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1 Model

1.1 Latent Growth Model

Introduction

The LGM examines the development of individuals on one or more out-
come variables over time. In growth modeling, random effects are used to
capture individual differences in development. The LGM comes from the
structural equation model (SEM) approach in that random effects to deter-
mine the trajectory are treated as latent variables. Covariates affecting these
latent variables are included in this model. By doing so, we understand which
covariates affect the development of subjects’ outcomes through random ef-
fects. This means that individuals with differing covariate values exhibit
differing growth curves. This model gives us a tool to examine complicated
relationships between covariates affecting latent growth factors. Figure 1
shows path diagram of the LGM with time invariant covariates.

Model Specification

Suppose $y_{i}$ is the outcome for subject $i$ , and it satisfies the following
measurement equation:

$y_{i}=\Lambda\eta_{i}+\epsilon_{i}$ , (1.1)

where $y_{i}$ is a $T\cross 1$ vector of observable outcomes (that is, both observed and
missing included), $\Lambda$ is a $T\cross M$ matrix of coefficients with the first column
often defined to be unity, $\eta_{i}$ is a $M\cross 1$ vector of latent growth factors for
subject $i$ , and $\epsilon_{i}$ is a $T\cross 1$ vector of measurement errors associated with $y_{i}$ .
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Figure 1: Path diagram of the LGM. $rhe$ manifest variables are in box and
the latent variables are in oval.

The elements of (1.1) are

$(\begin{array}{l}y_{1i}\vdots y_{ti}\vdots y_{Ti}\end{array})=(\begin{array}{lllll}\lambda_{10} \cdots \lambda_{lm} \cdots \lambda_{1,M-1}\vdots \ddots \vdots \ddots \vdots\lambda_{t0} \cdots \lambda_{tm} \cdots \lambda_{t,M-l}\vdots \ddots \vdots \ddots \vdots\lambda_{T0} \cdots \lambda_{T_{7}n} \cdots \lambda_{T,M-I}\end{array})(\begin{array}{l}\eta_{0i}\vdots\eta_{mi}\vdots\eta_{M-I,i}\end{array})+(\begin{array}{l}\epsilon_{1i}\vdots\epsilon_{ti}\vdots\epsilon_{Ti}\end{array})$

(1.2)
The $\Lambda$ denotes the time score which reflects the numerical value of (time,”
but is measured in units depending upon situations (e.g., seconds, minutes,
decades, or grades in middle to high schools).

For a simple linear trajectory model, the time score is measured equidis-
tantly and as such is defined to be $\lambda_{t0}=1$ and $\lambda_{t1}=t-1$ , where $t=1,$ $\ldots,$

$T$ ,
otherwise is $0$ , where $T$ represents the number of time points in the elements
notation (1.2). Intercept growth factor $\eta_{0i}$ measures systematic part of the
variation in the outcome variable at the time point where the time score is
zero. Slope growth factor $\eta_{1i}$ measures systematic part of the increase in the
outcome variable for a time score increase of one unit. The elements of the

113



simple linear trajectory model are presented as

$(\begin{array}{l}y_{li}\vdots y_{ti}\vdots y_{Ti}\end{array})=(\begin{array}{lll}1 0\vdots \vdots 1 t\vdots \vdots 1 T -1\end{array})(\begin{array}{l}\eta_{0i}\eta_{li}\end{array})+(\begin{array}{l}\epsilon_{li}\vdots\epsilon_{ti}\vdots\epsilon_{Ti}\end{array})$

Suppose the latent growth factors $(\eta_{0i}, \cdots, \eta_{M-1,i})^{T}$ satisfy the following
structural equation:

$\eta_{i}=\mu+\Gamma x_{i}+\zeta_{i}$ , (1.3)

where $\mu$ is a $M\cross 1$ vector of intercepts across all subjects, $\Gamma$ is a $M\cross K$ matrix
of coefficients, $x_{i}$ is a $K\cross 1$ vector of observed time invariant covariates, and
$\zeta_{i}$ is a $M\cross 1$ vector of errors or random disturbances of latent growth factors.
Here we assume that there are no missing observations in $x_{i}$ . The matrix
elements of (1.3) are

$(\begin{array}{l}\eta_{0i}\vdots\eta_{mi}\vdots\eta_{M-l,i}\end{array})$ $=$ $(\begin{array}{l}\mu_{0}\vdots\mu_{m}\vdots\mu_{M-l}\end{array})+(\begin{array}{lllll}\gamma_{0l} \cdots \gamma_{0k} \cdots \gamma_{0,K}\vdots \ddots \vdots \ddots \vdots\gamma_{m1} \cdots \gamma_{mk} \cdots \gamma_{m,K}\vdots \ddots \vdots \ddots \vdots\gamma_{M-l,1} \cdots \gamma_{M-1,k} \cdots \gamma_{M-l,K}\end{array})$

$\cross(\begin{array}{l}x_{li}\vdots x_{ki}\vdots x_{Ki}\end{array})+(\begin{array}{l}\zeta_{0i}\vdots\zeta_{mi}\vdots\zeta_{M-1,i}\end{array})$ (1.4)

The measurement model (1.1) or (1.2) denotes the trajectory of the sub-
ject’s growth over time, while the structural equation model (1.3) or (1.4)
represents the subject‘s differences of their growth factors caused by subject-
specific covariates.

1.2 Dropout
Dropout in Longitudinal Studies

Missing values in the analysis of longitudinal study often occur as dropout,
which is a special missing pattern in that once participants leave the study,
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they do not return. For example, in a study on students’ academic achieve-
ment, some students may not return to the school during the study period.
If the dropout process was directly related to the measurements that could
have observed, had he returned to the school, this would become very difficult
to handle, and would be beyond the scope of this research.

