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1 Introduction

Rubin’s model for causal inference, or simply Rubin causal model (RCM), sometimes referred
to as the Neyman-Rubin causal model or Neyman-Rubin-Holland model for causal inference, is
developed in a series of papers by Rubin ([31, 32, 33]), though RCM may be traced back to the
work of Neyman ([24]), while Holland ([18]) and Holland and Rubin ([19]) provide penetrating
reviews of this model. A lnore complete picture of RCM may be found in a collection of papers by
Rubin ([36]). This model has found applications in diversity of areas including statistics, medicine,
economics, political science, sociology and law, among others; see $|39|$ for references on some of
the recent applications. Recently some rigorous results on RCM have been established in the
econometric literature, see, e.g., [13], $|17|,$ $[1|$ . $\ln$ this paper wc give a review of RCM with
emphases on the more resent developments.

2 Rubin Causal Model

Borrowing from the language of design of experiments, suppose that we have a population from
which we draw a random sample of $n$ units. Each unit is able to be exposed to either a treatment
or a control. Let $Z_{i}$ represent a random variable of treatment assignment so that $Z_{i}=1$ if the ith
unit is assigned to the treatment group and $Z_{i}=0$ if the $i$ th unit is assigned to the control group.
Thus, the ith unit has two potential outcomes, $\}_{i}’(1)$ if it is exposed to the treatment when $Z_{i}=1$ ,

or $Y_{i}(0)$ if it is exposed to the control when $Z_{i}=0$ . The observed data on the ith unit consist of
the pair $(Z_{i}, Y_{i})$ , where

$\}_{i}’=Z_{i}1_{i}^{\nearrow}(1)+(1-Z_{i})Y_{i}(0)$ .
The effect caused by the teatment for the $i$ th unit (relative to the control), or simply the treatment
effect for the ith unit, is defined as the difference $l_{i}^{f}(1)-Y_{i}(0)$ . This quantity measures the gain
in the outcome variable under the assignment to the treatment relative to the control. We suppose
that each unit can be exposed to only the treatment or the control, therefore we can observe either
$l_{i}’(1)$ or $Y_{i}(0)$ , but never both. That is, either $Y_{i}(1)$ or $Y_{i}(0)$ is missing for the ith unit, implying
that the treatment effect for the $i$ th unit is not observable. This fact is called by Holland $(|18|)$ the
fundamental ptoblem ofcausal ilference.

To statistically overcome the fundamental problem of causal inference, the first thing we do is
to replace the inferentia] goal of estimating the treatment effect for an individual unit by consider-
ing the problem of estimating the average treatmenf effect:

$\theta=E\{Y_{i}(1)\}-E\{1_{i}^{\nearrow}(0)\}$ (1)
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wherc thc expectation is assumed to be independent of $i$ . We note that since the operational mean-
ings of the two random variables $l_{i}’(0)$ and $1_{i}^{r}(1)$ involve the random variable $Z_{i}$ , the expectations
$E\{Y_{i}(1)\}$ and $E\{\}_{i}^{-}(0)\}$ therefore almost $a$]ways depend on the distri bution of $Z_{i}$ , that is. the mech-
anism of the treatment assignment. More $\exp$ ] icitly, we can write

$E\{Y_{i}(1)\}=E[E\{Y,\cdot(1)\}|Z_{i}]$

and similar]y for $E\{1_{i}^{r}(0)\}$ . The average treatment effect $\theta$ has the potential to be estimated because
potential outcomes $1_{?}^{\nearrow}\cdot(1)$ and $Y_{i}(0)$ on differcnt units may now be used to estimate the expectations
$E\{1_{i}^{r}(1)\}$ and $E\{]_{i}^{r}(0)\}$ . To achieve this goal, further $f^{\backslash }undamenta1$ assumptions on the treatment
assignment mechanism are however required since the observcd data $(Z_{i}, l_{i}^{\nearrow})$ only provide infor-
mation on the expectations

$E\{Y_{i}|Z_{i}=1\}=E\{Y_{i}(1)|Z_{i}=1\}$ and
$E\{Y_{\dot{1}}|Z_{i}=0\}=E\{l_{7}^{r}’(0)|Z_{i}=0\}$ .

