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Abstract

The mysterious relation between the large scale structure of the universe
and the tiny (Planck) scale structure of the particle physics, e.g. the observed
mysterious relation between the (dark) energy density (and the dark matter)
of the universe and the origin of the neutrino mass (and the SUSY breaking
mass scale) of the particle physics may be explained sipmly by the nonlinear
supersymmmetric general relativity theory(NLSUSY GR).
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1 Introduction

Supersymmetry(SUSY) and its spontaneous breakdown are profound notions re-
lated to the space-time symmetry, therefore, to be studied not only in the low
energy particle physics but also in the cosmology, i.e. in the framework necessarily
accomodating graviton as well. We found that $SO(10)$ super-Poincar\’e $(sP)$ group
accomodates minimally the standard model (SM) with just three generations of
quarks and leptons and the graviton as the low energy physical states in the single
irreducible representation of $SO(10)sP[1]$ . We have decomposed 10 supercharges as
$\underline{10}_{SO(10)}=\underline{5}_{SU(5)}+\underline{5}_{SU(5)}^{*}$ according to $SO(10)\supset SU(5)$ and assigned the same quan-
tum numbers as those of 5 of $SU(5)$ GUT to $\underline{5}_{SU(5)}$ satisfying $Q_{e}=I_{z}+ \frac{1}{2}(B-L)$ .
Regarding $\underline{5}_{SU(5)}$ as a quintet of hypothetical $spin-\frac{1}{2}$ constituents(superon) for all
observed particles we have proposed the superon-quintet model (SQM) of matter,
which may give potentially simple explanations about the proton stability, various
mixings of states, etc., though qualitative so far [2]. We discuss in this article the
field theoretical description of SQM including gravity, called superon-graviton model
(SGM), and show some particle physics consequences of SGM. The physical and
mathematical(geometrical) origin of the (mass) scale and the relation between the
Planck scale(gravity dominating)physics and the low energy particle physics (the
duality of SGM theory) are discussed in some detail. The familiar SUSY SM can be
regarded as a equivalent low energy theory of SQM in asymptotic flat space-time,
which may indicate the relativistic second order phase transition of massless SGM
dictated by the global structure (symmetry) of space-time(graviton).

2 Nonlinear supersymmetric general relativity
(NLSUSY GR)

For the the field theoretical description of SQM including gravity, the supersymmet-
ric coupling of spin– objects (superon) with spin-2 graviton is necessary. Nonlinear
supersymmetric general relativity theory (NLSUSY GR) [3], which is based upon
the general relativity (GR) principle and the nonlinear (NL) representation [4] of su-
persymmetry (SUSY) [5, 6], is the simple model and proposes a new paradigm called
the SGM scenario [2, 3, 7, 8] for the unified description of space-time and matter
beyond (behind) the (SUSY) SM. In NLSUSY GR, new (generalized) space-time,
$SGM$ space-time [2], is introduced, where tangent space-time has the NLSUSY struc-
ture, i.e. flat tangent space-time is specified not only by the $SO(3,1)$ Minkowski
coodinates $x_{a}$ but also by $SL(2, C)$ Grassmann coordinates $\psi_{\alpha}^{i}(i=1,2, \cdots, N)$ for
NLSUSY. The Grassmann coordinates in new (SGM) space-time are coset space
coordinates of $\frac{\sup erGL(4,R)}{GL(4,R)}$ which allows to interpret $’\psi$ as the NG-fermions superon
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associated with the spontaneous breaking of super-GL$(4, R)$ down to $GL(4, R)$ . The
fundamental action of NLSUSY GR is given in the Einstein-Hilbert (EH) form in
SGM space-time by extending the geometrical arguments of GR in Riemann space-
time, which has a priori promissing large symmetries isomorphic to $SO(10)(SO(N))$
$sP$ group [7]. In order to see the abovementioned particle physics consequences of
NLSUSY GR, i.e. the relation between the large scale structure of space-time and
the low energy particle physics, we start with the fundamental NLSUSY GR action
of EH-type in new (SGM) space-time given by [3]

$L_{NLSUSYGR}(w)=- \frac{c^{4}}{16\pi G}|w|\{\Omega(w)+\Lambda\}$ , (1)

where $G$ is the Newton gravitational constant, $\Lambda>0$ is a (small) cosmological
constant, $\Omega(w)$ is the unified Ricci scalar curvature in terms of the unified vierbein
$w_{\mu}^{a}(x)$ of new space-time(and the inverse $w_{a}^{\mu}$ ) defined by