Terminology

Let us assume without loss of generality, individuals observed up to time
$T$ are ordered from those with the complete measurements to those who drop
out earliest in the course of study. This forms the monotone pattern shown
in Figure 2. For those with complete measurements, $y_{i,obs}=(y_{1i}, \cdots, y_{Ti})^{T}$

in the data set $Y_{obs}=(y_{1,obs}, \cdots, y_{n,obs})$ is a $T\cross 1$ vector of outcomes. Let a
$T\cross n$ matrix of data $Y=\{Y_{obs}, Y_{mis}\}$ , where $Y_{obs}$ consists of the observed
part of $Y$ and $Y_{mis}$ represents missing part of Y. Let $y_{i}$ be the ith column
of the $T\cross n$ matrix Y. For each subject $i$ , define that $R_{i}=(R_{i1}, \cdots, R_{iT})^{T}$

is $T\cross 1$ observation indicator in which $R_{ij}=1$ if $y_{ij}$ is observed or $R_{ij}=0$

if $y_{ij}$ is missing. The $R_{i}=(1, \cdots, 1,0, \cdots, 0)^{T}$ means i-th individual drops
out from the study at the timepoint at which zero in $R_{\eta}$. starts. We let the
scalar random variable $D_{i}$ be the variable indicating at which time dropout
occurs for individual $i$ , that is, dropout-time indicator

$D_{i}= \sum_{j=1}^{T}R_{ij}+1$ .

The $D_{i}=t$ indicates that a subject $i$ drops out between the $(t-1)-$th and
t-th observation time; that is, $y_{1i},$ $\ldots,$ $y_{t-1,i}$ are observed and $y_{ti},$ $\ldots,$ $y_{Ti}$ are
missing. Specially, if $D_{i}=T+1$ , outcomes for subject $i$ are completely
observed.

Types of Dropout

Diggle and Kenward (1994) and Little (1995) developed a classification
of dropout process based on the missing value classification framework in
Rubin (1976) and Little and Rubin (1987). Let $d_{i}$ denote the dropout time
for subject $i,$ $x_{i}$ be the design vector for time invariant covariate for subject
$i,$

$\eta_{i}$ be the latent growth factor for $y_{i}$ for subject $i$ , and $\phi$ be a vector
of parameters indexing the dropout-time indicator to be given in (1.6). A
strong assumption is that dropout machanism does not depend on outcomes.
That is,

$f(d_{i}|y_{i}, \phi)=f(d_{i}|\phi)$ .
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Figure 2: Data set with dropout

Diggle and Kenward (1994) called this assumption “completely random drop-
out” (CRD), and viewed it as a special case of MCAR assumption in the
original framework.

Suppose that dropout depends only on the observed data, but is inde-
pendent of the missing outcomes, the distribution of the dropout is

$f(d_{i}|y_{i}, \phi)=f(d_{i}|y_{i,obs}, \phi)$ .

Diggle and Kenward (1994) called this condition “random drop-out“ (RD),
which corresponds to the MAR mechanism.

If dropout depends on missing components of outcome at the time when
the subject drops out and possibly the outcomes thereafter, then

$f(d_{i}|y_{i}, \phi)=f(d_{i}|y_{i,obs}, y_{i,mis}, \phi)$ ,

where the conditioning on $y_{i}$ involves components in $y_{i,mis}$ . Diggle and Ken-
ward (1994) used the term “informative drop-out” (ID) for this nonignorable
mechanism. Under the CRD and RD assumptions, provided that parameters
in the measurement process model are independent of the parameters in the
dropout process model, we do not have to model dropout mechanism ex-
plicitly and separately in measurement process on likelihood-based approach
because the parameter estimates are the same as the estimates without miss-
ing. Rubin(1976) and Little and Rubin (1987) called this “ignorable.” On
the other hand, if dropout is not at random, the analytic result without
considering dropout process tends to be biased.
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Random-Coefficient-Based Dropout

In our dropout modeling, dropout mechanism is supposed to depend on
the latent variables (random effects) underlying the observed and missing
outcomes. This dropout mechanism assumption appeals to us because influ-
ence of outcomes on dropout mechanism is condensed in the latent variables
and because if the values of latent variables were inferred, then the dropout
mechanism would be determined (Roy and Lin, 2002). Since both the mea-
surement and the dropout processes share random effect in their models,
this random effect model for missing or dropout data is called “random-
coefficient-based drop-out” in Little (1995), “shared parameter model” in
biostatistics, or “sample selection model” in econometrics. Several researcher
analyzed their longitudinal model using random-coefficient-based dropout
(e.g. Wu and Carroll, 1988; Wu and Bailey, 1989; De Gruttola and Tu, 1994;
Follmann and Wu, 1995; Pulkstenis et al., 1998; Ten Have et al., 1998; Alfo
and Aitkin, 2000; Ten Have et al., 2000). The crucial condition for the
random-coefficient-based dropout is the independence of the measurement
process from the dropout process conditional on the random effect underly-
ing those two processes. De Grutolla and Tu (1994), Little (1995), and Ten
Have et al. (1998) interpreted that the outcomes have no longer information
on dropout process model given random effect if random effect is regarded
as true response variable measured with error. However if the measurement
error is large and random effect does not explain the trajectory of outcomes
over time well, then the observed outcome variable may be needed to predict
dropout mechanism. Moreover we might be able to interpret that random
effect explains dropout tendency over study period while outcome explains
temporary trend in dropout process.

In the following we assume a dropout of an individual subject of a longi-
tudinal study depends on his $/her$ past observed measurements and random
effects. If so, an advantage of longitudinal studies is that we can partially
recover missing information from earlier waves of data and from random
effects predicted by covariates in the LGM. Note that in practice, the im-
plementation of random-coefficient-based dropout can be difficult bacause
inferences can be quite sensitive to misspecification of the dropout process
model (Follumann and Wu, 1995; Ten Have et al., 1998).

