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We are concerned with the second order linear differential equation

(1.1) $u”+\lambda p(t)u=0$ , $t>a$ ,

where $p(t)$ is a positive continuous function on $[a, \infty),$ $a\geq 0$ , and $\lambda$ is a positive parameter.
We call equation (1.1) oscillatory if all solutions of (1.1) have arbitrarily large zeros on

$(a, \infty)$ , otherwise, we say equation (1.1) is nonoscillatory. As a consequence of Sturm’s
Separation Theorem, if one of the solutions of (1.1) is oscillatory, then all of them are. The
same is true for the nonoscillation of (1.1). Motivated by Nehari [10], the equation (1.1) is
said to be conditionally oscillatory if (1.1) is oscillatory for some $\lambda>0$ and nonoscillatory
for some other $\lambda>0$ . By the comparison argument, if (1.1) is conditionally oscillatory,
there exists a constant $\overline{\lambda}\in(0, \infty)$ such that (1.1) is nonoscillatory for $\lambda<\overline{\lambda}$ and oscillatory
for $\lambda>$ A. The number A is called the oscillation constant.

For the second order ordinary differential equation

(1.2) $u”+p(t)u=0$ , $t>a$ ,

there is an extensive literature on oscillation criteria (see, e.g., Swanson [13]). Hille [5]
stated his results in terms of the numbers $p_{*}$ and $p^{*}$ defined by

$p= \lim\inf ttarrow\infty$ and $p^{*}= \lim_{tarrow}\sup_{\infty}tl^{\infty}p(s)ds$ ,

respectively. It was shown in [5] that $p_{*}\leq 1/4$ and $p^{*}\leq 1$ if (1.2) is nonoscillatory, and
$p^{*}\geq 1/4$ if (1.2) is oscillatory, where all the inequalities are sharp.

By applying the oscillation and nonoscillation criteria for (1.2), it is easy to see that
(1.1) is conditionally oscillatory if and only if

(1.3) $0< \lim_{tarrow}\sup_{\infty}t.\int_{t}^{\infty}p(s)ds<\infty$ ,
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and that, if

(1.4) $\lim_{tarrow\infty}t\int^{\infty}p(s)ds=\alpha$ , $\alpha\in(0, \infty)$ ,

then the oscillation constant is $\overline{\lambda}=1/4\alpha$ .
In this paper we are interested in the situation where (1.1) is conditionally oscillatory,

and are concerned with the problem of counting the number of zeros of solutions of (1.1)
on $(a, \infty)$ . In particular, we will investigate the precise behavior of solutions to (1.1)
with $\lambda$ which lies on the neighborhood of the oscillation constant, and we $wm$ show some
applications to singular elliptic eigenvalue problems on a ball in $R^{N}$ .

In the case where (1.1) is nonoscillatory, there exists a unique (neglecting a constant
factor) solution $u(t)$ of (1.1) satisfying the condition

(1.5) $\int^{\infty}\frac{dt}{u(t)^{2}}=\infty$,

and any solutions $\overline{u}(t)$ linearly independent of $u(t)$ has the property

(1.6) $\int^{\infty}\frac{dt}{\tilde{u}(t)^{2}}<\infty$ .

A solution $u(t)$ satisfying condition (1.5) is said to be principal $($ for $t=\infty)$ , and a solution
$\tilde{u}(t)$ satisfying condition (1.6) is said to be nonprincipal $($ for $t=\infty)$ .

We denote by $u_{\lambda}(t)$ the solution of (1.1) satisfying $u(a)=0$ and $u’(a)=1$ . When (1.1)
is conditionally oscillatory, we denote by A the oscillation constant of (1.1).

Our main results are the following.

Theorem 1. Assume that (1.3) holds. Then one of the following statements (I) or (II)
holds:

(I) For $\lambda=\overline{\lambda},$ $(1.1)$ is nonoscillatory, and there exists a sequence $\{\lambda_{i}\}_{1=0}^{k},0\leq k<\infty$ ,
with

$0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{k}\leq$ A.

(II) For $\lambda=\overline{\lambda},$ $(1.1)$ is oscillatory, and there exists a sequence $\{\lambda_{i}\}_{1=0}^{\infty}$ with

$0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{i-1}<\lambda_{i}<\cdots$ , $iarrow\infty hm\lambda_{i}=\overline{\lambda}$ .

In both cases (I) and (II) the following properties $(i)-$(iii) hold:
(i) if $\lambda=\lambda_{i}$ for some $i\in N=\{1,2, \ldots, \}$ then $u_{\lambda}(t)$ is principal;
(ii) if (1.1) is nonoscillatory and $\lambda\neq\lambda_{i},$ $i=1,2,$ $\ldots$ , then $u_{\lambda}(t)$ is nonprincipal;
(iii) if $\lambda\in(\lambda_{i-1}, \lambda_{i}]$ then $u_{\lambda}(t)$ has exactly $i-1$ zeros on $(a, \infty)$ .