$w_{\mu}^{a}=e_{\mu}^{a}+t_{\mu}^{a}(\psi)$ , $t_{\mu}^{a}( \psi)=\frac{\kappa^{2}}{2i}(\overline{\psi}^{i}\gamma^{a}\partial_{\mu}\psi^{i}-\partial_{\mu}\overline{\psi}^{i}\gamma^{a}\psi^{i})$ , (2)

and $|w|=\det w_{\mu}^{a}$ . In Eq.(2), $e_{\mu}^{a}$ is the ordinary vierbein of GR for the local
$SO(3,1),$ $t_{\mu}^{a}(\psi)$ is the stress-energy-momentum tensor (i.e. the mimic vierbein)
of the NG fermion $\psi^{i}(x)$ for the local $SL(2, C)$ and $\kappa$ is an arbitrary constant of
NLSUSY with the dimemsion $($mass$)^{-2}$ . Note that $e_{\mu}^{a}$ and $t_{\mu}^{a}(\psi)$ contribute equally
to the curvature of space-time, which may be regarded as the Mach’s principle in
ultimate space-time.

The NLSUSY GR action (1) possesses promissing large symmetries isomorphic
to $SO(N)$ SP group [7]; namely, $L_{NLSUSYGR}(w)$ is invariant under

[new NLSUSY] $\otimes[localGL(4, R)]\otimes$ [$local$ Lorentz] $\otimes$ [$local$ spinor translation]
$\otimes[globalSO(N)]\otimes[localU(1)^{N}]\otimes[Chiral]$ .

Note that the no-go theorem is overcome (circumvented) in a sense that the non-
tivial N-extended SUSY gravity theory with $N>8$ has been constructed by using
NLSUSY, i.e. by the vacuum (flat space-time) degeneracy.

3 Linearization of NLSUSY and
Low Energy Particle Physics of NLSUSY GR

New empty (SGM) space-time for everything described by the (vacuum) EH-type
NLSUSY GR action (1) is unstable due to NLSUSY structure of tangent space-time
and decays spontaneously(called Big Decay) to ordinary Riemann space-time with
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the NG fermions (superon matter) called superon-graviton model(SGM). The SGM
action is given by the following;

$L_{SGM}(e, \psi)=-\frac{c^{4}}{16\pi G}e|w_{VA}|\{R(e)+\Lambda+T(e, \psi)\}$ (3)

where $R(e)$ is the ordinary Ricci scalar curvature of ordinary EH action, $T(e, \psi)$ rep-
resents highly nonlinear gravitational interaction terms of $\psi^{i}$ , and $|w_{VA}|=\det w^{a_{b}}=$

$\det(\delta_{b}^{a}+t_{b}^{a})$ is the invariant volume of NLSUSY[4]. Remarkablly the cosmological
term in $L_{NLSUSYGR}(w)$ of Eq.(l) (i.e. the constant energy density of ultimate space-
time) reduces to the NLSUSY action $L_{NLSUSY}( \psi)=-\frac{1}{2\kappa^{2}}|w_{VA}|,$ $[4]$ in Riemann-flat
$e_{a}^{\mu}(x)arrow\delta_{a}^{\mu}$ space-time, i.e. the arbitrary constant $\kappa$ of NLSUSY is now fixed to

$\kappa^{-2}=\frac{c^{4}\Lambda}{8\pi G}$ (4)

in SGM scenario. Note that the NLSUSY GR action (1) and the SGM action (3)
possess different asymptotic flat space-time, i.e. SGM-flat $w_{a}^{\mu}arrow\delta_{a}^{\mu}$ space-time
and Riemann-fiat $e_{a}^{\mu}arrow\delta_{a}^{\mu}$ space-time, respectively. The spontaneous symmetry
breaking(SSB) in NLSUSY GR (called Big Decay of new space-time) produces a
fundamental mass scale depending on the $\Lambda$ and $G$ through the relation (4), whose
effect survives as the evidence of SGM scenario in the (low energy) particle physics
in asymptotic flat space-time, as shown below. Remember that the potential of
$L_{NLSUSYGR}(w)$ and $L_{SGM}(e, \psi)$ (massless superon-graviton) is $\sim\frac{\Lambda}{G}>0$ .

