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A Bayes factor with reasonable model
selection consistency for ANOVA model
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We start with a simiple one-way balanced ANalysis-Of-VAriance (ANOVA). There are
two possible models. In one model, all random variables have the same mean. In the other
model, random variables in each level has a different mean. Formally, the independent
observations y;; (i =1,...,p, 7=1,...,r, n = pr) are assumed to arise from the linear
model:

Yij = i+ oy + €5, €5 ~ N(0,07) (1)

where u, o; (i = 1,...,p) and o? are unknown. We assume ) ¢; = 0 as uniqueness
constraint. Clearly two models are written as follows:

M1I O!:‘—'(O.’],...,O.'p),:()

2
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In (2), A means the name of the factor and the subscript A+ 1 is from the fact that Ey;;]
in (1) consists of the sum of the constant term and the level of the factor.

In this paper, we will consider Bayesian model selection based on Bayes factor for
ANOVA problem. Model comparison, which refers to using the data in order to decide
on the plausibility of two or more competing models, is a common problem in modern
statistical science. In the Bayesian framework, the approach for model selection and
hypothesis testing is essentially same, whereas there is a big difference in classical fre-
quentist procedures for model selection and hypothesis testing. A natural approach is
to use Bayes factor (ratio of marginal densities of two models), which is based on the
posterior model probabilities (Kass and Raftery (1995)). That is the reason why we take
Bayesian approach based on Bayes factor in this paper.

One of the most important topic on Bayesian model selection is consistency. Consis-
tency means that the true model will be chosen if enough data are observed, assuming
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that one of the competing models is true. It is well-known that BIC hy Schwarz (1978)
has consistency in classical (so called “n > p”) situation. As a variant of “p > n” problem,
which is hot in modern statistics, the consistency in the case where p — oo and r is fixed
in one-way ANOVA setup, has been considered by Stone (1979) and Berger et al. (2003).
In the following, “CASE I” and “CASE II” denote the cases where

I. 7 goes to infinity and p is fixed,
II. p goes to infinity and r is fixed,

respectively. Under known o2 and CASE 11, Stone (1979) showed that BIC always chooses
the null model M; (that is, BIC is not consistent under M4y) even if o’a/{po?} is
sufficiently large. This is reasonable because BIC is originally derived by the Laplace
approximation under classical situation. Under known o2, Berger et al. (2003) proposed
the Bayesian criterion called GBIC, which is derived by the Laplace approximation under
CASE II. Then they showed that GBIC has model selection consistency under CASE II.

Generally, the original representation of Bayes factors or marginal densities involve
integral. In the normal linear model setup, even if conjugate prior is used, hyperparameter
and its prior distribution are usually introduced in order to guarantee objectivity, which is
called fully Bayes method. (On the other hand, in empirical Bayes method, maximization
of the conditional marginal density given hyperparameter with respect to hyperparameter
is applied.) Since finding a prior of hyperparameter, which enables analytical calculation
completely, is considered as extremely hard, the Laplace approximation has been applied.
Needless to say, the Laplace approximation needs some assumptions, in particular, on
“what goes to infinity”. However, when both p and » are large (or small) in analysis of
real data, the answer to the question which type of the Laplace approximation is more
appropriate, is obscure. Moreover an approximated Bayes factor under one assumption
does not necessarily have consistency on the other assumption, which is not good for
practitioners. Therefore Bayes factor

1. without integral representation, which is however based on fully Bayes method,
2. with model selection consistency for two asymptotic situations, CASE I and II

is desirable, which we will propose in this paper. Actually, a special choice of the prior of
hyperparameter, which completely enables analytical calculation of the marginal density,
is the key in the paper.

Eventually the Bayes factor which we recommend is given by

L(p/2)I(p(r —1)/2) WE) —p(r=1)/2+1/2 o
[(1/2)C({pr —1}/2) (Wr :
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where

W _ ij(yi.i - '.l_/z‘-)z _ Zj Yij Z,',j Yij

Wr Syw—gr T YT T
It is not only exactly proportional to the posterior probability of M 441, but also a function
of Wg/Wr, which is fundamental aggregated information of one-way ANOVA, from the

frequentist viewpoint.
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