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Abstract

We find the exact renormalization group flow of $U(2)$ family of point interactions in
one-dimensional quantum mechanics. We show that the scale-independent subfamily of
point interactions first discovered by F\"ul\"op and Tsutsui are realized as nontrivial fixed
points.

1 Introduction

Point interactions, or interactions of zero range, may be the simplest yet ubiquitous in-
teractions in low energy physics. We (naively) expect that any short-ranged interaction
could be approximated by a point interaction in the long-wavelength limit. In order to get
detailed information about what the localized potential is, we need to use a probe particle
whose de Broglie wavelength is shorter than the size of the localized potential. In other
words, the longer the probe particle‘s wavelength is, the less information we can get about
the short-ranged interaction. This naive consideration leads to the following question: Does
there exist any universality classes of short-ranged interactions whose long-wavelength limits
appear to be the same? In this contribution we review our recent work [1] and try to give
an answer by investigating the renormalization group (RG) flow of point interactions.

To this end, let us imagine one-dimensional quantum mechanics for a particle on $\mathbb{R}$ in
the presence of a single localized potential centered at the origin, whose spatial extent is
characterized by a length scale $a$ . In the long-wavelength limit $\lambda\gg a$ with $\lambda$ being the de
Broglie wavelength of a probe particle, any localized potential could be approximated by a
point interaction at the origin. In this limit a particle would freely propagate in the bulk
yet interact at the origin. The Schr\"odinger equation describing this situation is given by

$- \frac{d^{2}}{dx^{2}}\psi(x)=E\psi(x)$ , $x\neq 0$ . (1.1)

(In this paper we will work in the units where $\hslash=2m=1.$ ) It is known that allowed point
interaction at the origin is described by the following boundary condition [2]

$\vec{\Psi}(0)-iL_{0}\vec{\Psi}^{f}(0)=U[\vec{\Psi}(0)+iL_{0}\vec{\Psi}’(0)]$ , $U\in U(2)$ , (12)
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where $L_{0}$ is an arbitrary real length scale that implements the length dimension of the
equation (1.2). $\vec{\Psi}$ and $\vec{\Psi}’$ are the 2-component column vectors defined by

$\vec{\Psi}(x):=(\psi(x), \psi(-x))^{T}$ , (1.3a)
$\vec{\Psi}’(x):=(\psi’(x), -\psi’(-x))^{T}$ (1.3b)

Eq.(1.2) is the $U(2)$ family of boundary conditions that describe all possible point inter-
actions in one-dimensional quantum mechanics. Any point interaction will be specified by
a certain unitary matrix $U\in U(2)$ . In this sense we can say that in an appropriate long-
wavelength limit, the theory space of one-dimensional quantum mechanics for a particle
with a single localized potential is equivalent to the parameter space of two-dimensional
unitary group $U(2)$ .

For the following discussions it is suitable to parameterize the matrix $U$ into the following
spectral decomposition form:

$U=e^{i\alpha+}P++e^{i\alpha-}P_{-}$ , $P \pm:=\frac{]1\pm e^{arrow}\cdot\vec{\sigma}}{2}$ , (1.4)

where $0\leq\alpha\pm<2\pi$ and $\vec{e}=(e_{x}, e_{y}, e_{z})^{T}$ is a real unit vector satisfying $e_{x}^{2}+e_{y}^{2}+e_{z}^{2}=1$ .
$P\pm$ are the hermitian projection operators fulfilling $P_{+}+P_{-}=I,$ $(P_{\pm})^{2}=P\pm,$ $P_{\pm}P_{\mp}=0$

and $P_{\pm}^{\dagger}=P\pm\cdot$

The rest of this paper is organized as follows. In section 2 we will derive the one-particle
scattering matrix (S-matrix) exactly. In section 3 we will derive the exact RG flow of point
interactions by using the exact S-matrix. There we will see that $L_{0}$ turns out to play a role
of renormalization scale if we require physical quantities should not depend of the choice of
$L_{0}$ . Section.l is devoted to our conclusions.

2 Exact S-matrix
In this section we solve the Schr\"odinger equation (1.1) with the boundary conditions (1.2)
and then derive the exact S-matrix.