To see the (low energy) particle physics content in asymptotic Riemann-flat
$(e_{\mu}^{a}arrow\delta_{\mu}^{a})$ space-time we focus on $N=2$ SUSY in two dimensional space-time for
simplicity, for $N=2$ in the SGM scenario gives the minimal and realistic $N=2$

LSUSY model [12]. By the systematic arguments for $N=s$ SUSY theory the
equivalencee between the $N=2$ NLSUSY model and a LSUSY QED theory is
demonstrated[13, 14]; namely,

$L_{N=2SGM}(e, \psi)^{e_{\mu}^{a}arrow\delta_{\mu}^{a}}arrow L_{N=2NLSUSY}(\psi)=L_{N=2SUSYQED}(V, \Phi)+$ [$tot$ . der. terms],
(5)

which we call the NL$/L$ SUSY relation (in flat spae-time). In the relation (5), the
$N=2$ NLSUSY action $L_{N=2NLSUSY}(\psi)$ for the two (Majorana) NG-fermions superon
$\psi^{i}(i=1,2)$ is written in $d=2$ as follows;

$L_{N=2NLSUSY}(\psi)$

$=- \frac{1}{2\kappa^{2}}|w_{VA}|=-\frac{1}{2\kappa^{2}}\{1+t_{a}^{a}+\frac{1}{2!}(t_{a}^{a}t^{b_{b}}-t^{a_{b}}t_{a}^{b})\}$

$=- \frac{1}{2\kappa^{2}}\{1-i\kappa^{2}\overline{\psi}^{i}\emptyset\psi^{i}-\frac{1}{2}\kappa^{4}(\overline{\psi}^{i}\phi\psi^{i}\overline{\psi}^{j}\phi\psi^{j}-\overline{\psi}^{i}\gamma^{a}\partial_{b}\psi^{i}\overline{\psi}^{j}\gamma^{b}\partial_{a}\psi^{j})\}$ , (6)
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where $\kappa$ is a constant with the dimension $(m\mathfrak{X}S)^{-1}$ , which satisfies the relation (4).

While, the $N=2$ LSUSY QED action $L_{N=2SUSYQED}(V, \Phi)$ in Eq.(5) consists of
a $N=2$ minimal off-shell vector supermultiplet V, a $N=2$ off-shell scalar super-
multiplet denoted $\Phi$ , a Fayet-Iliopoulos (FI) $D$ term and Yukawa interactions. The
explicit component form of $L_{N=2SUSYQED}(V, \Phi)$ in $d=2$ with $U(1)_{local}\cross SU(2)_{global}$

for the massless case is given;

$L_{N=2SUSYQED}( V, \Phi)=-\frac{1}{4}(F_{ab})^{2}+\frac{i}{2}\overline{\lambda}^{i}\beta\lambda^{i}+\frac{1}{2}(\partial_{a}A)^{2}+\frac{1}{2}(\partial_{a}\phi)^{2}+\frac{1}{2}D^{2}-\frac{\xi}{\kappa}D$

$+ \frac{i}{2}\overline{\chi}\beta\chi+\frac{1}{2}(\partial_{a}B^{i})^{2}+\frac{i}{2}\overline{\nu}\beta\nu+\frac{1}{2}(F^{i})^{2}$

$+f(A\overline{\lambda}^{i}\lambda^{i}+\epsilon^{ij}\phi\overline{\lambda}^{i}\gamma_{5}\lambda^{j}-A^{2}D+\phi^{2}D+\epsilon^{ab}A\phi F_{ab})$

$+e\{iv_{a}\overline{\chi}\gamma^{a}\nu-\epsilon^{ij}v^{a}B^{i}\partial_{a}B^{j}+\overline{\lambda}^{i}\chi B^{i}+\epsilon^{ij}\overline{\lambda}^{i}\nu B^{j}$

$- \frac{1}{2}D(B^{\cdot})^{2}+\frac{1}{2}A(\overline{\chi}\chi+\overline{\nu}\nu)-\phi\overline{\chi}\gamma_{5}\nu\}$

$+ \frac{1}{2}e^{2}(v_{a}^{2}-A^{2}-\phi^{2})(B^{i})^{2}$ , (7)

