かつ非圧縮性であると仮定する.上層及び下層をそれぞれ第 1 層及び第 2 層と呼び,両層の流体が互いに混合しないとする.第 *i* 層の速度ポテンシャル $\phi(x,z,t)$ を次式のようにN個のべき関数の重み付き級数に展開する.

$$\phi_i(\mathbf{x}, z, t) = \sum_{\alpha=0}^{N-1} \left\{ f_{i,\alpha}(\mathbf{x}, t) \cdot z^{\alpha} \right\}$$
(1)

変分法(柿沼,2001)を適用して,各層に対する次式のような非線形内部波方 程式系を得る.

[第1層]

$$\eta^{\alpha} \frac{\partial \eta}{\partial t} + \frac{1}{\alpha + \beta + 1} \nabla \left(\eta^{\alpha + \beta + 1} \nabla f_{1,\beta} \right) - \frac{\alpha \beta}{\alpha + \beta - 1} \eta^{\alpha + \beta - 1} f_{1,\beta} = 0$$
(2)

$$\eta^{\beta} \frac{\partial f_{1,\beta}}{\partial t} + \frac{1}{2} \eta^{\beta+\gamma} \nabla f_{1,\beta} \nabla f_{1,\gamma} + \frac{\beta\gamma}{2} \eta^{\beta+\gamma-2} f_{1,\beta} f_{1,\gamma} + g\eta + \frac{p_1}{\rho_1} = 0$$
(3)

図-1 潜堤と初期界面形

[第2層]

$$\eta^{\alpha} \frac{\partial \eta}{\partial t} + \frac{1}{\alpha + \beta + 1} \nabla \left\{ \left(\eta^{\alpha + \beta + 1} - b^{\alpha + \beta + 1} \right) \nabla f_{2,\beta} \right\} - \frac{\alpha \beta}{\alpha + \beta - 1} \left(\eta^{\alpha + \beta - 1} - b^{\alpha + \beta - 1} \right) f_{2,\beta} = 0 \quad (4)$$

$$\eta^{\beta} \frac{\partial f_{2,\beta}}{\partial t} + \frac{1}{2} \eta^{\beta+\gamma} \nabla f_{2,\beta} \nabla f_{2,\gamma} + \frac{\beta \gamma}{2} \eta^{\beta+\gamma-2} f_{2,\beta} f_{2,\gamma} + g\eta + \frac{p_1 + (\rho_2 - \rho_1)gh_1}{\rho_2} = 0$$
(5)

ここで、 $\nabla = (\partial / \partial x, \partial / \partial y)$ であり、 $\eta(x,t)$ 、 $p_1(x,t)$ 、 $h_i(x)$ 及び ρ_i は、それぞれ、界面変動、界面における圧力、第 *i* 層の静水深及び第 *i* 層の密度である.

数値解析では、Nakayama・Kakinuma (2010) に類似の陰解法を用いた差分法に より式(2) ~ (5) を解く.

3. 数值解析条件

鉛直断面内の運動を対象とする.計算対象領域の側方を完全反射の鉛直壁とする. 潜堤のない水域の全水深を 0.3 m とし,上・下層の流体の密度比をρ₂ / ρ₁ = 1.019 とする.また,速度ポテンシャルの展開項数を N=3 とする.

数値解析の初期条件として、図-1 のように、一部が半波長の正弦波形である初期界面を静水状態に与える.この正弦波形の半波長及び振幅は、それぞれ、1.0 m及び 0.05 mとする.そして、初期状態より生じた、谷や峰を含む内部波が、図-1の潜堤に伝播する様子をシミュレートする.計算格子間隔及び計算時間間隔は、それぞれ、 $\Delta x = 0.01 \text{ m}$ 及び $\Delta t = 0.005 \text{ s}$ とする.

なお、本論文では、谷(内部波の主波)の直後に位置する峰を第1峰と呼び、 主として、第1峰近傍における現象に着目する.

4. 数值解析結果

第1峰が, 潜堤肩が位置する x = 6.0 mの地点を時刻 t ≅ 47.0 sに通過した後の,

図-2 各時刻における内部界面形

各時刻における界面形を図-2 に示す. 潜堤斜面上で, 浅水変形に伴う谷の後傾化 が見られる. 第1峰が潜堤天端上のx = 6.5 m の地点を時刻 $t \cong 52.8$ s に通過する とき, 峰の分裂が始まる. 図-2 では, t = 68.0 s における内部界面に対して, この 分裂によって生じた峰が矢印で指し示されている.