Dropout Probability

Diggle and Kenward (1994) took advantage of results in survival analysis
as when they formulated their dropout mechanism. We assume that the
marginal dropout probability at each time point $d_{i}$ for subject $i$ is expressed
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as a product of two probabilities, the first being the probability that subject
$i$ does not drop out up to time $d_{i}-1$ expressed as $\prod_{k=2}^{d_{i}-1}\{1-p(D_{i}=k|D_{i}\geq$

$k,$ $y_{i,obs},$ $\eta_{i},$ $\phi)\}$ and the second being the probability that subject $i$ drops
out between $d_{i}-1$ and $d_{i}$ expressed as $p(D_{i}=d_{i}|D_{i}\geq d_{i}, y_{i,obs}, \eta_{i}, \phi)$ :

$p(D_{i}=d_{i}|y_{i,obs}, \eta_{i}, \phi)=\{\begin{array}{l}p(D_{i}=d_{i}|D_{i}\geq d_{i}, y_{i,obs}, \eta_{i}, \phi)\cross\prod_{k=2}^{d_{i}-1}\{1-p(D_{i}=k|D_{i}\geq k, y_{i,obs}, \eta_{i}, \phi)\}for d_{i}\leq T\prod_{k=2}^{T}\{1-p(D_{i}=k|D_{i}\geq k, y_{i,obs}, \eta_{i}, \phi)\}for d_{i}>T\end{array}$

(1.5)

Consider the conditional probability $p(D_{i}=t|D_{i}\geq t, y_{i,obs}, \eta_{i}, \phi)$ of dropout
at time $t$ for subject $i$ . Since the random variable $D_{i}$ is categorical, we postu-
late that the conditional probability is modeled as a logistic linear regression
similar to Diggle and Kenward (1994), as

logit $\{p(D_{i}=t|D_{i}\geq t, y_{i,obs}, \eta_{i}, \phi)\}=\phi_{0}+\phi_{1}y_{t-1,i}+\sum_{j=2}^{M+1}\phi_{j}\eta_{j-2,i}\equiv\phi^{T}w_{ti}$,

(1.6)

where $\phi=(\phi_{0}, \cdots, \phi_{M+1})^{T}$ is a $(M+2)\cross 1$ parameter vector and $w_{ti}=$

$(1, y_{t-1,i}, \eta_{0,i}, \cdots, \eta_{M-1,i})^{T}$ . For brevity, we assume in (1.6) the dropout pro-
cess depends only on the immediate preceding observed outcome rather than
on the previous outcomes. In the matrix notation, the following model for
dropout mechanism is thus assumed to hold from (1.6).

$\log(\frac{p(D_{i}=t|D_{i}\geq t,y_{i,obs},\eta_{i},\phi)}{1-p(D_{i}=t|D_{i}\geq t,y_{i,obs},\eta_{i},\phi)})=\emptyset^{\tau_{w_{ti}}}$ ,

or
$\frac{p(D_{i}=t|D_{i}\geq t,y_{i,obs},\eta_{i},\phi)}{1-p(D_{i}=t|D_{i}\geq t,y_{i,obs},\eta_{i},\phi)}=\exp(\phi^{T}w_{ti})$ .

Since

$p(D_{i}=t|D_{i}\geq t, y_{i,obs}, \eta_{i}, \phi)=\{1-p(D_{i}=t|D_{i}\geq t, y_{i,obs}, \eta_{i}, \phi)\}\exp(\phi^{T}w_{ti})$ ,

118



or

$p(D_{i}=t|D_{i}\geq t, y_{i,obs}, \eta_{i}, \phi)\{1+\exp(\phi^{T}w_{ti})\}=\exp(\phi^{T}w_{ti})$ ,

we have

$p(D_{i}=t|D_{i} \geq t, y_{i,obs}, \eta_{i}, \phi)=\frac{\exp(\phi^{T}w_{ti})}{1+\exp(\phi^{T}w_{ti})}$ . (1.7)

The dropout probability at time $d_{i}$ for subject $i$ in (1.5) is thus rewritten by
(1.7) as

$p(D_{i}=d_{i}|y_{i,obs}, \eta_{i}, \phi)$ $=$ $\frac{\exp(\phi^{T}w_{d_{i},i})}{1+\exp(\phi^{T}w_{d_{i},i})}\cross\prod_{k=2}^{d_{i}-1}\{1-\frac{\exp(\phi^{T}w_{k,i})}{1+\exp(\phi^{T}w_{k,i})}\}$

$=$ $\frac{\exp(\phi^{T}w_{d_{i},i})}{1+\exp(\phi^{T}w_{d_{i},i})}\cross\prod_{k=2}^{d_{i}-1}\frac{1}{1+\exp(\phi^{T}w_{k,i})}$

$=$
$\frac{\exp(\phi^{T}w_{d_{i},i})}{\prod_{k=2}^{d_{i}}\{1+\exp(\phi^{T}w_{k,i})\}}$ (1.8)

if subject $i$ drops out during the study period. Otherwise,

$p(D_{i}=d_{i}|y_{i,obs}, \eta_{i}, \phi)=\frac{1}{\prod_{k=2}^{T}\{1+\exp(\phi^{T}w_{k,i})\}}$
. (1.9)

2 Bayesian Estimation of Latent Growth Model
with Time Invariant Covariates and with
Drop-Out

In this section, we propose our Bayesian approach based on the Lee’s
Bayesian SEM (Song and Lee, 2002; Lee and Tang, 2006) with the data
augmentation and the Markov chain Monte Carlo (MCMC) procedure.

2.1 Likelihood, Priors, and Posteriors
The model parameters and the prior distributions

For subject $i=1,$ $\ldots,$
$n$ , we consider a data set $Y_{obs}=(y_{1,obs}, \ldots, y_{n,obs})$ ,

where $y_{i,obs}$ is a $T\cross 1$ vector for subject $i$ with complete observation. A
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$T\cross n$ matrix $Y=\{Y_{obs}, Y_{mis}\}$ has a monotone pattern of missing data
as in Figure 2. We assume that the $\epsilon_{i}$ in (1.1) and the $\zeta_{i}$ in (1.3) are
independently distributed with respect to $i$ and with respect to each other
as

$\epsilon_{i}|\Psi_{\epsilon}\sim MVN(0, \Psi_{\epsilon})$ , (2.1)
$\zeta_{i}|\Psi_{\zeta}\sim MVN(0, \Psi_{\zeta})$ , (2.2)

where $\Psi_{\epsilon}$ is a $T\cross T$ diagonal matrixl and $\Psi_{\zeta}$ is a $M\cross M$ matrix, not
necessarily diagonal, of covariances of $\epsilon_{i}$ ’s and $\zeta_{i}$ ’s respectively. Suppose
$\Lambda,$ $\mu,$ $\Gamma,$ $\Psi_{\epsilon}$ , and $\Psi_{\zeta}$ are model parameters. We need data distribution
and the prior distributions to calculate the joint posterior distribution of
the parameters. We can specify the distributional form of $y_{i}$ from (1.1) by
incorporating (2. 1) as

