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Abstract

Generalized coherent state systems associated to Lie groups have
complex geometric structures in a natural way [8, 10]. These geometric
structures of coherent homogeneous phase spaces play essential roles
for physical interpretations. Families of distribution functions on these
spaces, containing Wigner functions, Husimi functions and so on [7],
can be systematically defined in terms of geometric structure of phase
spaces.

1 Generalized coherent state systems

The discussion in this section is mainly based on Perelomov $s$ formulation
of generalized coherent state systems [10].

1.1 Basic settings

Let $G$ be a real Lie group and $T$ be its unitary irreducible representation on
a Hilbert space $\mathcal{H}$ . Fix an arbitrary vector $\psi_{0}\in \mathcal{H}$ . Then we can consider
a set of states whose definition is as follows:

$\{|\psi_{g}\rangle:=T(g)|\psi_{0}\rangle;g\in G\}$ .

In order to clarify characteristics of this set of states, we consider an impor-
tant subgroup $H<G$ , called an isotropy subgroup with respect to $\psi_{0}\in \mathcal{H}$ .
The isotropy subgroup $H$ is defined as

$H:=\{h\in G;\exists\alpha:Harrow \mathbb{R}, T(h)|\psi_{0}\rangle=\exp(i\alpha(h))|\psi_{0}\rangle\}$ .

Then we can find a l-to-l correspondence between the set $\{|\psi_{g}\rangle|g\in G\}$ and
the homogeneous space $G/H=$ : X. $X$ allows some geometric structure, and
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it is natural to denote the state $|\psi_{g(x)}\rangle$ corresponding to $x\in X$ by $|x\rangle 1_{;}$

$\{|\psi_{g}\rangle|g\in G\}$ $\ni$ $|\psi_{g(x)}\rangle=|X\rangle$

$1to1\iota$ $\uparrow 1$

to 1

$G/H=X$ $\ni$ $X$

It is convenient to set $|\psi_{0}\rangle=|0\rangle$ as the base point of the manifold $X$ . In
this way, the set of states $\{|\psi_{g}\rangle\}$ can be interpreted as a geometric object
X.

As an additional remark, we obtain the formula of the action $T(g)|\psi_{0}\rangle=$

$\exp(i\tilde{\alpha}(g))|\psi_{g\cdot 0}\rangle$ for $\forall g\in G$ with some phase factor $\tilde{\alpha}$ as an extension of $\alpha$

$[i.e., \tilde{\alpha}r_{H}=\alpha]$ . This observation leads us to a viewpoint of bundle structures
as shown below:

$g(x)\in G$

local sections $|$

$x\in G/H\overline{S^{1}}$

$\tilde{M}$

$\tilde{M}$ $:=\{(\exp(i\alpha(g)), x)\in S^{1}\cross X\}$ forms a transformation groupoid $X\rangle\triangleleft S^{1}$

via the natural action of $S^{1}\subset\sim X$ as the phase factor.
Now we are ready to introduce our definition and notation of generalized

coherent state (GCS, in short) systems using the objects shown above.

Definition 1 (GCS systems)

$\bullet$ $\{|\psi_{g}\rangle;g\in G\}$ is called a coherent state system associated with $G$ with
respect to a unitary irreducible representation $T$ and a vector $\psi_{0}\in \mathcal{H}$ ,
and is denoted by $\{G, T, \psi_{0}\}$ .

$\bullet$ $|\psi_{0}\rangle$ and $\psi_{0}$ are, respectively, called a standard state and a standard
vector of $\{G, T, \psi_{0}\}$ .

$\bullet$ $G/H=X$ is called a coherent phase space of $\{G, T, \psi_{0}\}$ , while $\tilde{M}$ is
called a coherent state manifold of $\{G, T, \psi_{0}\}$ .

$\bullet$ $|\psi_{g(x)}\rangle=|\psi_{g\cdot 0}\rangle=|x\rangle=|x\{g\}\rangle$ ; in rightmost side of this equation, $g$

means the representative of equivalence class of $x$ .

$\bullet$ $|\psi_{0}\rangle=|0\rangle$ as the base point of $X$ .