In the case (I), if $\lambda_{k}<\overline{\lambda}$ and if $\lambda\in(\lambda_{k}, \overline{\lambda}]$ then $u_{\lambda}(t)$ has exactly $k-1$ zeros on $(a, \infty)$ .
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Assume, furthermore, that (1.4) holds. Then, in both cases (I) and (II), $\overline{\lambda}=1/4\alpha$ and

(1.7) $\int^{\infty}|u_{\lambda}’(t)|^{2}dt<\infty$

if $\lambda<1/4\alpha$ and $u_{\lambda}$ is principal, and

(1.8) $\int^{\infty}|u_{\lambda}’(t)|^{2}dt=\infty$ .

if $u_{\lambda}$ is nonprincipal.

Remark. (i) By Nehari [10] it is known that, if

$\lim_{tarrow\infty}t\int^{\infty}p(s)ds=0$ ,

then (1.1) is nonoscillatory for all $\lambda>0$ . In this case, Kusano-M.Naito [7] have shown
that, there exists a sequence $\{\lambda_{n}\}_{n=1}^{\infty}$ with

$0< \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\cdots,\lim_{narrow\infty}\lambda_{n}=\infty$ ,

such that the properties $(i)-(iii)$ in Theorem 1 hold. For the extension of the results to
the half-linear differential equations, we refer to [8].

(ii) Generally, principal solutions do not satisfy the condition (1.7). For example, the
equation $u”+u/(4t^{2})=0$ has a principal solution $u(t)=t^{1/2}$ , which does not satisfies
(1.7).

Theorem 2. Assume that (1.4) holds and

$t \int^{\infty}p(s)d_{S}\leq\alpha$ for $t\geq a$ .

Then (I) with $k=0$ holds in Theorem 1, that is, for $\lambda\in(0,1/4\alpha]$ , the solution $u_{\lambda}$

is nonprincipal and has no zeros on $(a, \infty)$ , and $u_{\lambda}(t)$ has infinity zeros on $(a, \infty)$ for
$\lambda\in(1/4\alpha, \infty)$ .

Theorem 3. Assume that (1.4) holds and

$t \int^{\infty}p(s)ds$ is strictly decreasing for sufficiently large $t$ .

(i) If
$\lim_{tarrow}\sup_{\infty}(t\int_{t}^{\infty}p(s)ds-\alpha)^{1/2}\log t>k\pi\alpha^{1/2}$

with some $k\in N$ , then there exists $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<1/4\alpha$ such that $u_{\lambda}$ is principal
if $\lambda=\lambda_{i}$ with some $i\in\{1,2, \ldots, k\}$ .
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(ii) If
$\lim_{tarrow}\sup_{\infty}(t\int^{\infty}p(s)ds-\alpha)^{1/2}\log t=\infty$

then (II) holds in Theorem 1.

As an application, let us consider the existence of principal eigenvalues for linear elliptic
equations of the form

(1.9) $-\Delta v=\lambda V(x)v$ , $v\in \mathcal{D}_{0}^{1,2}(\Omega)$ ,

where $\Omega\subset R^{N},$ $N\geq 3$ , is a open domain, $V\in L_{1oc}^{1}(\Omega)$ , and $D_{0}^{1,2}(\Omega)$ is the completion
of $\mathcal{D}(\Omega)$ for the norm $(f_{\Omega}|\nabla v|^{2}dx)^{1/2}$ . We are interested in the potentials behaving like
$1/|x|^{2}$ , which appears in Hardy’s inequality.

The existence of principal eigenvalue for the problem (1.9) has been studied previously
by Allegret [1], Brown, Cosner and Fleckinger [2], Dancer [3], Jin [6], Murata [9], Pinchover
[11], Rozenblum and Solomyak [12], Smets [13] and Tertikas[15]. In [1, 2, 12], the approach
to the problem is by studying an appropriate self-adjoint operator in a suitable Hilbert
spaces. In [9, 11], the approach is by a very careful analysis of the asymptotics of the
Green function of a suitable linear operator.