$y_{i}|\Lambda,$
$\eta_{i},$

$\Psi_{\epsilon}\sim MVN(\Lambda\eta_{i}, \Psi_{\epsilon})$ . (2.3)

We also know the distribution of $\eta_{i}$ from (1.3) and (2.2) as
$\eta_{i}|\mu,$ $\Gamma,$ $x_{i},$ $\Psi_{\zeta}\sim MVN(\mu+\Gamma x_{i}, \Psi_{\zeta})$ . (2.4)

The following conjugate prior distributions will be used to derive the
posterior distributions:

$\Lambda_{k}|\psi_{\epsilon k}\sim MVN(\Lambda_{0k}, \psi_{\epsilon k}H_{0\epsilon k})$ , (2.5)
$\psi_{\epsilon k}\sim IG(\alpha_{0\epsilon k}, \beta_{0\epsilon k})$ , (2.6)
$\mu\sim MVN(\mu_{0}, \Sigma_{0})$ , (2.7)
$\tilde{\Gamma}|\Psi_{\zeta}\sim MVN(\tilde{\Gamma}_{0}, \Psi_{\zeta}\otimes H_{0\zeta})$ , (2.8)
$\Psi_{\zeta}\sim IW(R_{0}^{-1}, \rho_{0})$ , (2.9)

where $\Lambda_{k}^{T}$ is a 1 $\cross M$ row vector of unknown parameters in the k-th row
of $\Lambda;\psi_{\epsilon k}$ is the k-th diagonal element of $\Psi_{\epsilon};\tilde{\Gamma}$ is a $MK\cross 1$ vector manu-
factured by the transposed row vectors of $\Gamma$ connected vertically downward,
defined as vec $(\Gamma^{T})$ with vec operator; $IG(\alpha_{0\epsilon k}, \beta_{0\epsilon k})$ denotes the inverted
Gamma distribution with shape parameter $\alpha_{0\epsilon k}$ and with scale parameter
$\beta_{0\epsilon k};IW(R_{0}^{-1}, \rho_{0})$ denotes the inverted Wishart distribution with $\rho_{0}$ degrees
of freedom and with the precision matrix $R_{0}^{-1};\Lambda_{0k},$

$\alpha_{0\epsilon k},$
$\beta_{0\epsilon k},$ $\mu_{0},\tilde{\Gamma}_{0},$

$\rho_{0}$ , and
positive definite matrices $H_{0\epsilon k},$ $H_{0\zeta},$ $\Sigma_{0},$ $R_{0}$ are hyper-parameters whose val-
ues are assumed to be given by prior information. The $\Psi_{\zeta}\otimes H_{0\zeta}$ is a
$MK\cross MK$ matrix denoted by Kronecker product.

lThis assumption about the disturbance $\epsilon_{i}$ that it is non-autocorrelated, Cov $(\epsilon_{ti}, \epsilon_{si})=$

$0(t\neq s)$ , makes (2.14) easy to handle because observed and missing components of $y_{i}$

become mutually independent.
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The likelihood function of the observed data

Let $\theta=(\Lambda, \mu, \Gamma, \Psi_{\epsilon}, \Psi_{\zeta})$ be the parameter vector, $\theta_{y}=(\Lambda, \Psi_{\epsilon})$ and
$\theta_{\eta}=(\mu, \Gamma, \Psi_{\zeta})$ be the parameters included in $y$ ’s in the measurement model
(1.1) and $\eta$ ’s in the structural equation model (1.3), and $\phi$ be the unknown
parameter vector to describe the dropout mechanism. We assume the prior
of $\phi$ follows the normal distribution with mean $\phi^{0}$ and variance $V$ , where
$\phi^{0}$ and $V$ are the hyperparameters whose value are assumed to be given by
prior information. From (2.3) and (2.4), we can compose the following joint
distribution of $y_{i}$ and $\eta_{i}$ for individuals $i=1,$ $\ldots,$

$n$ based on the hierarchical
structure.

$p(y_{i}|\Lambda, \eta_{i}, \Psi_{\epsilon})\cross p(\eta_{i}|\mu, \Gamma, \Psi_{\zeta}, x_{i})$

$=p(y_{i}, \eta_{i}|\Lambda, \Psi_{\epsilon}, \mu, \Gamma, \Psi_{\zeta}, x_{i})$

$=p(y_{i,obs}, y_{i,mis}, \eta_{i}|\theta, x_{i})$ . (2.10)

Since the joint distribution of $y_{i}$ and $\eta_{i}$ , as well as the distribution of dropout
time indicator $d_{i}$ , are indenpendent across individuals $i$ , the joint distribution
of the full data $Y$ , the latent variable $\eta=\{\eta_{i};i=1, \ldots, n\}$ , and the dropout-
time indicator $D=\{d_{i};i=1, \ldots, n\}$ can be denoted as

$p(Y, \eta, D|X, \theta, \phi)$ $=$ $p(Y, \eta|\theta, X)p(D|Y, \eta, \phi)$

$=$ $\prod_{i=1}^{n}p(y_{i}, \eta_{i}|\theta, x_{i})p(d_{i}|y_{i,obs}, \eta_{i}, \phi)$ (2.11)

under the selection modeling case. The first term on the right hand side in
(2.11) is the joint density of the outcome and the latent variable in the latent
growth model in (2.10), and the second one is the density of the dropout
mechanism, conditional on the observed outcomes and on the latent factors
in (1.8) or (1.9). Note that the advantage of the selection model is that it
immediately models the distributions which interest us.

Considering that the inference has to be based on observed data, the full
data likelihood function is replaced by the observed data likelihood function.
The observed data likelihood function $p(Y_{obs}, D|\theta, \phi, X)$ can be expressed
by averaging the conditional distribution (2.11) over $Y_{mis}=\{y_{i,mis};i=$
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1, . . . , $n\}$ and $\eta$ as

$p( Y_{obs}, D|\theta, \phi, X)=\int\int p(Y_{obs},Y_{mis}, \eta, D|\theta, X, \phi)d\eta dY_{mis}$

$= \int\int p(Y_{obs}, Y_{mis}, \eta|\theta, X)p(D|Y_{obs}, Y_{mis},\eta, X, \phi)d\eta dY_{mis}$

$= \int\int p(Y|\eta, \theta_{y})p(\eta|\theta_{\eta}, X)p(D|Y_{obs},\eta, X, \phi)d\eta dY_{mis}$ ,

(2.12)

where the dropout process is referred to as “random-coefficient-based dropout.”