This formulation of GCS systems is introduced and studied in 1960-70$s^{}$

Every well-known coherent state3 can be understood in this framework. In

lThis is equivalent to considering some local sections $g(\cdot)$ of the fibre bundle $GG/H\vec{H}$ .
2Historical details are seen in [8, 10].
3Photon CS, Bloch CS, and so on.
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some typical cases, a coherent phase space $X$ actually has a meaning of
physical phase space.4 The criterion for such a physical reality of coherent
phase space is explained in the next subsection.

Now we see some general properties of coherent state systems.

1 $)$ Symmetries of phase spaces Since $G$ is a Lie group, $X=G/H$ forms
a homogeneous space with a differential structure, and there is a natural
action $G\cap X$ . Then we can find a measure $dx$ which is quasi-invariant
under this action owing to the group symmetry of $G$ . Thus $(X, d\nu(x))$ is a
measurable space, and simultaneously, $X$ is a metric space with an quasi-
invariant Riemannian metric $ds^{2}$ which is compatible with $d\nu(x)$ .

2 $)$ Resolution of unity Let $d\nu(x)$ be an quasi-invariant measure intro-
duced in 1). Then the following is valid.

Proposition 2

$]C>0s.t.,$ $\int_{X}d\mu(x)|x\rangle\langle x|=\hat{I}$ , where $d \mu(x);=\frac{d\nu(x)}{C}$ .

Remark 3 The positive constant $C$ is determined in the following way: Let
$|y\rangle$ be a coherent state and $\hat{B}$

$:= \int_{X}d\nu(x)|x\rangle\langle x|$ . Then $\hat{B}=C\hat{I}$ , so we obtain

$\langle y|\hat{B}|y\rangle=\int_{x\in X}d\nu(x)|\langle y|x\rangle|^{2}=\int_{x\in X}d\nu(x)|\langle 0|x\rangle|^{2}(<\infty)$ .

The last step is from the quasi-invariance of $d\nu(x)$ under the action of $G$ .
On the other hand, this quantity is obviously equal to $C$ , so $C$ is determined
from the quantity $|\langle 0|x\rangle|^{2}$ , which can be said a ”distribution around the base
point“ of $X$ .

3 $)$ Description for operational quantum physics On the basis of the
resolution of unity derived above, we can define the corresponding POVM
on $X$ associated to the coherent state system: Let $\mathcal{B}(X)$ be a Borel set of
X. Then the POVM $M:\mathcal{B}(X)arrow \mathcal{L}(\mathcal{H})$ is defined as

$M(A):= \int_{x\in A}d\mu(x)|x\rangle\langle x|$ for $\forall A\in \mathcal{B}(X)$ .

A triplet $(X, ds^{2}, M)$ consisting of a homogeneous space $X=G/H$, a metric
$ds^{2}$ , and a POVM $M$ (defined above) is also called coherent phase space.

4as represented by the $2n$-dimensional space $\Gamma=\{(q,p)\}$ equipped with canonical
coordinates
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4$)$ Expansion on “CS base” and symbols of states Every state
$|\psi\rangle\in \mathcal{R}(\mathcal{H})$ (: rays of $\mathcal{H}$ ) can be expanded over coherent state system in
the following way:

$| \psi\rangle=\int_{X}d\mu(x)|x\rangle\langle x|\psi\rangle$

$= \int_{X}d\mu(x)\psi(x)|x\rangle$ ,

where $\psi(x)$ $:=\langle x|\psi\rangle(\psi : Xarrow \mathbb{C})$ , which is called a symbol of a state $|\psi\rangle$ .
This symbol satisfies the following formula for inner products:

$\langle\phi|\psi\rangle=\int_{X}d\mu(x)\overline{\phi(x)}\psi(x)$ .