第1峰が各地点を通過するときの、第1峰下方における第2層内の水平方向流速 $u_{2,crest}$ を図-3に示す。第1峰が潜堤天端上のx = 6.5 mの地点を通過するとき、 $u_{2,crest}$ が顕著な鉛直分布を有することがわかる。そして、これと同時に、図-4に示すように、第1峰下方における第2層内の動圧の鉛直分布が湾曲し始める。動圧 p_{crest} は、界面の上下動を考慮した静水圧からの変動分とする。なお、潜堤肩が位置する x = 6.0 mの地点を第1峰が通過するとき、水平方向流速 $u_{2,crest}$ の鉛直分布

図-5 に、潜堤法面の開始地点と中間地点、潜堤肩が位置する地点及び潜堤天端 上の地点における、第 2 層内の速度ポテンシャルを表わす級数の重み係数の時間 変化を示す.特に、潜堤天端上で、速度ポテンシャルの z² に関する展開項の重み 係数 f_{2,2}の寄与率が増大している.この重み係数 f_{2,2}は、水平方向流速の鉛直分布 の湾曲の程度と、鉛直方向流速の鉛直分布の程度に関与する.

以上のように、ここで対象としている条件においては、潜堤天端上のx = 6.5 m の地点付近を第1峰が通過した後、 $u_{2,crest}$ が比較的大きな鉛直分布を有する.この 現象は、この地点を内部波が通過した以降、計算対象時間内では、内部波の波速 が水深のみに規定されないということを意味している.すなわち、内部波が、波 速の異なる成分波に分かれ得るのである.従って、こうした潜堤上を通過する内 部波に対しては、内部波の分散性を十分に考慮できない非線形内部波方程式、ま たは、内部波の浅水方程式が解析に適さないと言える.

また,峰の分裂発生後,第1峰が潜堤天端上を通過する際,水平方向流速 u_{2,crest} 及び動圧の両者の鉛直分布が,次第に大きな湾曲を示すようになる.これは,潜 堤天端上の,相対的に浅い,すなわち,波高・水深比の大きな水域内の伝播に伴

図-3 第1峰が潜堤上の各地点を通過するときの 第1峰下方における第2層内の水平方向流速

図-4 第1峰が潜堤上の各地点を通過するときの 第1峰下方における第2層内の動圧

い,波の非線形性の影響が増大するためである.

5.結 論

内部波の強非線形性及び強分散性を考慮した非線形内部波方程式系を適用し, 差分法を用いた数値解析を行ない,潜堤上を伝播する内部波をシミュレートした. 対象とした場合より得られた結論は,次の通りである.

- 1) 天端上の下層水深が浅い場合,内部波の峰が潜堤肩を通過するとき,その下方 の水平方向流速の鉛直分布が,他の地点と逆の値を示す.
- 2) 天端長が十分に長い場合,内部波の峰の分裂が発生し得る.

図-5 第2層内の速度ポテンシャルを表わす級数の重み係数の各地点における時間変化

- 3) 天端上の下層水深が浅い場合,内部波の峰下方の水平方向流速 u_{2,crest} が顕著な 鉛直分布を有するとき,その峰が分裂を開始し,このとき,峰下方の動圧が鉛 直分布を示す.
- 4) 下層水深が相対的に浅い天端上では、内部波の伝播に伴い、計算対象時間内に おいて、波の非線形性により峰の波高が次第に増加し、この峰下方の水平方向 流速 u_{2,crest}の鉛直分布が次第に大きな湾曲を示すようになった.
- 謝 辞:本研究は、平成 21 年度九州大学応用力学研究所共同利用研究として行 なわれた、関係者各位に深甚なる謝意を表する.

参考文献

- 大山 巧・灘岡和夫: 数値波動水槽を用いた潜堤による波の分裂現象の解析, 海岸工学論文集,第38巻, pp. 16-20, 1991.
- 2) 柿沼太郎: 透水性海浜における内部波の挙動の数値計算, 海岸工学論文集, 第48 巻, pp. 146-150, 2001.
- 3) Choi, W. and R. Camassa: Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., Vol. 396, pp. 1-36, 1999.
- 4) Nakayama, K. and T. Kakinuma: Internal waves in a two-layer system using fully nonlinear internal-wave equations, Int. J. Numer. Meth. Fluids, Vol. 62, 5, pp. 574-590, 2010.