The general solution to the Schr\"odinger equation $($ 1. $|)$ for positive energy $E>0$ is the
linear combination of the plane waves

$\psi(x;k)=\{\begin{array}{l}A_{+}^{in}(k)e^{-ikx}+A_{+}^{out}(k)e^{ikx}, for x>0,A_{-}^{in}(k)e^{ikx}+A^{\underline{o}ut}(k)e^{-ikx}, for x<0,\end{array}$ (2.1)

where $k:=\sqrt{E}>0$ . Note that the coefficients $A_{\pm}^{in}(k)$ and $A_{\pm}^{out}(k)$ may depend on $k$ . The
superscripts ‘in’ and ‘out’ mean the incoming waves towards the origin and the outgoing
waves against the origin, respectively (see Figure 1). Substituting these into (1.2) with the
parameterization (1.4) we get

$\vec{A}^{out}(k)=S(k)A^{\vec{l}n}(k)$ , (2.2)

where

$A^{\vec{\iota}n}(k):=(A_{+}^{in}(k),$ $A_{-}^{in}(k))^{T}$ , (2.3a)
$\vec{A}^{out}(k):=(A_{+}^{out}(k),$ $A^{\underline{o}ut}(k))^{T}$ , (2.3b)
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Figure 1: One-particle scattering from a point interaction.

and $S(k)$ is a $2\cross 2$ unitary matrix defined as

$S(k):= \sum_{j=\pm}\frac{ikL_{j}-1}{ikL_{j}+1}P_{j}$ , $L_{\pm}:=L_{0} \cot\frac{\alpha\pm}{2}$ . (2.4)

Eq.(2.2) shows that the matrix $S(k)$ plays a role of an evolution map between the “in-state“
$\vec{A^{\iota n}}(k)$ and the “out-state” $\vec{A}^{out}(k)$ . The $ij$ -component of the matrix $S(k)$ is nothing but the
transition amplitude for a particle traveling from $\mathbb{R}_{j}$ to $\mathbb{R}_{i}$ , where $i,j=+or-$ . Thus, the
diagonal element $s_{\pm\pm}$ should be interpreted as the reflection coefficient $R_{\pm}(k)$ for a particle
of momentum $k$ on the positive (negative) half-line $\mathbb{R}\pm\cdot$ Similarly, the off-diagonal element
$s_{\pm\mp}$ should be interpreted as the transmission coefficient $\tau_{\pm}(k)$ for a particle incoming
from $\mathbb{R}_{\mp}$ and scattered to $\mathbb{R}\pm\cdot$ Hence we can interpret $S(k)$ as the one-particle S-matrix.
It should be emphasized that this S-matrix is exact.

3 Exact RG flow of point interactions
As noted before, $L_{0}$ is an arbitrary reference scale so that the physical quantities, that is,
the S-matrix elements must be independent of the choice of $L_{0}$ . The lack of dependence of
$L_{0}$ can be expressed as an invariance of the theory under the RG transformation

$R_{t}:L_{0}\mapsto\overline{L}(t):=L_{0}e^{-t}$ , $-\infty<t<\infty$ . (3.1)

Any change of $L_{0}$ must be equivalent to changes in the $U(2)$ parameters $g_{i}=\{\alpha\pm, e_{i}\}$ . This
requirement is expressed as

$S(k;g_{i}, L_{0})=S(k;\overline{g}_{i}(t),\overline{L}(t))$ , (3.2)

where $\overline{g}_{i}(t)=\{\overline{\alpha}\pm(t),\overline{e}_{i}(t)\}$ are the running $U(2)$ parameters, which are determined by the
following homogeneous RG equation

$(- \overline{L}\frac{\partial}{\partial\overline{L}}+\sum_{\overline{g}_{i}=\overline{\alpha}\pm\overline{e}_{i}},\beta_{g_{t}}(\overline{g}_{i}(t))\frac{\partial}{\partial\overline{g}_{i}})S(k;\overline{g}_{i}(t),\overline{L}(t))=0$ , (3.3)

where the $\beta$-functions are given by

$\beta_{\alpha\pm}(\overline{\alpha}\pm(t))=-\sin\overline{\alpha}\pm(t)$ , (3.4a)
$\beta_{e_{i}}(\overline{e}_{i}(t))=0$ . (3.4b)
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Figure 2: Exact RG flow of $\alpha\pm\cdot$ Arrows indicate the directions toward the infrared.