5 $)$ Reproducing kernels Two symbols $\psi(x),$ $\psi(y)$ for $\forall x,$ $y\in X$ depend
on each other:

$\psi(x)=\langle x|\psi\rangle=\int_{y\in X}d\mu(y)\langle x|y\rangle\langle y|\psi\rangle$

$= \int_{y\in X}d\mu(y)K(x, y)\psi(y)$ ,

where $K(x, y)$ $:=\langle x|y\rangle$ . $K$ : $X\cross Xarrow \mathbb{C}$ is called a reproducing kernel
associated to a GCS system $\{G, T, \psi_{0}\}$ because it satisfies such property as
$K(x, z)= \int_{y\in X}K(x, y)d\mu(y)K(y, z)$ .

6 $)$ “Overcomplete” linear dependence Any two coherent states $|x)$ ,
$|y\rangle$ have a mutual relation via the reproducing kernel $K$ introduced in 5);

$|x \rangle=\int_{y\in X}d\mu(y)K(y, x)|y\rangle$ .

This formula can be seen as an linear expansion of the state $|x\rangle$ over the
GCS system.5

1.2 Semiclassical systems

In the previous subsection we discussed general properties of coherent state
systems. Here we consider the criterion for semiclassical systems: in other
words, “how to know whether a coherent phase space $X$ has some coor-
dinates which allows physical interpretations“. The criterion is, in short,
maximality of isotropy subalgebras of the corresponding Lie algebra defined
as below.

5The set of coherent states $\{|x\rangle;x\in X\}$ is, of course, not a base of the state space.
Actually, it contains some base as its proper subset.
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Let $\mathcal{G}$ be the Lie algebra corresponding to the Lie group $G$ . Since $G$

is real, $\mathcal{G}$ is a real Lie algebra and we can construct its complex extension
$\mathcal{G}_{\mathbb{C}}$ $:=\mathcal{G}\oplus_{\mathbb{R}}i\mathcal{G}$ and a representation $\mathcal{T}$ of $\mathcal{G}_{\mathbb{C}}$ induced from the unitary ir-
reducible representation $T:Garrow GL(\mathcal{H})$ . Then we can define an algebra
$\mathcal{B}\subset \mathcal{G}_{\mathbb{C}}$ called isotropy subalgebra with respect to a fixed vector $\psi_{0}\in \mathcal{H}$ as
follows: $\forall b\in \mathcal{B},$ $\exists\lambda_{b}\in \mathbb{C}$ s.t., $\mathcal{T}(b)|\psi_{0}\rangle=\lambda_{b}|\psi_{0}\rangle$ . $\mathcal{B}$ is necessarily a complex
subalgebra, and its Hermite conjugate $\overline{\mathcal{B}}$ is also a subalgebra of $\mathcal{G}_{\mathbb{C}}$ .

Now we can give the definition of maximality of isotropy subalgebras,
which is nothing but the necessary condition for physical interpretation of
coherent phase spaces.

Definition 4 (Maximality condition) Fix an arbitrary vector $\psi_{0}\in \mathcal{H}$ ,
and let $\mathcal{B}$ is maximal in $\mathcal{G}_{\mathbb{C}}$ iff $\mathcal{B}\oplus\overline{\mathcal{B}}=\mathcal{G}_{\mathbb{C}}$ , where the direct sum is in the
sense of Lie algebras.

Take an isotropy subalgebra $\mathcal{B}$ with respect to $\psi_{0}$ which is maximal
in $\mathcal{G}_{\mathbb{C}}$ . Then a remarkable proposition holds: The corresponding coherent
phase space $X=G/H$, which is a real homogeneous space, is identffied
with complex homogeneous space $G_{\mathbb{C}}/B$ or $\overline{B}/D$ , where $B,$ $\overline{B}$ , and $D$ are,
respectively, the Lie groups corresponding to $\mathcal{B},$

$\overline{\mathcal{B}}$ , and $\mathcal{D}$ , and $\mathcal{D}=\mathcal{B}\cap$ B.
It is remarkable that a complex structure is induced in $X$ from $G_{\mathbb{C}}/B$ via
the relation $X=G/H\simeq G_{\mathbb{C}}/B\simeq\overline{B}/D^{6}$