The posterior distribution

We assume that individuals $i$ are sampled independently for $i=1,$ $\ldots$ , $n$ .
The joint posterior density of $\theta$ and $\phi$ given $Y_{obs}$ and $D$ is desired and is
expressed as

$p(\theta, \phi|Y_{obs}, D, X)$ $\propto$ $p(Y_{obs}, D|\theta, \phi, X)p(\theta, \phi)$

$=$ $\int\int p(Y|\eta, \theta_{y})p(\eta|\theta_{\eta}, X)p(D|Y_{obs}, \eta, X, \phi)d\eta dY_{mis}$

$\cross p(\theta, \phi)$

$=$ $\int\int p(Y|\eta, \Lambda, \Psi_{\epsilon})p(\eta|\mu, \Gamma, \Psi_{\zeta}, X)p(D|Y_{obs}, \eta, X, \phi)$

$\cross\prod_{k=1}^{T}\{p(\Lambda_{k}|\psi_{\epsilon k})p(\psi_{\epsilon k})\}p(\mu)p(\tilde{\Gamma}|\Psi_{\zeta})p(\Psi_{(})p(\phi)d\eta dY_{mis}$ ,

(2.13)

under the selection modeling case. The observed data likelyhood function is
decomposed into the density of the outcome variable, the density of the latent
growth variable, and the conditional density of the latent factor given the
covariates, the density of the dropout mechanism, conditional on the observed
outcomes and on the latent growth factors. Note that the advantage of the
selection model is that it immediately models the distributions which interest
us.

Owing to the existence of missing data $Y_{mis}$ and the existence of the
latent variable $\eta$ , the likelihood function (2.12) has multiple integrals. Thus
the posterior distribution (2.13) is difficult to calculate. Taking advantage
of current statistical computing, Song and Lee (2002) and Lee and Tang
(2006) conducted posterior analyses with the data augmentation technique
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and the MCMC algorithm. They introduced the lnissing data set $Y_{mis}$ to
the posterior distribution as unknown parameter to estimate. In addition
to “real” missing data, they treated the latent variables $\eta$ as a hypothetical
missing data. We call $(\eta, Y_{mis})$ latent data.

The distribution of the missing data

Now we introduce the distribution of the missing data under random-
coefficient-based dropout, which is required in the data augmentation and
the MCMC. Note that $y_{i}=(y_{i,obs}^{T}, y_{i,mis}^{T})^{T}$ , where $y_{i,obs}$ is the set of observed
data of $y_{i}$ with $d_{i}-1$ elements and $y_{i,mis}$ is the set of missing components
consisting of NAs of $y_{i}$ with $T-d_{i}+1$ elements.

The component expression of measurement model with dropout for sub-
ject $i$ is denoted from (1.1) as

$(\begin{array}{l}y_{li}\vdots[y_{i,mis}^{d_{i}}]y_{d_{i}-1,i}\vdots[y_{i,mis}^{T}]\end{array})=[\lambda_{d_{i}-I,0}\lambda_{10}$

$.\cdot.\cdot$

.

$\lambda_{d_{i}-1,M-1^{\backslash } ,\lambda_{i,mis}^{d_{i},M-1}]_{\nearrow}}\lambda_{i,mis}^{T,M-1}]\lambda_{1,M-1}$

$(\begin{array}{l}\eta_{0i}\vdots\eta_{M-1,i}\end{array})+(\begin{array}{l}\epsilon_{li}\vdots[\epsilon_{i,mis}^{d_{i}}]\epsilon_{d_{i}-1,i}\vdots[\epsilon_{i,mis}^{T}]\end{array})$ ,

where the notation $[\cdot]$ denotes missing component and the upper-right indices
denote the location of these elements within their corresponding vectors or
matrices. The $y_{i}$ ’s are normally distributed and $\Psi_{\epsilon}$ is a diagonal matrix, so
that $y_{i,mis}$ given $(\theta_{y}, \eta_{i})$ is independent with $y_{i,obs}$ . The random-coefficient-
based dropout assumption and the non-autocorrelation assumption imply
that the missing data in $y_{i}$ directly depend only on the latent variable $\eta_{i}$ not
$y_{i}$ itself.

For $i=1,$ $\ldots,$
$n$ , since $y_{i}|\theta,$

$\eta_{i}$ are assumed independent with respect to
$i,$ $y_{i,mis}$ ’s given $(\theta, \eta_{i})$ ’s are also independent. Therefore the full conditional
distribution of $Y_{mis}$ given $\theta,$

$\eta,$ $Y_{obs},$ $X,$ $D,$ $\phi$ for the Gibbs sampler in the
MCMC is

$p(Y_{mis}|\eta, \theta, Y_{obs}, X, D, \phi)$ $=$ $\prod_{i=1}^{n}p(y_{i,mis}|\eta_{i}, \theta, y_{i,obs}, x_{i}, d_{i}, \phi)$

$=$ $\prod_{i=1}^{n}p(y_{i,mis}|\eta_{i}, \theta_{y})$ (2.14)
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and the right hand side of this equation is

$p(y_{i,mis}|\eta_{i}, \theta_{y})$ $=$ $|\Psi_{\epsilon,i,mis}|^{-\frac{1}{2}}$

$\cross\exp\{-\frac{1}{2}(y_{i,mis}-\Lambda_{i,mis}\eta_{i})^{T}\Psi_{\epsilon,i,mis}^{-1}(y_{i,mis}-\Lambda_{i,mis}\eta_{i})\}$

$=$ $\prod_{k=1}^{T-d_{i}+1}|\psi_{\epsilon,i,mis,k}|^{-\frac{1}{2}}$

$\cross\exp\{-\frac{1}{2}(y_{i,mis,k}-\Lambda_{i,mis,k}\eta_{i})^{T}\psi_{\epsilon,i,mis,k}^{-1}(y_{i,mis,k}-\Lambda_{i,mis,k}\eta_{i})\}$,