In [13, 15], the existence of eigenvalues for (1.9) was shown in terms of the quantities
of Rayleigh quotient. Define the following quantities for $x\in\overline{\Omega}$ and $r>0$ ,

$S_{r,V}^{\infty}= \inf\{\int_{\Omega}|\nabla v|^{2}dx:v\in \mathcal{D}_{0}^{1,2}(\Omega\backslash B_{r}(x)),$ $\int_{\Omega}Vv^{2}dx=1\}$ ,

$S_{V}^{\infty}= \sup_{r>0}S_{r,V}^{\infty}=\lim_{rarrow\infty}S_{r,V}^{\infty}$
,

$S_{r,V}^{x}= \inf\{\int_{\Omega}|\nabla v|^{2}dx:v\in \mathcal{D}_{0}^{1,2}(\Omega\cap B_{r}(x)),$ $\int_{\Omega}Vv^{2}dx=1\}$ ,

$S_{V}^{x}= \sup_{r>0}S_{r,V}^{x}=\lim_{rarrow 0}S_{r,V}^{x}$, and $S_{V}=x\in in_{\frac{f}{\Omega}}S_{V}^{x}$
,

where $B_{r}(x)$ denote the closed ball of radius $r$ centered at $x$ . Assume that $\Sigma_{V}=\{x\in$ St :
$S_{V}^{x}<\infty\}\neq\emptyset$ , and that the closure of $\Sigma_{V}$ is at most countable. Put

$\lambda_{1}(\Omega)=\inf\{\int_{\Omega}|\nabla v|^{2}dx:v\in \mathcal{D}_{0}^{1,2}(\Omega),$ $\int_{\Omega}Vv^{2}dx=1\}$ ,

and $\lambda_{k}(\Omega)$ is the k-th eigenvalue. It has been shown by Smets [13] that, if $\lambda_{1}(\Omega)<S_{V}$

and $\lambda_{1}(\Omega)<S_{V}^{\infty}$ , then there exists a principal eigenvalue for (1.9), and, if $\lambda_{k}(\Omega)<$

$\min\{S_{V}, S_{V}^{\infty}\}$ for some $k\geq 1$ , then there exist eigenvalues $\lambda_{1},$

$\ldots,$
$\lambda_{k}$ for (1.9).

Our results for (1.1) can easily be applied to the existence and nonexistence of the
eigenvalues for singular elliptic problems of the form

(1.10) $-\triangle v=\lambda V(|x|)v$ , $v\in H_{0}^{1}(\Omega)$ ,
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where $\Omega=\{x\in R^{N} : |x|<R\}$ with $N\geq 3,$ $R>0$ , and $V\in C(\Omega\backslash \{0\}),$ $V\geq 0,$ $\not\equiv 0$ . The
problem of finding radially symmetric solutions $v=v(r\},$ $r=|x|$ , of (1.10) is converted
to the following problem

$r^{1-N}(r^{N-1}v’)’+\lambda V(r)v=0$ for $0<r<R$

with $v(R)=0$ . By the change of variables $u(t)=v(r)$ and $t=r^{2-N}$ , the problem is
reduced to (1.1) with $u(a)=0$, where $a=R^{2-N}$ and

$p(t)= \frac{1}{(N-2)^{2}}t^{-(2N-2)/(N-2)}V(t^{-1/(N-2)})$ .

By the direct calculation, we find that

$\oint_{0}^{R}r^{N-1}v_{r}(r)^{2}dr=(N-2)\int_{a}^{\infty}|u’(t)|^{2}dt$ .

By Theorems 1, 2 and 3, we obtain the following:

Theorem 4. Assume that

(1.11) $\lim_{rarrow 0}r^{2-N}\int_{0}^{r}s^{N-1}V(s)ds=\alpha$, $0<\alpha<\infty$ .

If
(1.12) $r^{2-N} \int_{0}^{r}s^{N-1}V(s)ds\leq\alpha$ for $0<r<R$ ,

then (1.10) has no positive solution $v\in H_{0}^{1}(B_{R})$ .

Remark. For the existence of the principal eigenvalue to the problem (1.10), the main
assumption in [13] reads $S_{V}^{0}=S_{V}<\lambda_{1}(\Omega)$ . Thus Theorem 4 implies that $S_{V}=\lambda_{1}(\Omega)$

when (1.11) and (1.12) hold.

Theorem 5. Assume that (1.11) holds, and that

$r^{2-N} \int_{0}^{r}s^{N-1}V(s)ds$ is increasing for sufficiently small $r>0$ .

(i) If
$\lim_{rarrow}\sup_{0}(r^{2-N}\int_{0}^{r}s^{N-1}V(s)ds-\alpha)^{1/2}|\log r|>(N-2)^{3/2}k\pi\alpha^{1/2}$

with some $k\in N$ , then there exist eigenvalues $\lambda_{1},$ $\lambda_{2},$
$\cdots,$

$\lambda_{k}\in(0, \overline{\lambda})$ .
(ii) If

$\lim_{rarrow}\sup_{0}(r^{2-N}\int_{0}^{r}s^{N-1}V(s)ds-\alpha)^{1/2}|\log r|=\infty$

then there exists a sequence of eigenvalues $\{\lambda_{n}\}_{n=1}^{\infty}$ such that $\lambda_{n}arrow\overline{\lambda}$ as $narrow\infty$ .
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