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Abstract. In this paper the system of the Dirac field interacting with the quan-
tized radiation field is investigated. By introducing ultraviolet cutoffs and spatial
cutoffs, it is seen that the total Hamiltonian is a self-adjoint operator on a boson-
fermion Fock space. The scaled total Hamiltonian is defined, and its asymptotic
behavior is investigated. In the main theorem, it is shown that the effective po-
tential emerges.

This article is devoted to a short review on the obtained results in [13]. We consider the
system of the Quantum electrodynamics (QED), which describes the Dirac field coupled
to quantized radiation field in the Coulomb gauge. We analyze this system from purely
mathematical view point. The state space is defined by the boson-fermion Fock space
$\mathcal{F}_{QED}=\mathcal{F}_{Dirac}\otimes 9_{rad}^{\mathscr{J}}$ , where $\mathcal{F}_{Dirac}$ is the fermion Fock space on $L^{2}(R^{3};C^{4})$ and $\mathcal{F}_{rad}$ is the
boson Fock space on $L^{2}(R^{3};C^{2})$ . The free Hamiltonian ofthe Dirac field $H_{Dirac}$ is defined by
the second quantization of $aDir(p)=\sqrt{p^{2}+M^{2}}$ with the rest mass $M>0$ . Similarly the free
Hamiltonian ofthe radiation field $H_{rad}$ is defined by the second quantization of akad $(k)=|k|$ .
The field operators of the Dirac field and the radiation field are denoted by $\psi(x)$ and A(x),
respectively. Here we impose ultraviolet cutoffs on both $\psi(x)$ and A(x). The interaction
Hamiltonians are given by

$H_{I}’= \int_{R^{3}}\chi(x)\psi^{*}(x)\alpha\psi(x)\cdot A(x)dx$ ,

$H_{II}’= \frac{1}{8\pi}\int_{R^{3}\cross R^{3}}\frac{\chi(x)\chi(y)}{|x-y|}\psi^{*}(x)\psi(x)\psi^{*}(y)\psi(y)dxdy$,

where $\chi(x)$ denotes the spatial cutoff, and $\psi^{*}(x)\alpha\psi(x)\cdot A(x)=\sum_{j=1}^{3}\psi^{*}(x)\alpha^{j}\psi(x)A^{j}(x)$ .

Then the total Hamiltonian is defined by

$H=H_{Dirac}+H_{rad}+eH_{I}’+e^{2}H_{II}’$ (1)
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Let us consider the self-adjointness of$H$. Under sufficient conditions ofthe ultraviolet cutoff
and the spatial cutoff, it is seen that $H_{I}$ is relatively bounded with respect to $H_{rad}^{1/2}$ and $H_{II}’$ is
a bounded operator. Hence the interactions are infinitely small with respect to $H_{Dirac}+H_{rad}$ .
Then the Kato-Rellich theorem shows that $H$ is self-adjoint and essentially self-adjoint any
core of $H_{0}[12]$ . The spectral properties of $H$ also have been investigated in [2, 12].

Now we introduce the scaled QED Hamiltonian defined by

$H(\Lambda)=H_{Dirac}+\Lambda^{2}H_{rad}+e\Lambda H_{I}’+e^{2}H_{II}’$ . (2)

We are interested in the asymptotic behavior of $H(\Lambda)$ as $\Lambdaarrow\infty$ . Historilally scaling limits
of the Hamiltonians of the form (2) is introduced by E. B. Davies [3]. He investigates the
system of paricles coupled to a scalar bose field, and consider the scaled total Hamitonian
$H_{p}+\Lambda\kappa\phi(x)+\Lambda^{2}H_{b}$ where $H_{p}=A^{2}2M^{-}$ is a shcr\"odinger operator, $\phi(x)$ is the field operator
of the scalar bose field, and $H_{b}$ is the free Hamiltonian. Then an effective Hamiltonian
$H_{p}+\kappa^{2}V_{eff}(x)$ is obtained Then our result can be regarded as a extended $mode[$ of [3]. In
[1], a general theory on scaling limits, which can be applied to a spin-boson model and non-
relativistic QED models, is investigated. In [6], by removing ultraviolet cutoffs and taking a
scaling limit of the Nelson model simultaneously, a Schr\"odinger operator with the Yukawa
potential is derived. Refer to see also [4, 10, 11, 9, 12, 14]. It is noted that the unitary
evolution of $H(\Lambda)$ is given by