Such a case can be understood as a typical one that $G$ is a compact
semisimple Lie group. Let $T$ be a maximal torus group of $G$ and $\mathcal{G}$ and
$\mathcal{T}$ be, respectively, the Lie algebra of $G$ and $T$ . Let us fix a Cartan base
$\{T_{j}, E_{\alpha}\}_{j,\alpha}$ such that $\{T_{j}\}$ spans $T$ . We can take the following fundamental
objects:

$B_{\pm}$ : Borel subgroups, $\mathcal{B}\pm:=Lie(B_{\pm})$ ; spanned by $\{T_{j}, E_{\alpha}\}_{j_{\alpha<0}^{\alpha>0}},\cdot$

$z_{\pm}$ : Nilpotent subgroups, $z_{\pm};=Lie(Z_{\pm})$ ; spanned by $\{E_{\alpha}\}_{\alpha>0}$ .
$\alpha<0$

$T_{\mathbb{C}}$ : Complexified group of $T;\mathcal{T}_{\mathbb{C}}$ $:=Lie(T_{\mathbb{C}})$ ; spanned by $\{T_{j}\}_{j}$ ;
$r$ $:=dimT=dim(\mathcal{T})$ : rank of G.

Then $X=G/T$ admits a complex structure in a similar way;

$B_{+}\backslash G_{\mathbb{C}}\simeq G/T\simeq G_{\mathbb{C}}/B-$

$\Vert$ $\Vert$ $\Vert$

$X_{-}$ $X$ $x_{+}$

These homogeneous spaces $X,$ $X\pm$ are called flag manifolds. An essential
structure of this isomorphic relation comes from the canonical decomposition
in $G_{\mathbb{C}}:\exists G_{0}$ : dense in $G_{\mathbb{C}};\forall g\in G_{0},$ $\exists!\zeta\pm\in Z_{\pm},$ $\exists!h\in T_{\mathbb{C}},$ $\exists!\eta\pm\in B_{\pm}s.t.,$ $g=$

$\zeta+h\zeta_{-}=\eta+\zeta_{-}=\zeta+\eta_{-}$ . In addition, both $x_{\pm}$ admit a Hermitian G-invariant

6The details are seen in [3].
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structure (metric and l-form) in common:

$ds_{\omega}^{2}=h_{j\overline{k}}d\xi_{j}d\overline{\xi_{k}}$,

$\omega=\frac{i}{2}h_{j\overline{k}}d\xi_{j}$ A $d\overline{\xi_{k}}$ ,

where $h_{j\overline{k}}$ $:= \frac{\partial}{\partial\xi_{j}\partial\overline{\xi_{k}}}F(\xi,\overline{\xi})$

with respect to the corresponding unitary irreducible representation $T$ of $G$ ,
where $F$ is the K\"ahler potential of $\omega$ . The corresponding K\"ahler potential
$F$ is determined by the Lie-algebraic structure of $\mathcal{G}_{\mathbb{C}}[9]$ . The reason why
the K\"ahler structure is essential is that any K\"ahler manifold can be seen as
real symplectic manifold so the coordinate variables play roles of canonically
conjugate variables. Especially, for our proposal of formulation of Wigner-
type functions via geometric structures of GCS system, these symplectic
manifolds are seen as physical phase spaces and nothing but the domains
of distribution functions defined in the following \S .2. The discussions there
reveal more precisely the deeper aspects of geometric structures of coherent
phase spaces.

2 Kernel operators and distribution functions

In the previous section we surveyed general aspects of GCS systems, espe-
cially their (K\"ahler) geometric structures of coherent phase spaces. Then we
can find the corresponding symplectic structures as real manifolds. In this
section, we deal with phase spaces with real symplectic forms, and construct
families of distribution functions on these spaces as generalized Wigner or
Husimi functions, which are well-known in the context of CCR algebras.
Before the main discussion, let us review the case of CCR.