where $(v^{a}, \lambda^{i}, A, \phi, D)(F_{ab}=\partial_{a}v_{b}-\partial_{b}v_{a})$ and $(\chi, B^{i}, \nu, F^{i})$ are the component
fields of the minimal off-shell vector supermultiplet V and the (minimal) off-shell
scalar supermultiplet $\Phi$ , espectively. Also $\xi$ in the FI $D$ term is an arbitrary di-
mensionless parameter turning to a magnitude of SUSY breaking mass, and $f$ and
$e$ are Yukawa and gauge coupling constants with the dimension (mass)1 $(in d=2)$ ,
respectively. The $N=2$ LSUSY QED action (7) can be rewritten in the familiar
manifestly covariant form by using the superfield formulation (for further details see
Ref.[14] $)$ . From the mathematical scientific nature of this workshop, we would like
to discuss the NL$/L$ SUSY relation in detail. The equivalence(NL/L SUSY relation)
of the two theories (5)means that,
(i) the component fields of $(V, \Phi)$ in the $N=2$ LSUSY QED action (7) are ex-
pressed explicitly systematically as composites of the NG fermions $\psi^{i}$ (called SUSY
invariant relations) which terminate at $\mathcal{O}((\psi^{i})^{4})$ (for the $d=2,$ $N=2$ case) (ii)The
familiar LSUSY transformations on $(V, \Phi)$ are precisely reproduced by the NLSUSY
transformations on the constituents, (iii) substituting the SUSY invariant relations
into $L_{LSUSYQED}$ , we confirm (5).
Consider the superfields on specific supertranslations of superspace coordinates
[9, 11] with a parameter $\zeta^{i}=-\kappa\psi^{i}$ , which are denoted by $(x^{;a}, \theta_{\alpha}^{;i})$ ,

$x^{\prime a}=x^{a}+i\kappa\overline{\theta}^{i}\gamma^{a}\psi^{i}$ ,
$\theta^{Ji}=\theta^{i}-\kappa\psi^{i}$ . (8)
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We define the $N=2$ general gauge and the $N=2$ scalar (matter) superfields on
$(x^{\prime a}, \theta_{\alpha}^{\prime i})$ as

$\mathcal{V}(x’, \theta’)\equiv\tilde{\mathcal{V}}(x, \theta)$ , $\Phi^{i}(x’, \theta’)\equiv\tilde{\Phi}^{i}(x, \theta)$ , (9)

where $\tilde{\mathcal{V}}(x, \theta)$ and $\tilde{\Phi}^{i}(x, \theta)$ may be expanded as

$\tilde{\mathcal{V}}(x, \theta)=\tilde{C}(x)+\overline{\theta}^{i}\tilde{\Lambda}^{i}(x)+\frac{1}{2}\overline{\theta}^{i}\theta^{\dot{\gamma}}\tilde{M}^{ij}(x)-\frac{1}{2}\overline{\theta}^{\dot{l}}\theta^{\dot{\iota}}\tilde{M}^{jj}(x)+\frac{1}{4}\epsilon^{g}\overline{\theta}^{\dot{l}}\gamma_{5}\theta^{\dot{J}}\tilde{\phi}(x)$

$- \frac{i}{4}\epsilon^{ij}\overline{\theta}^{i}\gamma_{a}\theta^{j}\tilde{v}^{a}(x)-\frac{1}{2}\overline{\theta}^{i}\theta^{\dot{\iota}}\mathscr{T}\tilde{\lambda}^{j}(x)-\frac{1}{8}\overline{\theta^{l}}\theta^{\dot{x}}\overline{\theta}^{j}\theta^{j}\tilde{D}(x)$, (10)

$\tilde{\Phi}^{i}(x, \theta)=\tilde{B}^{i}(x)+\overline{\theta}^{i}\tilde{\chi}(x)-\epsilon^{ij}\overline{\theta}^{j}\tilde{\nu}(x)-\frac{1}{2}\overline{\theta}^{j}\theta^{\dot{J}}\tilde{F}^{i}(x)+\overline{\theta}^{i}\theta^{\dot{\mathcal{J}}}\tilde{F}^{j}(x)+\cdots$ . (11)

In Eqs.(10) and (11) the component fields $\tilde{\varphi}_{\mathcal{V}}^{I}(x)=\{\tilde{C}(x),\tilde{\Lambda}^{i}(x), \cdots\}$ and $\tilde{\varphi}_{\Phi}^{I}(x)=$

$\{\tilde{B}^{i}(x),\tilde{\chi}(x), \cdots\}$ are functionals of the initial component fields $\varphi_{\mathcal{V}}^{I}(x)$ and $\varphi_{\Phi}^{I}(x)$ in
$(V, \Phi)$ and the NG fermions. Take the supertranslation on $x’,$ $\theta’$ we have

$\delta_{\zeta}\tilde{\mathcal{V}}(x, \theta, \psi)=\xi^{a}\partial_{a}\tilde{\mathcal{V}}(x, \theta.\psi)$ , $\delta_{\zeta}\tilde{\Phi}^{i}(x, \theta, \psi)=\xi^{a}\partial_{a}\tilde{\Phi}^{i}(x, \theta, \psi)$ (12)

with $\xi^{a}=i\kappa\overline{\psi}^{i}\gamma^{a}\zeta^{i}$ , which mean that the components $\tilde{\varphi}_{\mathcal{V}}^{I}(x)$ and $\tilde{\varphi}_{\Phi}^{I}(x)$ do not
transform each other and that the constant values of the tilded fields are conserved.
Therefore, the following SUSY invariant constraints can be imposed,