The fundamental problem of causal inference can be overcome by considering two such assump-
tions, namely the independence assumption ([18]) and the assumption of strong ignorabili$O^{}$ ([29]).
Both conditions are natural in the sense that they can be derived when one $considers^{\backslash }$ the rela-
tions between the expectations $E\{Y_{i}’(1)\},$ $E\{Y_{i}(0)\}$ and the conditional expectations $E\{Y_{1}(1)|Z_{i}=$

$1\},$ $E\{Y_{\dot{7}}(0)|Z_{i}. \infty 0\}$ . The independence assumption concerns the classical case of randomized
experiment, where we assume that the treatment assignment $Z_{i}$ is independent of the potential
outcomes $(l_{i}^{r}(1), l_{i}’(0))$ and al] other potential confounding variables. Cansal inference for ran-
domized experiment is straightforward because under this independence assumption we have the
basic identities

$E\{l_{i}’(1)\}=E\{Y_{i}(1)|Z=1\}$

$E\{Y_{i}(0)\}=E\{\}_{i}’(0)|Z=0\}$ .

Thus the independence assumption ensurcs that

$\theta=E\{Y_{i}(1)|Z=1\}-E\{Y_{i}(0)|Z=0\}$ (2)

So the sample difference in the two groups in this case will give an unbiased estimate for $\theta$ .

The large body of the literature on causal inference however concerns the second case when
the experiment is not randomized, that is, the independence assumption does not hold true. These
cases are known as nonrandomized experiments or observational studies ([28]), and will be the
topic in the rest of this paper.

In order to estimate the average treatment effect in observational studies, we assumc, as is usu-
al] $y$ the case, that in addition to $(Z_{i}, Y_{i})$ , we also observe for each unit $i$ the value on a pretreatment
variable $X_{i}$ , a vector of length $p$ . The value of thc prctreatment variable $X_{i}$ usually mcasurcs the
characteristics of the $i$ th unit (e.g., gender, paraent‘s educational level, etc.) before the treatment
assignment, and thus is not affected by the treatment. We now relax the independence assumption
in a randomized experiment by the following assumption of strong ignorability ([29]):

ASSUMPTION 2.1 (strong ignorability). The following holdfor each $i$ .
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(i) (Uncot$\iota fo$undedness)
$(1_{i}^{r}(1), \}_{i}^{r}(0))\perp Z_{i}|X_{i}$

(ii) (Overlap)
$0<Pr(Z_{i}=1|X_{i}=x)<1$

where $A\perp B|C$ is the Dawid’s ([8]) notation denoting the conditional inpdenepdence of $A$ and
$B$ given $C$ . The conditional probability of assignment to treatment $gi$ven the pretreatment variable
is known as the propensity score ([29]):

$e(x)=Pr(Z_{i}=1|X_{i}=x)=E\{Z_{i}|X_{i}=x\}$ (3)

To see why the strongly ignorable treatment assignment should lead to an estimation procedure
for the average treatment effect, we note the following basic identity under the unconfoundedness
assumption:

$E\{Y_{i}(z)|X_{i}=x\}$ $=$ $E\{Y_{i}(z)|Z_{i}=z, X_{l}, =x\}$

$=$ $E\{Y_{i}|Z_{i}=z, X_{i}=x\}$ (4)

where $z$ takes values $0$ or 1. Thus, estimation of the average treatment effect $\theta$ can be done by first
estimating the average treatment effect for a subpopulation at $X=x$ :

$\theta(x)=E\{Y_{i}|Z_{i}=1, X_{i}=x\}-E\{Y_{i}|Z_{i}=0, X_{i}=x\}$ ,

by using the averaged sample treatment-control difference within the subpopulation at $X=x$ .
We then average this difference over all possible values of $x$ to give an unbiased estimator for $\theta$

because we have
$\theta=E[E\{Y_{i}(1) IX_{i}\}-E\{\}_{i}^{r}(0)|X_{i}\}]=E\{\theta(X_{i})\}$ . (5)