2.1 The case of CCR, or systems of photons

Let $\mathcal{W}_{1}$ be the l-degrees-of-freedom CCR algebra (3-dimensional Heisenberg
algebra) generated by $\hat{q},\hat{p}$ and $\hat{I}$ which satisfy the canonical commutation re-
lation $[\hat{q},\hat{p}]=i\hslash\hat{I},$ $[\hat{q},\hat{I}]=\lceil\hat{p},\hat{I}]=0$ , or using the creation/annihilation oper-
ator, $[\hat{a},\hat{a}^{\uparrow}]=\hat{I},$ $[\hat{a},\hat{I}]=[\hat{a}^{\uparrow},\hat{I}]=0$ $($where $\hat{a}=\frac{1}{\sqrt{2\hslash}}(\hat{q}+i\hat{p}),\hat{a}^{\uparrow}=\frac{1}{\sqrt{2\hslash}}$ (q-ip) $)$ .
A conventional description of GCS system for the Lie group $H_{1}=Exp(\mathcal{W}_{1})$

is written down in the following way: $\forall g\in H_{1}$ can be represented as
$g=[s;t_{1};t_{2}]$ with the parameters $s,$ $t_{1},$ $t_{2}\in \mathbb{R}$, and let $T_{r}$ be a representation
on some Hilbert space $\mathcal{H}_{r}$ whose action on the ray $\mathcal{R}(\mathcal{H}_{r})$ is as follows:

$T_{r}(g)|\phi_{0}\rangle=\exp[i(s\hat{I}+t_{1}\hat{a}+t_{2}\hat{a}^{\dagger})]|\phi_{0}\rangle f$ $or$ $|\phi_{0}\rangle\in \mathcal{R}(\mathcal{H}_{r})$ .
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Then the arbitrary coherent state of $\{H_{1}, T_{r}, \phi_{0}\}$ is

$|\phi_{g}\rangle=T_{r}(g)|\phi_{0}\rangle=\exp[i(s\hat{I}+t_{1}\hat{a}+t_{2}\hat{a}^{\uparrow})]|\phi_{0}\rangle$

$=\exp(\alpha\hat{a}\dagger-\overline{\alpha}\hat{a})\exp(is’\hat{I})|\phi_{0}\rangle$

with 2 parameters $\alpha\in \mathbb{C},$ $s’\in \mathbb{R}$ which are some functions of $s,$ $t_{1},$ $t_{2}$ . Since
the isotropy subalgebra is $(\hat{I})_{\mathbb{R}}=$ {exp(isI)ls $\in \mathbb{R}$} $\simeq S^{1}$ , this GCS sys-
tem is equivalent to $\{|\phi_{g}\rangle=D(\alpha)|\phi_{0}\rangle\}$ with the standard state $|\phi_{0}\rangle\in$

$\mathcal{R}(\mathcal{H}_{r})$ , where $D(\alpha)$ $:=\exp(\alpha\hat{a}^{\uparrow}-\overline{\alpha}\hat{a})$ , and the arbitrary coherent state is
parametrized by $\alpha\in \mathbb{C}\simeq X$ $:=H_{1}/S^{1}$ .

Remark 5 Let us take the Fock vacuum $|0\rangle$ as the standard state, then we
obtain the well-known representation of photon coherent states:

$|\alpha\rangle=D(\alpha)|0\rangle$

$= \exp(-\frac{|\alpha|^{2}}{2}\hat{I})\exp(\alpha\hat{a}^{\dagger})\exp(-\overline{\alpha}\hat{a})|0\rangle$

$= \exp(-\frac{|\alpha|^{2}}{2}\hat{I})\exp(\alpha\hat{a}^{\uparrow})|0\rangle$

$=e^{-\frac{|\alpha|^{2}}{2}} \sum_{n\in \mathbb{N}}\frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$ .