$\tilde{\varphi}_{\mathcal{V}}^{I}(x)=$ constant, $\tilde{\varphi}_{\Phi}^{I}(x)=$ constant, (13)

which are invariant (conserved quantities) under the supertrasformations. The most
general form of the SUSY invariant constraints are as follows;

$\tilde{C}=\xi_{c}$ , $\tilde{\Lambda}^{i}=\xi_{\Lambda}^{i}$ , $\tilde{M}^{ij}=\xi_{M}^{ij}$ , $\tilde{\phi}=\xi_{\phi}$ , $\tilde{v}^{a}=\xi_{v}^{a}$ , $\tilde{\lambda}^{i}=\xi_{\lambda}^{i}$ , $\tilde{D}=\frac{\xi}{\kappa}$ , (14)

$\tilde{B}^{i}=\xi_{B}^{i}$ , $\tilde{\chi}=\xi_{\chi}$ , $\tilde{\nu}=\xi_{\nu}$ , $\tilde{F}^{i}=\frac{\xi^{i}}{\kappa}$ , (15)

Solving the SUSY invariant constraints for the initial component fields $\varphi_{\mathcal{V}}^{I}$ and $\varphi_{\Phi}^{I}$
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we obtain the following SUSY invariant relations $\varphi_{\mathcal{V}}^{I}=\varphi_{\mathcal{V}}^{I}(\psi)$ and $\varphi_{\Phi}^{I}=\varphi_{\Phi}^{I}(\psi)$
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$B^{i}= \xi_{B}^{i}+\kappa(\overline{\psi}^{i}\xi_{\chi}-\epsilon^{ij}\overline{\psi}^{j}\xi_{\nu})-\frac{1}{2}\kappa^{2}\{\overline{\psi}^{j}\psi^{j}F^{i}(\psi)-2\overline{\psi}^{i}\psi^{j}F^{j}(\psi)+2i\overline{\psi}^{i}\phi B^{j}(\psi)\psi^{j}\}$

$-i \kappa^{3}\overline{\psi}^{j}\psi^{j}\{\overline{\psi}^{i}\phi\chi(\psi)-\epsilon^{ik}\overline{\psi}^{k}\phi\nu(\psi)\}+\frac{3}{8}\kappa^{4}\overline{\psi}^{\dot{\mathcal{J}}}\psi^{j}\overline{\psi}^{k}\psi^{k}\partial^{\mu}\partial_{\mu}B^{i}(\psi)$,

$\chi=\xi_{\chi}+\kappa\{\psi^{i}F^{i}(\psi)-i\phi B^{i}(\psi)\psi^{i}\}$

$- \frac{i}{2}\kappa^{2}[\phi\chi(\psi)\overline{\psi}^{i}\psi^{i}-\epsilon^{ij}\{\psi^{i}\overline{\psi}^{j}\phi\nu(\psi)-\gamma^{a}\psi^{i}\overline{\psi}^{j}\partial_{a}\nu(\psi)\}]$

$+ \frac{1}{2}\kappa^{3}\psi^{\dot{t}}\overline{\psi}^{\dot{J}}\psi^{j}\partial^{\mu}\partial_{\mu}B^{i}(\psi)+\frac{i}{2}\kappa^{3}\phi F^{i}(\psi)\psi^{\dot{t}}\overline{\psi}^{\dot{\mathcal{J}}}\psi^{g}+\frac{1}{8}\kappa^{4}\partial^{\mu}\partial_{\mu}\chi(\psi)\overline{\psi}^{i}\psi^{i}\overline{\psi}^{j}\psi^{j}$ ,

$\nu=\xi_{\nu}-\kappa\epsilon^{ij}\{\psi^{i}F^{j}(\psi)-i\phi B^{i}(\psi)\psi^{j}\}$

$- \frac{i}{2}\kappa^{2}[\phi\nu(\psi)\overline{\psi}^{i}\psi^{i}+\epsilon^{ij}\{\psi^{i}\overline{\psi}^{j}\phi\chi(\psi)-\gamma^{a\prime}\psi^{i}\overline{\psi}^{j}\partial_{a}\chi(\psi)\}]$