(2.15)

where the $\Lambda_{i,mis}$ is a $(T-d_{i}+1)\cross M$ submatrix of $\Lambda$ with rows corre-
sponding to missing components and $\Psi_{\epsilon,i,mis}$ is a $(T-d_{i}+1)\cross(T-d_{i}+1)$

submatrix of $\Psi_{\epsilon}$ with rows and columns corresponding to missing values.
The index $k$ denotes the k-th element, diagonal element, or row vector in
corresponding vector or matrices. As shown in (2.15), even the form of
$Y_{mis}$ is complicated with any monotone pattern of dropout, its conditional
distribution only involves a product of normal distributions. As a result,
the computational burden for simulating $Y_{mis}$ is light. In this sense, the
Bayesian estimating procedure under the random-coefficient-based dropout
and the non-autocorrelated measurement error is almost the same as the
parameter estimation procedure under the complete data set with the data
augmentation and the MCMC.

2.2 Data Augmentation and MCMC Procedure
The data augmentation

We form an algorithm of the data augmentation technique for the desired
joint posterior density $p(\theta, \phi|Y_{obs}, X, D)$ of $(\theta, \phi)$ given the observed data
and the dropout indicator as follows.

$p(\theta, \phi|Y_{obs}, X, D)$

$= \int\int p(\theta, \phi, \eta, Y_{mis}|Y_{obs}, X, D)d\eta dY_{mis}$

$= \int\int p(\theta, \phi|\eta, Y_{mis}, Y_{obs}, X, D)p(\eta, Y_{mis}|Y_{obs}, X, D)d\eta dY_{mis}$ ,

(2.16)

where $p(\theta, \phi|\eta, Y_{mis}, Y_{obs}, X, D)$ denotes the joint conditional density of
$\theta$ and $\phi$ given the latent data augmented as $(\eta, Y_{mis})$ and the observed
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variables $Y_{obs},$ $X$ , and $D$ and $p(\eta, Y_{mis}|Y_{obs}, X, D)$ denotes the joint pre-
dictive density of the latent data $(\eta, Y_{mis})$ given $Y_{obs},$ $X$ , and $D$ . The joint
predictive density $p(\eta, Y_{mis}|Y_{obs}, X, D)$ of the latent data $(\eta, Y_{mis})$ relates
to the desired posterior density $p(\theta, \phi|Y_{obs}, X, D)$ as

$p( \eta, Y_{mis}|Y_{obs}, X, D)=\int\int p(\eta, Y_{mis}|\theta, \phi, Y_{obs}, X, D)p(\theta, \phi|Y_{obs}, X, D)d\theta d\phi$ .
(2.17)

By substituting (2.17) into (2.16), we can in principle form an iterative al-
gorithm to obtain the desired posterior density.

$p(\theta, \phi|Y_{obs}, X, D)$

$= \int\int p(\theta, \phi|\eta, Y_{mis}, Y_{obs}, X,\acute{D})p(\eta, Y_{mis}|Y_{obs}, X, D)d\eta dY_{mis}$

$= \int\int p(\theta, \phi|\eta, Y_{mis}, Y_{obs}, X, D)$

$\cross\{\int\int\prime d\eta dY_{mis}$ .

(2.18)

The fact that $p(\theta, \phi|Y_{obs}, X, D)$ appears on both sides of (2.18) gives the
following iterative algorithm. Given the values of $\theta$ and $\phi$ , we generate
$(\eta_{l}, Y_{mis,l})$ for $l=1,$

$\ldots,$
$L$ from the joint density $p(\eta, Y_{mis}|\theta, \phi, Y_{obs}, X, D)$

of the latent data $(\eta, Y_{mis})$ given $\theta,$ $\phi,$ $Y_{obs},$ $X$ , and $D$ . This method is
called the composition method, which reexpresses $p(\eta, Y_{mis}|Y_{obs}, X, D)$ as
the expression in the brace in (2.18) so that we can obtain random draws
of $(\eta, Y_{mis})$ from $p(\eta, Y_{mis}|Y_{obs}, X, D)$ . With these samples $(\eta_{l}, Y_{mis,l})$ ,
we manufacture $p(\theta, \phi|\eta_{l}, Y_{mis,l}, Y_{obs}, X, D)$ and approximate the desired
posterior density $p(\theta, \phi|Y_{obs}, X, D)$ by

$g( \theta, \phi|Y_{obs}, X, D)=\frac{1}{L}\sum_{l=1}^{L}p(\theta, \phi|\eta_{l}, Y_{mis,l}, Y_{obs}, X, D)$ . (2.19)

Assume the $g(\theta, \phi|Y_{obs}, X, D)$ is a good approximation of the posterior
$p(\theta, \phi|Y_{obs}, X, D)$ , we generate $\theta$ and $\phi$ and we repeat this process until
convergence by the standard Monte Carlo.

The MCMC procedure

We propose the following algorithm. Note that we use the Metropolis-
Hastings algorithm for the non-standard conditional distributions.
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MCMC $0$ Set $\theta^{(0)},$ $\phi^{(0)}$ , and $Y_{mis}^{(0)}$ .

At the j-th iteration $j=1,$ $\ldots$ ,

MCMC 1 For $i=1,$ $\ldots,$
$n$ ,

generate $\eta_{i}^{*}$ from $MVN(B_{\eta}b_{\eta}, B_{\eta})$ with $B_{\eta}=(\Psi_{\zeta}^{-1}+\Lambda^{T}\Psi_{\epsilon}^{-1}\Lambda)^{-1}$

and $b_{\eta}=\Lambda^{T}\Psi_{\epsilon}^{-1}y_{i}+\Psi_{\zeta}^{-1}(\mu+\Gamma x_{i})$ .

MCMC 2 Calculate

$R_{\eta_{i}^{*}}= \min(1,\frac{p(d_{i}|y_{i,obs},\eta_{i}^{*},\phi)}{p(d_{i}|y_{i,obs},\eta_{i}^{(j-1)},\phi)})$

MCMC 3 Set $\eta_{i}^{(j)}=\eta_{i}^{*}$ with probability $R_{\eta_{i}}*$ or $\eta_{i}^{(j)}=\eta_{i}^{(j-1)}$ with
probability $1-R_{\eta_{i}^{*}}$ .