More generally, we should take an eigenstate of $\hat{a}$ as the standard state.
Then the isotropy subalgebra is generated by $\hat{a},\hat{I}$ , and the subalgebras $\mathcal{B}=$

$sp_{\mathbb{C}}an\{\hat{a},\hat{I}\}$ and $\overline{\mathcal{B}}=sp_{\mathbb{C}}an\{\hat{a}^{\uparrow},\hat{I}\}$ satisfy the maximality condition $\mathcal{B}\oplus\overline{\mathcal{B}}=$

$\mathcal{W}_{1\mathbb{C}}$ . Thus $H_{1\mathbb{C}}/B\simeq H_{1}/S^{1}\simeq \mathbb{C}=X$ , which has the K\"ahler structure
$\omega_{H_{1}}=\frac{i}{\pi}d\alpha\wedge\alpha$ , corresponds to a classical phase space $\Gamma=\mathbb{R}^{2}=\{(q,p)\}$ .
Actually, this K\"ahler form can be seen as the symplectic form coordinatized
by $(q,p): \omega_{H_{1}}=\frac{i}{\pi}d\alpha\wedge d\overline{\alpha}=\frac{\hslash}{\pi}dq\wedge dp$ where $q= \frac{1}{\sqrt{2\hslash}}(\alpha+\overline{\alpha}),p=\frac{1}{i\sqrt{2\hslash}}(\alpha-\overline{\alpha})$ .
The coherent states are also parametrized by $(q,p)\in\Gamma$ : $|\alpha\rangle=\exp(\alpha\hat{a}^{\uparrow}-$

$\overline{\alpha}\hat{a})|0\rangle=\exp(\frac{i}{\hslash}(p\hat{q}-q\hat{p}))|0\rangle=:|q,p\rangle$ .
Instead of formulating Wigner-type functions in a direct way, we first

define so-called $\triangle$-operators for CCR CS systems defined as

$\triangle_{s}(z)$ $:= \int_{\alpha\in X}\frac{d^{2}\alpha}{\pi}D(\alpha)e^{\frac{s}{2}|\alpha|^{2}-\alpha\overline{z}+\overline{\alpha}z}$ for $z\in \mathbb{C}$ (1)

for each $s\in \mathbb{R}$, where $X=\mathbb{C},$ $d^{2} \alpha=d({\rm Re}\alpha)d({\rm Im}\alpha)=\frac{1}{2i}d\alpha d\overline{\alpha}$ and $D(\alpha)$

is the coherent shift operator defined above $[$ 1 $]^{}$ These $\triangle$-operators satisfy
the following $properties^{8}$ :

7introduced for the purpose of discussing relaxation of coherence
8The $\triangle$-operators $\triangle_{s}(z)$ contains the shift operator $D(\alpha)$ , so the discussion here de-

pends on the choice of representations of $H_{1}$ or $\mathcal{W}_{1}$ .
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Proposition 6 For $\forall s\in \mathbb{R}$,
1 $)$ $Tr\triangle_{s}(z)=1$ (normalization),

$2) \int_{z\in \mathbb{C}}\frac{d^{2}z}{\pi}\triangle_{S}(z)=1$ (completeness),

3 $)$ $Tr[\triangle_{s}(z)\triangle_{-s}(z’)]=\pi\delta^{(2)}(z-z^{f})$ (orthogonality)
holds.

In the next step we define a family of Wigner-type functions as a gener-
alization of well-known Wigner functions and Husimi functions.

Definition 7 (Wigner-type functions for CCR) Let $\rho\in \mathcal{T}(\mathcal{H})$ be an
arbitrary positive tmce-class opemtor (or a density operator) on $\mathcal{H}$ . The
functions $\{F_{s}(z)\}_{s\in \mathbb{R}}$ with the pammeter $s\in \mathbb{R}$ defined by

$F_{s}(z):=Tr[\rho\triangle_{-s}(z)]$

is called Wigner-type functions of the state $\rho$ .

$F_{s}$ : $\mathbb{C}arrow \mathbb{C}$ is a function on the phase space $X=\mathbb{C}$, and on the basis of
the correspondence of $X= \{z\in \mathbb{C}\}\simeq \mathbb{R}^{2}=\{(q,p)\}(q=\frac{1}{\sqrt{2\hslash}}(z+\overline{z}),p=$

$\frac{1}{i\sqrt{2\hslash}}(z-\overline{z})),$ $F_{s}(z)$ can be seen as $F_{s}(q,p)$ (for ease, we use the same notation
$F_{s})$ with real symplectic variables $(q,p)\in \mathbb{R}^{2}$ .