Thus, in observational studies the fundamental problem of causal inference is now overcome by
the additional knowledge on pretreatment varibles and the unconfoundedness assumption. Note
that the overlap assumption is crucial in estimating $\theta(x)$ , for violation of this assumption at $x$

will mean that there are only treated or control units at $x$ thus making the estimation of either
$E\{Y_{i}(1)|X_{i}=x\}$ or $E\{Y_{i}(0)|\lambda_{i}’=x\}$ an impossibility. It is $a1$ so worthy of noting that the basic
equation (4) itself may be used as a weaker assumption instead of the unconfoundedness in order
to estimate the average treatment effect ([15]). The assumption (4) is however almost as difficult
to verify as with the unconfoundedness condition in practice.

To conclude this section we note that although we shall focus on estimation of the average
trearment effect $\theta$ , there is also considerable interest in the literature on estimation of the treatment
effectfor the treated (e.g., [14], [15], [16]):

$\theta_{T}=E\{Y_{i}(1)-1_{i}^{\nearrow}(0)|Z_{i}=1\}$

We need the strong ignorabi]ity assumption here as well for estimating $\theta_{T}$ because $Y_{i}(0)$ are unob-
served for the treated units.
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3 Estimating the Average Treatment Effect

3.1 Regression Estimators

Regression adjustment for estimating the average treatment effect in observational studies has a
long history (e.g., [25], [3], [6], [7], [32], etc.). The idea is to use regression techniques to find
estimates $\mu_{1}’(x)$ and $\hat{\mu}_{0}(x)$ of the two regression functions in (4), namely, $\mu_{1}(x)=E\{Y_{i}^{r}(1)$ I $X_{i}=$

$x\}$ and $\mu_{0}(x)=E\{Y_{i}(0)|X_{i}=x\}$ . By (5), we then average the difference $\hat{\mu}3(x)-\hat{\mu}_{0}(x)$ over the
empirical distribution of $x$ to get an unbiased estimate of $\theta$ :

$\hat{\theta}=\frac{1}{n}\sum_{i}\{\hat{\mu}_{1}(x_{i})-\hat{\mu}_{0}(x_{i})\}$ (6)

where $\hat{\mu}_{1}(x_{i})$ and $\hat{\mu}_{0}(x_{i})$ are estimated, due to unconfoundedness, using the treatment group sam-
ples and the control group samples respectively.

For instance, suppose that we may assume, as in [32], the regression functions are linear in $x$

$\mu_{1}(x)$ $=$ $\alpha_{1}+\beta_{1}x$

$\mu_{0}(x)$ $=$ $\alpha_{0}+\beta_{0}x$

where $x$ is a univariate continuous covariate. Let $\hat{\beta}_{1},\hat{\beta}_{0}$ denote the respective within sample least
squares estimators and $\overline{y}_{1},\overline{x}_{1},\overline{y}_{1)},\overline{x}_{0}$ the respective within sample means. The predicted values of
the regression functions are then given by

$\hat{\mu}_{1}(x)$ $=$ $\overline{?}\iota\prime_{1}+\grave{\beta}_{1}(x-\overline{x}_{1})$

$\mu_{0}’(x)$ $=$ $\overline{y}_{0}+(\hat{3}_{0}(x-\overline{x}_{0})$

Note that the predictors $\hat{\mu}_{1}(x)$ and $\hat{\mu}_{0}(x)$ rely on extrapolation and thus the estimator (6) under this
linear model can have poor properties when the distributions of the covariate differ significantly in
the treated and control groups.

Recently attempts have been made which focus on nonparametric estimation of the regression
functions $\mu_{1}(x)$ and $\mu_{0}(x)$ . One such method is to use the method of sieves ([11]), see, e.g. [20]
and [4]. The resulting estimator is efficient in the sense defined in the next section. Another type
of estimator for estimating $\mu_{1}(x)$ and $\mu_{0}(x)$ is to use kernel methods (see, e.g., [14, 15], [16]).