$+ \frac{1}{2}\kappa^{3}\epsilon^{ij}\psi^{i}\overline{\psi}^{k}\psi^{k}\partial^{\mu}\partial_{\mu}B^{j}(\psi)+\frac{i}{2}\kappa^{3}\epsilon^{ij}\phi F^{i}(\psi)\psi^{j}\overline{\psi}^{k}\psi^{k}+\frac{1}{8}\kappa^{4}\partial^{\mu}\partial_{\mu}\nu(\psi)\overline{\psi}^{i}\psi^{i}\overline{\psi}^{j}\psi^{j}$,

$F^{i}= \frac{\xi^{i}}{\kappa}-i\kappa\{\overline{\psi}^{i}\phi\chi(\psi)+\epsilon^{ij}\overline{\psi}^{j}\phi\nu(\psi)\}$

$- \frac{1}{2}\kappa^{2}\overline{\psi}^{j}\psi^{j}\partial^{\mu}\partial_{\mu}B^{i}(\psi)+\kappa^{2}\overline{\psi}^{i}\psi^{j}\partial^{\mu}\partial_{\mu}B^{j}(\psi)+i\kappa^{2}\overline{\psi}^{i}\emptyset F^{j}(\psi)\psi^{j}$

$+ \frac{1}{2}\kappa^{3}\overline{\psi}^{j}\psi^{j}\{\overline{\psi}^{i}\partial^{\mu}\partial_{\mu}\chi(\psi)+\epsilon^{ik}\overline{\psi}^{k}\partial^{\mu}\partial_{\mu}\nu(\psi)\}-\frac{1}{8}\kappa^{4}\overline{\psi}^{j}\psi^{j}\overline{\psi}^{k}\psi^{k}\partial^{\mu}\partial_{\mu}F^{i}(\psi)$ . (17)

For simplicity we adopt the following simple SUSY invariant constraints (i.e. reduc-
tions of the auxiliary fields only)

$\tilde{C}=\xi_{c}$ , $\tilde{\Lambda}^{i}=\tilde{M}^{ij}=\tilde{\phi}=\tilde{v}^{a}=\tilde{\lambda}^{i}=0$ , $\tilde{D}=\frac{\xi}{\kappa},\tilde{B}^{i}=\tilde{\chi}=\tilde{\nu}=0$ , $\tilde{F}^{i}=\frac{\xi^{i}}{\kappa}(18)$

accordingly the SUSY invariant relations (16) and (17) reduce to

$C= \xi_{c}-\frac{1}{8}\xi\kappa^{3}\overline{\psi}^{i}\psi^{\dot{\iota}}\overline{\psi}^{j}\psi^{j}|w|$ ,

$\Lambda^{i}=-\frac{1}{2}\xi\kappa^{2}\psi^{i}\overline{\psi}^{j}\psi^{j}|w|$ ,

$M^{ij}= \frac{1}{2}\xi\kappa\overline{\psi}^{i}\psi^{j}|w|$ ,

$\phi=-\frac{1}{2}\xi\kappa\epsilon^{ij}\overline{\psi}^{i}\gamma_{5}\psi^{j}|w|$ ,

$v^{a}=- \frac{i}{2}\xi\kappa\epsilon^{ij}\overline{\psi}^{i}\gamma^{a}\psi^{j}|w|$ ,

$\lambda^{i}=\xi\psi^{i}|w|$ ,

$D= \frac{\xi}{\kappa}|w|$ , (19)
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and

$\chi=\xi^{i}[\psi^{i}|w|+\frac{i}{2}\kappa^{2}\partial_{a}(\gamma^{a}\psi^{i}\overline{\psi}^{j}\psi^{j}|w|)]$ ,

$B^{i}=- \kappa(\frac{1}{2}\xi^{i}\overline{\psi}^{j}\psi^{j}-\xi^{j}\overline{\psi}^{i}\psi^{j})|w|$ ,

$\nu=\xi^{i}\epsilon^{ij}[\psi^{j}|w|+\frac{i}{2}\kappa^{2}\partial_{a}(\gamma^{a}\psi^{j}\overline{\psi}^{k}\psi^{k}|w|)]$ ,

$F^{i}= \frac{1}{\kappa}\xi^{i}\{|w|+\frac{1}{8}\kappa^{3}\partial^{\mu}\partial_{\mu}(\overline{\psi}^{j}\psi^{j}\overline{\psi}^{k}\psi^{k}|w|)\}$

$-i\kappa\xi^{j}\partial_{a}(\overline{\psi}^{i}\gamma^{a}\psi^{j}|w|)$ , (20)

which are written in the form containing some vanishing terms due to $(\psi^{i})^{5}\equiv 0$ .
Further by adopting the Wess-Zumino gauge auxiliary fields $C,$ $\Lambda^{i},$ $(M^{ij}-M^{ji})/2$

are gauged away. By substituting the SUSY invariant relations for the remaining
minimal supermultiplet with $A\equiv(M^{ij}+M^{ji})/2$ into $L_{N=2LSUSYQED}$ we btain
$L_{N=2NLSUSY}$ , i.e. NL$/L$ SUSY relation for $N=2$ is established.

