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Turing’s pattern formation mechanism exhibits sensitivity to the details of the initial con-
ditions suggesting that, in isolation, it cannot robustly generate pattern within noisy bi-
ological environments. Nonetheless, secondary aspects of developmental self-organisation,
such as a growing domain, have been shown to ameliorate this aberrant model behaviour.
Furthermore, while in-situ hybridisation reveals the presence of gene expression in devel-
opmental processes, the influence of such dynamics on Turing’s model has received limited
attention. Here, we novelly focus on the Gierer-Meinhardt reaction diffusion system con-
sidering delays due the time taken for gene expression, while incorporating a number of
different domain growth profiles to further explore the influence and interplay of domain
growth and gene expression on Turing’s mechanism. We find extensive pathological model
behaviour, exhibiting one or more of the following: temporal oscillations with no spatial
structure, a failure of the Turing instability and an extreme sensitivity to the initial con-
ditions, the growth profile and the duration of gene expression. Our results emphasise
that gene expression dynamics induce unrealistic behaviour in Turing’s model for multiple
choices of kinetics and thus such aberrant modelling predictions are likely to be generic.
They also highlight that domain growth can no longer ameliorate the excessive sensitivity
of Turing’s mechanism in the presence of gene expression time delays. The above, ex-
tensive, pathologies suggest that, in the presence of gene expression, Turing’s mechanism
would generally require a novel and extensive secondary mechanism to control reaction
diffusion patterning.
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Consider a uniformly growing one dimensional domain, = € [0, LyL(t)], where Lg is the
initial domain length and LoL(t) is the domain length, an increasing function of time,
with L(0) = 1. Let c, denote the p** biochemical concentration, p € {1,2}, for a general
two component reaction-diffusion system. On the above domain, standard conservation
arguments give (Crampin et al., 1999)

T+ getaten)e) = 5 2 (D32 + Rlela, ),

q=1,2

where Fj(c(z,t)) denotes the reaction kinetics, a(z,t) is the domain growth velocity field
and Dy, are the components of a diffusion matrix. The latter is taken to be constant and
diagonal below and is written in the form D,, = diag(e2D, D) with ¢ < 1; this bound
entails that ¢, has the shorter spatial range of the morphogens and is thus the activator.

Gene expression time delay models are influenced at location (z,t) by the gene expression
instigated within the cells a time 7 earlier, where 7 is the gene expression time delay.
However, due to domain growth, these cells were not at spatial location z at time t — 7.
Instead these cells were previously located at z,; an explicit expression can be found by
backtracking along the characteristic generated by the velocity vector field starting at (z,t)
(Gaffney and Monk, 2006). However, an explicit expression is not required below due to
the consideration of Lagrangian coordinates.

In the presence of gene expression time delays, we thus have the reaction term F,(c(z,())
generalises to
Fy(e(x,t), ezt —7)).

For convenience we relabel (cy, ;) — (u,v), and (Fy, F3) — (f, g). We non-dimensionalise
concentrations by (4,9) = (Uw,Vv), length via 2 = z/Ly € [0, L(t)], time by { = t/Ts,
and the velocity vector field by & = T,a/Lo. Then the reaction diffusion system, with gene
expression time delays, reduces to the form

Ou ou  €TyD 0%*u da
5{-1— P L"’ 82-|—'yf(( )v(:r,t),u(z,,t—T),v(xf,t—'r))—é-iu,

LA LT A SRR SRR
o1 aax— L262 ")’g T I 1}'7—, T),V\Zr, T 61:'1),

where v is a constant and hats are dropped for convenience.

Following Crampin et al. (1999), consider Lagrangian coordinates (X,t) where X is the
initial position of a tissue element moving with the flow a. The movement of tissue as a
result of growth can be described in terms of the mapping between the Eulerian coordinate,
z, and the Lagrangian coordinate X:

=T(X,t), T(X,0)=X¢€][0,1], I'(0,t)=0 fort>0.
Uniform growth implies z = I'(X,t) = X L(t) and hence

a(z,t) = XL(t) = z—é% (2)
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with the fractional dilation rate given by

da  L(t)

oz L(t)

Now we transform the spatial coordinates to the unit interval via the mapping

z(t) | _ z(t)
— = (Z,1 — , 1}
(z(t),t) — (L(t)’t) (z,t) where 70) € [0,1] (3)
Note that z(t —7)/L(t —7) = X = z(t)/L(t) from (2). The fact the Lagrangian coordinate
is time invariant, by construction, implies Z = Z,. Thus on implementing the above
mapping one finds

@ _ ;
(u(zr,t — 7),0(zs,t — 7)) — (w(Z,t = 7),v(Z,t = 7)) = (ur,vy).

In addition the first order convective terms cancel in the reaction diffusion equations. Hence
the gene expression time delay system (1) can be expressed in the form
Ou  €d 8%u
. Tora a9 yUsg Uy Ur ) — S t )
5t = Ta) aar T (v ) = Sl “
v_ _d v + vg(u, v, ur, ;) — S(t)v
3t - Lz(t)axz ’Yq y Uy Yy Ut * )
where bars are once more dropped for convenience, z € [0,1], d = T,D/Lj and domain
dilation also dictates the rate of biochemical dilution via S(t) = L(t)/L(t).

For the specific kinetic functions and growth rate functions, see Seirin-Lee et al. (2010);
Crampin et al. (1999).
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In the absence of time delays this model once more reproduces a self-similar cascade of
peak insertion patterning. For very small gene expression time delays one instead finds
a self-similar cascade of peak splitting; this is depicted in plots la, lal. As the gene
expression time delay is increased even slightly, temporal oscillations occur and the self-
similar cascade, and indeed all spatial structure, is lost as illustrated in plots 1a3, la4.
This also occurs for linear and logistic growth (results not shown). In contrast to the ligand
internalisation models, the patterning lags and sensitivity are not as profound, but the loss
of spatial structure entails that patterning cannot emerge regardless.

Our results emphasise that previously observed pathologies are not limited to a special
choice of kinetics or representation of the gene expression dynamics and are therefore more
likely to be generic. Nonetheless, different choice of kinetics and sub-cellular dynamics do
yield different modelling predictions. Hence we also no longer have the expectation that all
systems exhibiting a Turing instability will behave in a remotely similar way on a growing
domain given gene expression dynamics. This is also important in constructing models of
developmental self-organisation on growing domains, as it is clear that choosing the simplest
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Figure 1: Model I-S. In the above plots results are presented for Model I-S, where morphogen-
cell interactions are instigated on the cell surface via reversible ligand binding, with saturation
of activator induced activator production. The horizontal axis in all plots represents time, in
units of hours, and the vertical axis gives the domain size, in units of the initial domain length
which corresponds to 10~2cm or approximately 10 cell lengths. The label IC1 denotes the time-
independent initial condition. The domain is exponentially growing with a growth parameter
of dezp = 0.0015 which corresponds to a doubling time of approximately 25 hours using the
timescale T; = 100 seconds. Finally note that the non-dimensionalised gene expression time
delay, 7, is given above each plot with its dimensional size in brackets.

kinetics, a common strategy as illustrated in Miura et al. (2006), is inappropriate. Further,
investigations of the Turing space for a given choice of kinetics, even for growing domains,
such as those derived and considered in Alber et al. (2008) for limb self-organisation, should
assess numerous additional factors given the presence of gene expression. These include the
prospect of excessive patterning lags, the possibility of oscillations and extreme sensitivity,
to the initial conditions, to the domain growth profile, to the representation of the signal
transduction dynamics and, finally, to the duration of the gene expression time delay.
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