3.2 Matching Estimators

Estimators constructed by matching the covariates $X$ are among the most popular estimators due
to their algorithmic simplicity. These estimators closely resemble the nonparametric kemel regres-
sion estimators, where the number of matched samples plays the role of the bandwidth in kernel
regression. Large sample properties of simple matching estimators are however established only
recently ([1]). When the covariate $X$ is used in matching, the Mahalanobis distance between two
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multivariate observations arc usually employed (e.g., [7], [34], [35]). The unidimensional propen-
sity score can also be used in matching. We will discuss propensity score matching in the next
subsection.

Matching estimators are ustlally used to estimate the average treatment effect for the treated
$\theta_{T}$ , this is because in many observational studies there are more controls than the treated so that it
is easier to impute missing values $Y_{i}(0)$ for units with $Z_{i}=1$ . To find an imputed value for $\}_{i}^{r}(0)$

we compute the distance $d(X_{j}, X_{i})$ for all $X_{j}$ in the control group, then retain the $k$ units with the
closest distance with $X_{i}$ . Then we use the average value

$\hat{Y}_{i}(0)=\frac{1}{k}\sum_{j}Y_{j}(0)$

as a predicted value for $Y_{i}(0)$ . Here $k$ is an arbitrary integer, usually small such as two or one. The
estimator takes the form

$\hat{\theta}_{1^{\urcorner}}’=\frac{\sum_{i}\{Z_{i}Y_{i}(1)-Z_{i}\hat{Y}_{i}(0)\}}{\sum_{i}Z_{i}}$ (7)

If both groups are of relatively large size then we can impute either $Y_{i}(1)$ or $Y_{i}(0)$ for $a$ ] $1$

$i=1,$ $\ldots,$
$n$ . Let $\hat{Y},(1)$ or $\hat{Y}_{i}(0)$ be the imputed values, then the resulting matching estimator for

the average treatment effect $\theta$ is simply taken as the averaged difference

$\hat{\theta}=\frac{1}{n}\sum_{i}(\hat{Y}_{i}(1)-\hat{Y}_{i}(0))$ (8)

In [1] it is shown that the estimator (8) has a bias of order $O(n^{-1/k})$ , where $k$ is the number of
the continuous components of $X$ . So if $k\geq 2$ , when enlarged by a factor $\sqrt{}$ . the bias of this
estimator wiIl not vanish as $narrow\infty$ , although this bias may not be so large in practice as to
concem the practitioner.

In the above discussion one usually use the Mahalanobis metric to measure the distance be-
tween $X_{i}$ and $X_{j}$ ,

$d(X_{?}, X_{j})=\sqrt{(X_{i}-X_{j})’V^{-1}(X_{i}-X_{j})}$ (9)

where $V$ is the estimated covariance matrix of $X$ . In $[34|,$ $V$ is taken to be the pooled within
sample covariance matrix

$V= \frac{(X_{1}’X_{1}-n_{1}\overline{X}_{1}’\overline{X}_{1})+(X_{2}^{f}X_{2}-n_{2}\overline{X}_{2}’\overline{X}_{2})}{n-2}$

where $X_{i}$ is the $n_{i}\cross p$ data matrix for the $i$ th group.
To achieve even better balance in the covariate between the treated and control group, in [10]

and [38] the Mahalanobis distance (9) is generalized to

$d_{G}(X_{i}, X_{j})=\sqrt{(X_{i}-X_{j})’(V^{-1/2})’WV^{-1/2}(X_{i}-X_{j})}$ (10)

where $V^{-1/2}$ is the Cholesky decomposition of $V$ and $W$ is a $p\cross p$ positive definite weight matrix
to be estimated. In (10) the covariate may be enlarged to include the propensity score $e(X_{i})$ if one
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has a rcliable model for $e(X_{i})$ . This method is called genetic matching because a genetic algorithm
([22], [40]) is used to estimate the components of the weight matrix $W$ .

By giving specific $weig$}$)ts$ to $WilJ(10)$ , the genetic matching estimator using metric (10)
reduces lo the Mahalanobis matching estimator or the propensity score matching estimator, The
genetic matching method may be of merits relative to the $Maha$] $anobis$ matching especially when
the covariate has a large dimension and is nonellipsoidally distributed ([36, p. 462]). For some
app]ications of this method see [26], [23] and [12].