Now we briefly show the (physical) vacuum structure of $N=2$ LSUSY QED
action (7) related (equivalent) to the $N=2$ NLSUSY action (6) [15, 16]. The
vacuum is determined by the minimum of the potential $V(A, \phi, B^{i}, D)$ in the action
(7). The potential is given by using the equation of motion for the auxiliary field $D$

as

$V(A, \phi, B^{i})=\frac{1}{2}f^{2}\{A^{2}-\phi^{2}+\frac{e}{2f}(B^{i})^{2}+\frac{\xi}{f\kappa}\}^{2}+\frac{1}{2}e^{2}(A^{2}+\phi^{2})(B^{i})^{2}\geq 0$ , (21)

The configurations of the fields corresponding to vacua $V(A, \phi, B^{i})=0$ in $(A, \phi, B^{i})-$

space in the potential (21), which are dominated by $SO(1,3)$ or $SO(3,1)$ isometries,
are classified according to the signatures of the parameters $e,$ $f,$ $\xi,$ $\kappa$ .

By adopting the simple parametrization $(\rho, \theta, \varphi, \omega)$ for the vacuum configuration
of $(A, \phi, B^{i})$ -space and expanding the fields $(A, \phi, B^{i})$ around the vacua we obtain
the particle (mass) spectra of the linearized theory, $N=2$ LSUSY QED. We have
found that two different types of vacua $V(A, \phi, B^{i})=0$ appear in the $SO(3,1)$

isometry [15, 16] and that one of them describes $N=2$ LSUSY QED possessing the
similar structure to the lepton sector of the SM.

one charged Dirac fermion $(\psi_{D^{c}}\sim\chi+i\nu)$ ,
one neutral (Dirac) fermion $(\lambda_{D^{0}}\sim\lambda^{1}-i\lambda^{2})$ ,
one massless vector (a photon) $(v_{a})$ ,
one charged scalar $(\phi^{c}\sim\theta+i\varphi)$ ,
one neutral complex scalar $(\phi^{0}\sim\rho(+i\omega))$ ,
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with masses $m_{\phi^{0}}^{2}=m_{\lambda_{D^{0}}}^{2}=4f^{2}k^{2}=- \frac{4\xi f}{\kappa},$ $m_{\psi_{D^{C}}}^{2}=m_{\phi^{c}}^{2}=e^{2}k^{2}=-\subseteq\kappa^{\frac{e^{2}}{f}},$ $m_{v_{a}}=$

$m_{\omega}=0$ , which are the composites of NG-fermions superon and the vacuum breaks
SUSY alone spontaneously (The local $U(1)$ is not broken. $\omega$ is a NG boson of SSB
of the global $SU(2)$ breaking and disappears provided the corresponding local gauge
symmetry is introduced as in the SM.) Remarkably these arguments show that the
true vacuum $V=0$ of (asymptotic flat space-time of) $L_{N=2SGM}(e, \psi)$ is achieved
by the compositeness of fields (eigenstates) of the supermultiplet of global $N=2$
LSUSY QED. This phenomena may be regarded as the relativistic second order
phase transition of massless superon-graviton NLSUSY system, which is dictated
by the symmetry of space-time (analogous to the superconducting states achieved
by the Cooper pair of electron-phonon system).

As for the cosmological significances of $N=2$ SUSY QED in the SGM scenario,
the (physical) vacuum for the above model explains (predicts) simply the observed
$mysterio_{4}us$ (numerical) relation between the (dark) energy density of the universe
$\rho_{D}(\sim\frac{c\Lambda}{8\pi G})$ and the neutrino mass $m_{\nu}$ ,

$\rho_{D}^{obs}\sim(10^{-12}GeV)^{4}\sim(m_{\nu})^{4}\sim\frac{\Lambda}{G}(\sim g_{sv^{2}})$ , (22)

provided $-\xi f\sim O(1)$ and $\lambda_{D^{0}}$ is identified with the neutrino, which gives a new
insight into the origin of (small) mass [8, 15, 16] and produce the mass hielarchy
by the factor $\frac{e}{f}$ ( $\sim O(\frac{m_{e}}{m_{\nu}})$ in case of $\psi_{D^{C}}$ as electron!). $(g_{sv}$ is the superon-vacuum
coupling constant via the supercurrent.)