We emphasize that these $\beta$-functions are exact. Eq. $(3.\cdot’\cdot 1\dagger))$ implies that the unit vector $\vec{e}$

is the exactly marginal parameter. From Eq. $(3.4a.)$ , on the other hand, we see that the
eigenphases of $U$ are renormalized and have fixed points. As depicted in Figure $’\sim$), in the
parameter space of $(\overline{\alpha}+,\overline{\alpha}_{-})$ there exist the following three distinct types of fixed points:

1. Neumann fixed point ($UV$ stable fixed point).
There is a ultraviolet stable fixed point at $(\alpha_{+}, \alpha_{-})=(0,0)$ . At this point the unitary
matrix becomes the identity matrix, $U=P_{+}+P_{-}=11$ . Thus we see that this fixed
point corresponds to the Neumann-Neumann boundary conditions at the origin:

$\psi’(0_{-})=0=\psi’(0_{+})$ . (3.5)

2. Dirichlet fixed point ($IR$ stable fixed point).
There is an infrared stable fixed point at $(\alpha_{+}, \alpha_{-})=(\pi, \pi)$ . At this point the unitary
matrix is $U=-P_{+}-P_{-}=-$ ]$]$ . Thus we see that this fixed point corresponds to the
Dirichlet-Dirichlet boundary conditions:

$\psi(0_{-})=0=\psi(0_{+})$ . (3.6)

3. Fulop-Tsutsui fixed point.
There are nontrivial fixed points at $(\alpha+, \alpha_{-})=(0, \pi)$ and $(\pi, 0)$ . Since these two fixed
points are related by the exchange $‘+’rightarrow-,$ , in the following we will concentrate
on the case $(\alpha+, \alpha_{-})=(0, \pi)$ . This fixed point is IR stable in the $\alpha_{-}$ -direction
and unstable only in the $\alpha+$ -direction; see Figure 2. At this point the unitary matrix
becomes $U=P_{+}-P_{-}=\vec{e}\cdot\vec{\sigma}$ . It follows immediately that this fixed point corresponds
to the boundary conditions $P_{-}\vec{\Psi}(0)=\vec{0}$ and $P_{+}\vec{\Psi}’(0)=\vec{0}$ . With the parameterization

$\vec{e}=(\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$ , $0\leq\theta\leq\pi$ , $0\leq\varphi<2\pi$ , (3.7)

the projection operators become

$P_{+}= \frac{1}{2}(\begin{array}{ll}cos\theta 1+ e^{-i\varphi}sin\thetae^{i\varphi}sin\theta cos\theta 1-\end{array})=(_{e^{i\varphi}\sin\frac{\theta}{2}\cos\frac{\theta}{2}} \cos^{2}\frac{\theta}{2}$ $e^{-i\varphi}\sin\frac{\theta}{2}\cos\frac{\theta}{2}\sin^{2_{\frac{\theta}{2}})}$

’ (3.8a)

$P_{-}= \frac{1}{2}(\begin{array}{llll}1- cos\theta -e^{-i\varphi} sin\theta -e^{i\varphi}sin\theta cos\theta 1+ \end{array})=(i \varphi^{\sin^{2}\frac{\theta}{2}}$ $- e^{-i\varphi}\sin\frac{\theta}{\frac{2\theta}{2}}\cos\frac{\theta}{2}\cos^{2)}$ . (3.8b)
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Thus, with this parameterization, the boundary conditions $P_{-}\vec{\Psi}(0)=\vec{0}$ and $P_{+}\vec{\Psi}’(0)=$

$\vec{0}$ are cast into the following forms:

$\psi(0_{-})=e^{i\varphi}\tan\frac{\theta}{2}\psi(0_{+})$ , (3.9a)
$\psi’(0_{-})=e^{i\varphi}\cot\frac{\theta}{2}\psi’(0_{+})$ , (3.9b)

which are the scale-independent boundary conditions first discovered by F\"ul\"op and
Tsutsui [3].

4 Conclusions

In this paper we study the exact RG flow of $U(2)$ family of point interactions in the frame-
work of one-particle quantum mechanics. We find that there are three distinct fixed points,
where the so-called scale-independent point interactions [2] are realized. We believe that
this result strongly suggests that in one spatial dimension there exist three types of uni-
versality classes of localized potentials: If UV theory is tuned to lie on the critical point
$(\alpha_{+}, \alpha_{-})=(0,0)$ it remains on the Neumann fixed point. If UV theory is happened to
lie on the critical lines $\alpha+=0$ or $\alpha_{-}=0$ , it flows into the F\"ul\"op-Tsutsui fixed point.
All other short-raged interactions flow into the Dirichlet fixed point in the long-wavelength
limit, which implies that without fine-tuning most of localized potentials will be effectively
described by the infinite Dirichlet wall in the low energy regime.
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