$e^{-itH(\Lambda)}$
$=$

$e^{-it\Lambda^{2}(_{\Lambda}\tau^{H_{Dirac}}}-1+H_{rad}+( \frac{e}{\Lambda})H_{1}^{f}+(\frac{e}{\Lambda})^{2}H_{I\mathfrak{l}}’)$

, (3)

and we see that $t\Lambda^{2}$ is the scaled time and $\frac{e}{\Lambda}$ is the scaled coupling constant. The main
theorem is as follows:

Theorem 1 Itfollows thatfor $z\in C\backslash R$

$s- \lim_{\Lambdaarrow\infty}(H(\Lambda)-z)^{-1}=(H_{Dirac}+e^{2}H_{II}’+e^{2}V_{eff}-z)^{-1}P_{\Omega_{rad}}$ , (4)

where

$V_{eff}=- \frac{1}{4}\sum_{j,l}\int_{R^{3}\cross R^{3}}\chi(x)\chi(y)\psi^{*}(x)\alpha\psi(x)\cdot\triangle(x-y)\psi^{*}(y)\alpha\psi(y)dxdy$, (5)

and $\triangle(z)=(\lambda^{j,l}(z)+\lambda^{j,l}(-z))_{j,i=1}^{3}$ is the $3\cross 3$ matrix with afunction $\lambda^{j,/}(z)$ defined by

$\lambda^{j,l}(z)=\int_{R^{3}}\frac{|\chi_{rad}(k)|^{2}}{(2\pi)^{3}|k|^{2}}(\delta_{j,l}-\frac{k^{j}k^{1}}{|k|^{2}})e^{-ik\cdot z}dk$ . (6)
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By the general theorem ([11], Lemma 2.7), the following corollary immediately follows.
$Co$rollary 2 Itfollows that

$s- \lim_{\Lambdaarrow\infty}e^{-itH(\Lambda)}P_{\Omega_{rad}}=e^{-}it(H_{Dirac}+e^{2_{H/ong}}+e^{2}V_{eff})_{P_{\Omega_{rad}}}$ . (7)

The outline ofthe proof of the main theorem is as follows. We consider the unitary transfor-
mation, called the dressing transformation, defined by

$U( \frac{e}{\Lambda})=e^{-i(_{X}^{e})T}$ ,

where
$T= \int_{R^{3}}\chi(x)\psi^{*}(x)\alpha\psi(x)\cdot\Pi(x)dx$ ,

with the conjugate operator $\Pi(x)=(\Pi(x)^{j}),$ $j=1,2,3$ satisfying $[\Pi(x)^{j}, H_{rad}]=-iA^{j}(x)$

and $[\Pi(x)^{j}, A^{l}(y)]=i\lambda^{j,l}$(x-y). Then the Hamiltonian is transformed by

$U( \frac{e}{\Lambda})^{-1}H(\Lambda)U(\frac{e}{\Lambda}I$ $=\tilde{H}_{0}(\Lambda)+K(\Lambda)$ ,

where $\tilde{H}_{0}(\Lambda)=H_{Dirac}+e^{2}H_{I,.I}’+\Lambda^{2}H_{rad}$ , and $K(\Lambda)$ is an operator satisfying the following
properties :

Proposition 3
(1) For $\epsilon>0$, there exists $\Lambda(\epsilon)\geq 0$ such thatfor all $\Lambda>\Lambda(\epsilon)$ ,

$\Vert K(\Lambda)\Psi\Vert\leq\epsilon\Vert\tilde{H}_{0}(\Lambda)\Psi\Vert+v(\epsilon)\Vert\Psi\Vert$ . (8)

holds, where $v(\epsilon)$ is a constant independent $of\Lambda\geq\Lambda(\epsilon)$ .
(2) For all $z\in C\backslash R$ itfollows that

$s- \lim_{\Lambdaarrow\infty}K(\Lambda)(\tilde{H}_{0}(\Lambda)-z)^{-1}=K(H_{Dirac}+e^{2}H_{II}’-z)^{-1}P_{\Omega_{rad}}$ , (9)

where $K=- \frac{ie^{2}}{2}[T, H_{J}’]$ .

By Proposition 3 and the general theory ([1] ; Thorem 2.1), it is seen that

$s- \lim_{\Lambdaarrow\infty}(H(\Lambda)-z)^{-1}=(H_{Dirac}+e^{2}H_{II}’+K_{rad}-z)^{-1}P_{\Omega_{rad}}$ ,

where
$K_{rad}= \frac{-ie^{2}}{2}P_{\Omega_{rad}}[T,H_{I}’]P_{\Omega_{rad}}$ .

By the simple computation of $K_{rad}$ , the main theorem follows.
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