Furthermore, the neutral scalar field $\phi^{0}(\sim\rho)$ with mass $\sim O(m_{\nu})$ of the radial
mode in the vacuum configuration may be a candidate of the dark matter, for $N=2$
LSUSY QED structure and the radial mode in the vacuum are preserved in the
realistic large $N$ SUSY GUT model. The no-go theorem for $N>8$ SUSY may be
overcome in a sense that the linearized (equivalent) $N>8$ LSUSY theory would
be massive theory with SSB. By taking the more geneml auxiliary-field structure
$\xi_{c}\neq 0$ the NL$/L$ SUSY relation gives the magnitude of the bare (dimensionless)
gauge coupling constant $e$ (i.e. the fine structure constant $\alpha=\frac{e^{2}}{4\pi}$ ) in terms of
vacuum values of auxiliary-fields [17]:

$e= \frac{\ln(\frac{\xi^{i2}}{\xi^{2}-1})}{4\xi_{C}}$ , (23)

where $e$ is the bare gauge coupling constant, $\xi,$ $\xi^{i}$ and $\xi_{C}$ are the vacuum-values
(parameters) of auxiliary-fields. This mechanism is natural and very favourable for
SGM scenario as a theory for everything.
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4 Conclusions

We have proposed a new paradigm for describing the unity of nature, where the
ultimate shape of nature is new unstable space-time described by the NLSUSY
GR action $L_{NLSUSYGR}(w)$ in the form of the free EH action for empty space-time
with the constant energy density $\sim\frac{\Lambda}{G}$ . Big Decay of new space-time described
by $L_{NLSUSYGR}(w)$ creates ordinary Riemann space-time with massless $spin-\frac{1}{2}$ su-
peron(matter) described by the SGM action $L_{SGM}(e, \psi)$ , which ignites the Big Bang
of the universe accompanying the dark energy (cosmological constant). Interest-
ingly on Riemann-flat tangent space (in the local frame), the familiar renormalizable
LSUSY theory emerges on the true vacuum of SGM action $L_{SGM}(e, \psi)$ as composite-
eigenstates of superon. We have seen that the physics before/of the Big Bang is not
the metaphysics but may play crucial roles for understanding unsolved problems of
the universe and the particle physics, which can be tested. In fact, we have shown
explicitly that $N=2$ LSUSY QED theory as the realistic $U(1)$ gauge theory with
the broken global $SU(2)$ emerges in the physical field configurations on the true vac-
uum of $N=2$ NLSUSY theory on Minkowski tangent space-time, which gives new
insights into the origin of mass and the cosmological problems. The cosmological
implications of the composite SGM scenario seem promissing but deserve further
studies. We can anticipate that the physical cosequences obtained in $d=2$ hold in
$d=4$ as well. The extension to large $N$ , especially to $N=5$ is important for superon
quintet hypothesis of SGM scenario with $N=\underline{10}=\underline{5}+\underline{5^{*}}$ for equipping the $SU(5)$

GUT structure [2] and to $N=4$ may shed new light on the mahematical structures
of the anomaly free non-trivial $d=4$ field theory. $(N=10$ SGM predicts double-
charge heavy lepton state $E^{2+}[1])$ . Linearizing SGM action $L_{SGM}(e, \psi)$ on curved
space-time, which elucidates the topological structure of space-time [18], is a chal-
lenge. The corresponding NL$/L$ SUSY relation will give the supergravity (SUGRA)
analogue with the vacuum breaking SUSY spontaneously. Locally homomorphic
non-compact groups $SO(1,3)$ and $SL(2, C)$ for space-time degrees of freedom are
analogues of compact groups $SO(3)$ and $SU(2)$ for gauge degrees of freedom of $t$

Hooft-Polyakov monopole. The physical and mathematical meanings of the black
hole as a singularity of space-time and the role of the equivalence principle are to
be studied in detail in NLSUSY GR and SGM scenario. NLSUSY GR with extra
space-time dimensions equipped with the Big Decay is also an interesting problem,
which can give the framework for describing all observed particles as elementary \‘a
$la$ Kaluza-Klein.
Finally we speculate that $L_{SGM}$ describes the superfluidity of space-time and $\kappa^{-2}$ is
the chemical potential of SGM space-time.

One of the authors (K.S) would like to thank Professor I. Ojima for the warm
hospitality during the workshop at YITP and RIMS at Kyot University.
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