When matching is applied to the covariate X. the metric used plays an important role. See
also [41] for an a]ternative metric which takes into account the consideration of the correlation of
$X_{i},$ $Z_{i}$ and $(\};$ (1) $, Y_{i}’(0))$ .

3.3 Propensity Score Methods

Significant progress has been made on estimating the avergae treatment effect under RCM by
the discovery of a property for the propensity score ([29]). This property says that if treatment
assignment $Z_{i}$ is unconfounded given the pretreatment variable $X_{i}$ , then $Z_{i}$ is also unconfounded
given the one-dimensional propensity score $e(X_{i})$ . That is, under unconfoundedness, it holds that

$(Y_{i}(1)_{\}Y_{i}^{r}(0))_{-}\perp Z_{i}|e(X_{i})$ (11)

This property may be proved by showing that

$Pr\{Z_{J}=1|Y_{i}(1), Y_{i}(0), e(Z_{i})\}=Pr\{Z_{1}=1|e(Z_{i})\}$

which is equal to $e(X_{i})$ . To show this, we express the probabilities as expectations and by condi-
tioning on the covariate $X_{i}$ . Thus due to (11), the fUndamental problem of causal inference can
now be overcome by conditioning on the propensity score because of $([29|)$

$\theta=E[E\{l_{i}^{7}(1) IZ_{1}=1, e(X_{i})\}-E\{Y_{i}(0) IZ_{1}=0, e(X_{i})\}]$ (12)

This is an important result because bias due to the imbalance of the covariate can now be corrected
by conditioning on the univariate propensity score, not the covariate vector $X_{i}$ . Now we discuss
several methods for estimating $\theta$ which use the propensity score.

3.3.1 Matching

In Section 3.2 we discussed how to construct an estimator of $\theta$ by matching the covariate $X$ . Due
to (12) we can altematively match on the propensity score $e(X)$ instead of the full covariate $X$ .
When the propensity score $e(X)$ is unknown we have to first estimate it, usually using a logistic
regression model:

$e(X_{i})= \frac{e^{\beta’X_{i}}}{1+e^{\beta X_{i}}}$

To avoid side effect near zero and one, it is preferable to match on the linear predictor $\hat{\beta}’X_{i}$ instead
of the propensity score directly ([39]). When the propensity score is known. the asymptotic result
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of Abadie and lmbens ([1]) then shows that matching estimator using the scalar propensity score
produces a $\sqrt{}$ consistent estimator.

33.2 Blocking

Blocking, or subclassification ([29]) is a method which divides the unidimensional propensity
score into $B$ blocks, usually equally lengthed. Within each block we treat the data as if they come
from a randomized experiment, and theorefore use the averaged treatment-control difference $\theta_{b}$

to estimate the avergae treatment effect for the bth block. The blocking estimator for the average
treatment effect is taken as the weighted mean

$\acute{\theta}=\sum_{b=1}^{l3}\frac{n_{1b}+n_{0b}}{n}\theta_{b}^{\wedge}$ (13)

where $n_{1b}$ and $n_{0b}$ are the respective numbers of treated and controls in the bth blok. Estimator of
variance for $\hat{\theta}$ of (13) is discussed in [21].

For a one-dimensional covariate, with equal-sized block and assuming normality, it is shown
([5]) that $B=$ \={o} is adequate for removing more than 95% of the bias associated with the simple
treatment-control difference. This is the reason that $B=5$ is usually employed in defining the
block estimator ([30], [9], [2]).

3.33 Regression

In Section 3.1 we discussed the idea of estimating $\theta$ by using regression techniques to estimate the
two conditional means $\mu_{1}(x)=E\{Y_{i}(1)|X_{i}=x\}$ and $\mu_{0}(x)=E\{1_{i}’(0)|X_{i}=x\}$ . Due to (12),

under unconfoundedness, we can altematively estimate the regression functions

$\eta_{1}(p)=E\{Y_{i}(1)|e(X_{i})=p\}$ and
$\eta_{0}(p)=E\{Y_{i}(0)|e(_{d}Y_{i})=p\}$