MCMC 4 For $i=1,$ $\ldots,$
$n$ ,

generate $y_{i,mis}^{(j)}$ from $MVN(\Lambda_{i,mis}\eta_{i}, \Psi_{\epsilon,i,mis})$ in (2.15).

MCMC 5 For $k=1,$ $\ldots,$
$T$ ,

generate $\Lambda_{k}^{(j)}$ from $MVN(a_{k}, A_{k})$ with $A_{k}=(H_{0\epsilon k}^{-1}+\eta\eta^{T})^{-1}$ and
$a_{k}=A_{k}(H_{0\epsilon k}^{-1}\Lambda_{0k}+\eta Y_{k})$ .

MCMC 6 For $k=1,$ $\ldots,$
$T$ ,

generate $\psi_{\epsilon k}^{(j)}homIG(\frac{n}{2}+\alpha_{0\epsilon k},$ $\beta_{0\epsilon k}+2^{-1}(Y_{k}^{T}Y_{k}-a_{k}^{T}A_{k}^{-1}a_{k}+\Lambda_{0k}^{T}H_{0\epsilon k}^{-1}\Lambda_{0k}))$.

MCMC 7 Generate $\mu^{(j)}$ from $MVN(b_{\mu}, B_{\mu})$ with $B_{\mu}=(\Sigma_{0}^{-1}+n\Psi_{\zeta}^{-1})^{-1}$

and $b_{\mu}=n\Psi_{\zeta}^{-1}\overline{\eta}+\Sigma_{0}^{-1}\mu_{0}$ .

MCMC 8 Generate $\tilde{\Gamma}^{(j)}$ from $MVN(\tilde{a}_{\Gamma}, \Psi_{\zeta}\otimes A_{\Gamma})$ with $\tilde{a}_{\Gamma}=$ vec $(a_{\Gamma}^{T})$ ,
$a_{\Gamma}^{T}=A_{\Gamma}\{H_{0\zeta}^{-1}\Gamma_{0}^{T}+X(\eta-\mu)^{T}\}$ , and $A_{\Gamma}=(H_{0\zeta}^{-1}+XX^{T})^{-1}$ .

MCMC 9 Generate $\Psi_{\zeta}^{(j)}$ from $IW(R_{0}^{-1}+S, \rho_{0}+n)$ with $S=(\eta-\mu-$

$a_{\Gamma}X)(\eta-\mu-a_{\Gamma}X)^{T}+(a_{\Gamma}-\Gamma_{0})H_{0\zeta}^{-1}(a_{\Gamma}-\Gamma_{0})^{T}$.

MCMC 10 Generate $\phi^{*}$ from $MVN(\phi^{(j-1)}, \sigma_{\phi}^{2}\Omega_{\phi})$ with $\Omega_{\phi}^{-1}=V^{-1}+$

$\sum_{i=1}^{n}\sum_{k=2}^{d_{t}}w_{ki}w_{ki}^{T}$ .

MCMC 11 Calculate

$R_{\phi^{*}}= \min(1,$ $\prod_{i=1}^{n}\frac{p(d_{i}|y_{i,obs},\eta_{i},\phi^{*})p(\phi^{*})}{p(d_{i}|y_{i,obs},\eta_{i},\phi^{(j-1)})p(\phi^{(j-1)})})$
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MCMC 12 Set $\phi^{(j)}=\phi^{*}$ with probability $R_{\phi^{*}}$ or $\phi^{(j)}=\phi^{(j-1)}$ with
probability $1-R_{\phi^{*}}$ .

MCMC 13 If the conditional distribution $p(\theta_{y}|\eta, Y)$ converges when us-
ing the conditional distribution in MCMC 5 and MCMC 6, if the
conditional distribution $p(\theta_{\eta}|\eta, X)$ converges as well when using the
conditional distribution in MCMC 7 to MCMC 9, and if the con-
ditional distribution $p(\phi|\eta, Y_{obs}, D)$ converges in MCMC 10, then
$p(\theta, \phi|Y_{obs}, X, D)$ is the stationary distribution. Hence, stop the iter-
ation. Otherwise return to MCMC 1.

3 Simulation Study
We will examine the accuracy of the proposed estimates. The complete

data set $Y$ with 100 subjects and 5 time points are generated 100 times from
the model in (1.1) and (1.3). The values of the population parameters are
set as below.

$\Lambda^{T}$
$=$ $(\begin{array}{lllll}1.0^{*} 1.0^{*} 1.0^{*} 1.0^{*} 1.0^{*}0.0^{*} 1.0^{*} 2.0 3.0 4.0\end{array})$ ,

$\Psi_{\epsilon}$ $=$ diag(1.0, $\cdots$ , 1.0),
$\mu^{T}$ $=$ (0.0, 0.0),

$\Gamma$ $=$ $(\begin{array}{ll}1.0 0.50.5 1.0\end{array})$ ,

$\Psi_{\zeta}$ $=$ $(\begin{array}{ll}1.0 0.30.3 1.0\end{array})$ ,

$\phi^{T}$ $=$ $(-1.0,0.5,0.5,0.5)$ ,

The asterisks in $\Lambda^{T}$ are the values fixed for identification and will not be
estimated. For subject $i$ , we generate randomly $x_{i}^{T}=(x_{1i}, x_{2i})$ and $\zeta_{i}^{T}=$

$(\zeta_{0i}, \zeta_{1i})$ from $MVN(O, I)$ and $MVN(O, \Psi_{\zeta})$ respectively, and calculate $\eta_{i}$

in (1.3). Then we calculate $y_{i}$ in (1.1) by using random $\epsilon_{i}$ generated from
$MVN(O, \Psi_{\epsilon})$ and the $\eta_{i}$ . Repeating these steps for 100 subjects, we ob-
tain a complete set of the simulated data. Missing data satisfying random-
coefficient-based dropout mechanism in (1.8) are created via the following
steps:

(i) We select 75 out of 100 subjects randomly as possible candidates for
dropouts. This reduces the number of subjects with dropout to be less
than or equal to 75.