Using estimates $\hat{\eta}_{1}(x)$ and $\hat{\eta}_{0}(x)$ , we can estimate $\theta$ by

$\hat{\theta}=\frac{1}{n}\sum_{i}\{7\hat{|}1(e(x_{i}))-\hat{\eta}_{0}(e(x_{i}))\}$ (14)

Note that to use this estimator we have to specify a model for the propensity score $e(X_{i})$ in order to
estimate $\hat{\eta}_{1}(x)$ and $\hat{\eta}_{0}(x)$ . It is of interest to investigate conditions under which the estimator using
$\hat{\eta}_{z}(x)$ may perform better than that using $\hat{\mu}_{\vee}\sim(x)$ . For estimator (14) to have a chance of success one
needs a reasonably good model for the regression functions $\eta_{z}(p)$ ([21]).

3.3.4 Weighting

A weighting estimator for the average rreatment effect takes the form

$\frac{1}{n}\sum_{i}(\frac{Z_{i}Y_{i}}{\hat{e}(X_{i})}-\frac{(1-Z_{i})Y_{i}}{1-\hat{e}(X_{i})})$
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where $\hat{e}(X_{i})$ is a nonparametric sieve estimator of the propensity score. This estimator is semi-
parametrically efficient. We will discuss this estimator in more detail in Section 4.2.

4 Semiparametric Efficiency Bounds and Efficient Estimation

4.1 Efficiency Bounds

In estimating the average treatment effect, it is the bias of the estimators rather than the variance
of these estimators that should be of primary concem to the researcher ([36]). However, when
an estimator is known to be unbiased or asymptotically unbiased, it is then of interest to consider
the variance of such estimators. For instance, for a randomized experiment, it is known that the
unbiased simple averaged treatment-control difference is not an efficient estimator for the aver-
age treatment effect ([17]). To construct an efficient estimator in this case with known constant
propensity score, one can inversely weight the observations using the nonparametrically estimated
propensity scores. We will discuss this estimator in detail in next subsection.

Under unconfoundedness and other regularity conditions, Hahn ([13]) established the effi-
ciency bound of a regular estimator $\hat{\theta}$ for the average treatment effect $\theta$ . He showed that $\hat{\theta}$ is
asymptotically normally di stributed

$\sqrt{}(\hat{\theta}-\theta)arrow d\mathcal{N}(0, V)$

with variance bounded by

$V \geq E\{\frac{\sigma_{1}^{2}(X_{i})}{e(X_{i})}+\frac{\sigma_{()}^{2}(X_{i})}{1-e(_{d}Y_{i})}+(\theta(X_{i})-\theta)^{2}\}$ (15)

In (15), $\theta(X_{i})$ is the average treatment effect for the subpopulation at $X_{i}$ , and $\sigma_{1}^{2’}(X_{i})=$ var$(Y_{i}(1)|X_{i})$ ,
$\sigma_{0}^{2}(X_{i})=$ var $(Y_{r\prime}(0)|X_{i})$ are the conditional variances. The r.h. $s$ . of (15) gives the semiparametric
efficiency bound for a regular estimator for the average treatment effect $\theta$ . This efficiency bound
$p]$ ays an analogous role as the Cram\’er-Rao lower bound for parametric estimation. Hahn showed
that the efficiency bound in (15) remains unchanged even though the propensity score is known in
advance. In the special case when the propensity score $equa$] $s$ an unknown constant, $e(X_{i})=p$ .
that is, the treatment assignment is randomized, we have $\theta=\theta_{f}$ and lhe efficiency bound for the
commom parameter becomes

$E\{\frac{\sigma_{1}^{2}(X_{i})}{p}+\frac{\sigma_{0}^{2}(-Y_{i})}{1-p}+(\theta(X_{i})-\theta)^{2}\}$ .