127



(ii) We generate a random number $\nu$ from the uniform distribution $U(0,1)$ .
This will be used for all the subjects and for all the simulated sets.

(iii) For each of the selected 75 subjects, if $\nu\leq p(D_{i}=t|y_{i,obs}, \eta_{i}, \phi)$ in
(1.8) for $t=2,$ $\ldots,$

$5$ , then we change $y_{ti},$ $\ldots,$ $y_{5i}$ to be missing.

We repeat (i) and (iii) for 100 times to generate 100 sets of the simulated
data with dropouts. After taking these steps, we have roughly 43 subjects
dropping out on average for the 100 simulated data with dropouts. See
Figure 3. In Figure 4 we present the overall picture as to when the dropouts
occur in the 100 simulated data sets, each of which consist of 100 subjects. Of
the tota14,341 subjects who drop out sometime during the five observation
sequence, 3,396 drop out at time 2, 654 at time 3, 202 at time 4, and 89 at
time 5. Since the remaining 5,659 subjects are fully observed, of the 5 $\cross 100$

$\cross 100$ data points, the average proportion of 4 $\cross 3,396+3\cross 654+2\cross$

$202+1\cross 89=14,734$ or 29.47% are missing.

$g\Leftrightarrow\subset a$

–
$2O$ $3O$ $4O$ $5O$ $6O$ $7O$

The number of dropouts in a simulated data of lOO subjects in lOO data set

Figure 3: The histogram of the number of dropouts in a simulated data of
100 subjects in 100 data sets.

We obtain the estimates using three types of data:

A 100 sets of the simulated complete data.

$B100$ sets of the simulated data with dropouts.

$C100$ sets of the simulated but listwisely deleted data when subjects drop
out sometime during the five observation sequence. Because of listwise
deletion, the number of subjects in a set may vary from 26 to 76.
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Figure 4: The total number of subjects dropping out at each time

For the result in Table 1, three data sets are estimated using the Bayesian
framework. For the data set A and $C$ , there are no dropouts and so the
estimation is done using the proposed algorithm in principle, but those parts
dealing with the dropouts are removed.

The hyper-parameter values in priors are set as $\lambda_{0k}=k-1$ for $k=$
$3,$

$\ldots,$
$5,$ $\alpha_{0\epsilon k}=10,$ $\beta_{0\epsilon k}=8,$ $\mu_{0}=(0,0)^{T},\tilde{\Gamma}_{0}=(1.0, \cdots, 1.0)^{T},$ $\rho_{0}=8$ ,

$\phi^{0}=(-0.5,0.25,0.25,0.25)^{T}$ , a location parameter $c=0.25$ for $\psi_{\epsilon}’ s,$ $\Sigma_{0}$

is diagonal matrix with diagonally element 0.01, $H_{0\zeta}$ and $V$ are diagonal
matrices with 0.25, and $R_{0}^{-1}$ is 5 times indentity matrix. The variance $\sigma_{\phi}^{2}$ in
the M-H algorithm is chosen as 0.05 to give acceptance probability almost
0.4. For the data sets A and $C,$ $\phi^{0},$ $V$ , and $\sigma_{\phi}^{2}$ are of course unnecessary.
This setting can be regarded as a situation under good prior information.

We conduct the Bayesian estimation based on 5,000 iterations after throw-
ing out the first 5,000 burn-in. The posterior means and their standard errors
(SE) for the parameters are computed. Results are given in Table 1. We see
that the estimates $\lambda’ s,$ $\mu’ s,$ $\gamma’ s,$ $\psi_{\epsilon}’ s$ , and $\psi_{\zeta}$ ’s under our proposed method in
the fourth column from the left are similar to those under the complete data
in the second column from the left, assuming we know the true parameter
values. In the dropout process model, $\phi_{2}$ and $\phi_{3}$ are overestimated while
$\phi_{0}$ and $\phi_{1}$ are underestimated relative to the corresponding true values. In
one of the preceding studies, Roy and Lin (2002) observed similar compen-
sated tendency of parameter estimates in dropout process in their sensitivity
analysis when they formulate the dropout probability in terms of logistic re-
gression, although they specified that the dropout probabilities depend on
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both the last observed and the current missing outcomes. Note that our
dropout probabilities depend on the latent variables as well. The standard
errors of $\lambda’ s,$ $\mu’ s,$ $\gamma’ s,$ $\psi_{\epsilon}’ s$ , and $\psi_{\zeta}$ ’s in the fifth column from the left under the
proposed model is larger relative to those in the third column under the com-
plete data. This elevated standard errors are observed for the following two
reasons: First, under the proposed model, there are four more parameters to
be estimated with the same number of data points, thereby increasing the
fluctuation of the parameter estimates; Second, by introducing the dropout
process, we also introduce the number of data available for estimation to be
variable as well as seen in Figure 3. Table 2 shows the average of the 100
maximum likelihood (ML) estimates and their corresponding standard errors
using the software Mplus 4.21 (Muth\’en & Muth\’en, 2006) for the data set
A and C. The ML estimates resemble our Bayesian estimates in the mean
estimates. Notice that the underestimation of the estimate for $\psi_{\zeta 12}$ in any
one of the five cases. Hence we conclude that the severe underestimation
observed in the fourth column of Table 1 is not due to the algorithm, but
because of the unfortunate chance consequence of the simulated data.
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Table 1: Performance of the Bayesian estimates to examine the accuracy

True parameter Complete (A) Dropout (B) Lst Delete (C)
values $\overline{Mean}$SE Mean SE Mean SE

$\lambda_{32}=2.0$ 2.017 0.096
$\lambda_{42}=3.0$ 3.019 0.137
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-1.879 0.557 $-$

0.131 0.610 $-$

0.719 0.856 $-$

0.789 0.696 $-$
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Table 2: Performance of the maximum likelihood estimates using Mplus

$Trueparamvalues$
eter Complete (A) Lst Delete (C)

$\overline{Mean}$SE Mean SE
$\lambda_{32}=2.0$ 2.000 0.016 2.037 0.021
$\lambda_{42}=3.0$ 2.987 0.024 3.044 0.032
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