When the propensity score is not known, a similar bound exists for the average treatment effect
on the treated $\theta_{I’}$ :

$E\{\frac{e(dX_{i}^{r})\sigma_{1}^{2}(X_{i})}{p^{2}}+\frac{e(X_{i,})^{2}\sigma_{0}^{2}(X_{i})}{p^{2}(1-e(\lambda_{i}^{-}))}+\frac{(\theta(_{A}Y_{i})-\theta_{I’}\prime)^{2}e(X_{?}\cdot)}{p^{2}}\}$
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where $p=E\{e(X_{i})\}$ . When the propensity score is known, the corresponding efficiency bound
decreases by an amount

$E\{\frac{(\theta(_{\lrcorner}Y_{i})-\theta_{T})^{2}e(X_{i})(1-e(X_{i}))}{p^{2}}\}$ .

which may be considered as the gain in efficiency by the knowledge of the propensity score.

4.2 Efficient Estimators

Hahan also proposed estimators for both the average treatment effect $\theta$ and the average treatment
effect on the $tl\cdot eated\theta_{T}$ , which achieve the respective efficiency bound describled above. To moti-
vate these estimators, observe that, under unconfoundedness, we have

$E\{Z_{i}Y_{i}|X_{i}\}=E\{Z_{i}Y_{i}(1)|X_{i}\}=E\{Z_{t}, IX_{i}\}E\{Y_{i}(1)|X_{i}\}$

implying
$E\{Y_{?:}(1)|\lambda_{i}’\}=\frac{E\{Z_{i}1_{i}^{r}|X_{i}\}}{E\{Z_{i}|X_{i}\}}=\frac{E\{Z_{i}Y_{i}|_{\lrcorner}Y_{i}\}}{e(X_{i})}$ (16)

Similarly we also have

$E\{Y_{i}(0)|X_{i}\}=\frac{E\{(1-Z_{i})Y_{i}^{r}|X_{i}\}}{1-e(-X_{i}^{\Gamma})}$ (17)

These two expressions relate the conditional expectations $\mu_{1}(X_{i})=E\{Y_{i}(1)|X_{i}\}$ and $\mu_{0}(X_{i})=$

$E\{Y_{i}(0)|X_{i}\}$ to the conditional expectations $E\{Z_{i}Y_{i}|X_{i}\},E\{(1-Z_{i})Y_{i}|X_{j}\}$ and $e(-Y_{i})=E\{Z_{i},|X_{i}\}$ .
The idea is to use nonparametric regression techniques to estimate the quantities $E\{Z_{i}Y_{1},|X_{i}\}$ ,
$E\{(1-Z_{i})Y_{i}|X_{i}\}$ and $e(X_{i})$ to give estimates $\hat{\mu}_{1}(X_{i})$ and $\hat{\mu}_{0}(X_{i})$ for $E\{\}_{i}’(1)|X_{i}\}$ and $E\{Y_{i}(0)|X_{i}\}$

respectively. These estimates $\hat{\mu}_{1}(X_{i})$ and $\hat{\mu}_{0}(X_{i})$ may be used as imputed values for $Y_{i}(1)$ and
$Y_{i}(0)$ when they are missing. With the imputed values we now have a ‘complete’ data situation:

$\hat{Y}_{i}(1)=Z_{i}Y_{i}(1)+(1-Z_{i})\hat{\mu}_{1}(X_{i})$ under ‘treatment’
$\hat{Y}_{i}(0)=(1-Z_{i})Y_{i}(0)+Z_{i}\hat{\mu}_{0}(X_{i})$ under ‘control’

Hahn proved that the efficient estimator for $\theta$ and $\theta_{T}$ are given respectively by

$\hat{\theta}=\frac{1}{n}\sum_{i}(\hat{Y}_{i}(1)-\hat{Y}_{i}(0))$ (18)

and
$\hat{\theta}_{T}=\frac{\sum_{i}Z_{i}(1_{i}’(1)-\hat{Y},(0))\wedge}{\sum_{i}Z_{i}}$ (19)

Alternatively, we note that

$\theta=$ $E\{\theta(X_{i})\}$

$=$ $E\{E[Y_{f},(1)|\lambda_{i}’]-E[Y_{i}(0)|X_{i}]\}$

$=$ $E\{\mu_{1}(X_{i})-\mu_{0}(X_{1}.)\}$
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This lnotivates the following estimator

$\overline{\theta}=\frac{1}{n}\sum_{i}(\int\hat{1}_{1}(X_{i})-\hat{\mu}_{0}(X_{i}))$ (20)

which is again shown by Hahn to be $ef^{\backslash }ficient$ for estimating $\theta$ . Similarly, the efficient estimator for
$\theta_{J’}$ is

$\tilde{\theta}_{T}=\frac{\sum_{i}Z_{i}(\hat{\mu}_{1}(X_{i})-\hat{\mu}_{0}(\lambda_{i}^{r}))}{\sum_{i},Z_{i}}$ (21)

So far we have left unspecified the estimates for $E\{Z_{i}Y_{i}|X_{i}\},$ $E\{(1-Z_{i})Y_{i}|X_{i}\}$ and $e(X_{i})=$

$E\{Z_{i}|X_{i}\}$ , which are used to form the estimates $\hat{\mu}_{1}(X_{i})$ and $\hat{\mu}_{0}(1l_{i}^{r})$ . When $X_{i}$ has finite support,
we can use the following estimates

$\hat{E}\{Z_{i}Y_{i}|X_{i}=x\}=\frac{\sum_{j}Z_{j}Y_{j}\cdot 1(X_{j}=x)}{\sum_{j}1(-Y_{j}=x)}$ ,

$\hat{E}\{(1-Z_{i})Y_{i}|X_{i}=x\}=\frac{\sum_{j}(1-Z_{j})Y_{j}\cdot 1(X_{i}=x)}{\sum_{1}\cdot 1(X_{j}=x)}$ ,

$\hat{E}\{Z_{i}|X_{i}=x\}=\frac{\sum_{j}Z_{j}\cdot 1(_{A}Y_{j}=x)}{\sum_{j}1(X_{j}=x)}$ ,

where 1 $(X_{j}=x)$ is the indicator function.

When $X_{i}$ has a continuous distribution, Hahn suggests to use the series estimators for these
conditiona expectations. One difficulty with the series estimators is that one has to choose a some-
what arbitrary number of terms in the series. Hirano et al. ([17]) considered another type of
efficient estimator for $\theta$ so that the series estimators are $1^{\cdot}equired$ only for estimating the propensity
score. The merits of using estimated propensity score in gaining efficiency even when the propen-
sity score is known has been poined by a number of researches (e.g., [27]. [37], [13], [15]). To
motivate their estimator, we notice that, by (16) and (17), the average treatment effect $\theta$ can also
be expressed as

$\theta$ $=$ $E\{E[Y_{i}(1)|X_{i}]-E[Y_{i}(0)|X_{i}]\}$

$=$ $E\{\frac{E[Z_{i}Y_{i}|X_{i}]}{e(_{\lrcorner}Y_{i})}-\frac{E[(1-Z_{i})1_{i}^{r}|X_{i}]}{1-e(-Y_{i})}\}$

$=$ $E\{E[\frac{Z_{i}Y_{i}}{e(X_{;},)}|X_{i}]-E[\frac{(1-Z_{i})Y_{i}}{1-e(_{\wedge}Y_{j})}|X_{i}]\}$

$=$ $E\{\frac{Z_{i}Y_{i}}{e(X_{i})}-\frac{(1-Z_{i})Y_{i}}{1-e(-Y_{\gamma},)}\}$

The salnple version of the last expectation, with the propensity score estimated, gives an estimator
for $\theta$ :

$\hat{\theta^{\wedge}}=\frac{1}{n}\sum_{i}(\frac{Z_{i}Y_{i}}{\hat{e}(_{A}Y_{i})}-\frac{(1-Z_{i})Y_{i}}{1-\hat{e}(\lambda_{i}^{\vee})})$ (22)
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where $\hat{e}(X_{i})$ in (22) is the nonparametric sieve estimator for the propensity score. Hirano, et al.
([17]) showed that $\hat{\theta^{\wedge}}$ attains the semiparametric $ef^{\backslash }fi$ciency bound (15), thus is an efficient estimator
for $\theta$ . The advantage of $\hat{\theta^{\wedge}}$ over $\hat{\theta}$ or $\overline{\theta}$ is that to compute

$\hat{\theta^{\wedge}}$ we only need estimattion for the
propensity score.
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