Remark 8 Some of the special cases which correspond to named quasi-
probability distributions9 are shown below:
$(s=0)F_{0}(z)$ : Wigner function
$(s=1)F_{1}(z)$ : Husimi function (Q-function)
$(s=-1)F_{-1}(z)$ : Glauber-Sudarshan function (P-function) [5]

We can check they satisfy the following properties, which characterize these
quasi-distributions by primary objects and operations [2].

Proposition 9

$\bullet$ For the Husimi function $F_{1}(z)=F_{1}(p, q)$ ,

$F_{1}(q,p)=\langle q,p|\rho|q,p\rangle$ for $\forall\rho\in \mathcal{T}(\mathcal{H})$

holds.

$\bullet$ For the Glauber-Sudarshan function $F_{-1}(z)=F_{-1}(q,p)$ ,

$\rho=\int\int_{\mathbb{R}^{2}}\frac{dqdp}{2\pi}|q,p\rangle F_{-1}(q,p)\langle q,p|$ for $\forall\rho\in \mathcal{T}(\mathcal{H})$

holds.

9The prefix “quasi-,, means that “the value is not always positive“.
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It is remarkable that the $\triangle$-operators are determined by the shift oper-
ator $D(\alpha)$ and the measure $d^{2}\alpha$ , which are elementary objects of the GCS
system $\{H_{1}, T, \psi_{0}\}$ for the CCR algebra, and the Wigner-type functions
are defined almost directly from $\triangle_{s}(z)$ as shown in definition 7. Thus we
can construct the quasi-probability distributions only with the knowledge
of GCS systems. This leads us to the question how to understand these
quasi-probability distributions from geometric structures of coherent phase
spaces.

2.2 General case

Let us generalize the discussions in the previous section to the case of ar-
bitrary Lie groups. Such a procedure has already given in [4], on the basis
of the idea of harmonic functions on manifolds, but our method has rather
geometric aspects and tells how to formulate quasi-probability distributions
more directly. In the general theory discussed later, we also utilize complex
geometric structures associated to GCS systems.

Let $G$ be a Lie group and $T:Garrow \mathcal{L}(\mathcal{H})$ be a unitary irreducible rep-
resentation, and consider the case that we can construct the corresponding
GCS system $\{G, T, \psi_{0}\}$ with the K\"ahler geometric phase space $X=\{\eta\in$

$\mathbb{C}^{N}\}(N=dim_{\mathbb{C}}X)$ and the shift operator $D(\eta)^{10}$ In order to generalize
$\triangle$-operators introduced in the case of CCR algebras, we first define kernel
operators $K_{s}(\eta)$ for $\{G, T, \psi_{0}\}$ (or the phase space $X$ ) which satisfy the fol-
lowing axioms, and in the next step define symbols of operators using $K_{s}(\eta)$ .
In the final step, generalized quasi-distributions are defined as symbols of
density operators.

Definition 10 (Kernel operators) Components of a l-parameter family

of opemtors $\{K_{s}(\eta)\}_{s\in \mathbb{R}}$ on the Hilbert space $\mathcal{H}$ is called kernel opemtors
associated to the coherent phase space $X$ iff they satisfy the following $(K.1)-$

(K.5):

(K.1) $K_{s}(\eta)=K_{s}(\eta)^{*}$ for $\forall\eta\in X$ (self-adjointness),

(K.2) $K_{s}(g\cdot\eta)=T(g)K_{s}(\eta)T(g^{-1})$ for $\forall\eta\in X,$ $\forall g\in G$

(covariance with $G\wedge X$),

(K.3) $Tr[K_{s}(\eta)]=1$ (normalization),

(K.4) $\int_{X}d\mu(\eta)K_{s}(\eta)=1$ (completeness),

(K.5) $Tr[K_{s}(\eta)K_{-s}(\eta’)]=C\delta^{(N)}(\eta-\eta’)$ (orthogonality relation),

where $C$ is the positive constant appearing in the formula of resolution of
unity (proposition 2): $1= \frac{1}{C}\int d\mu(g)|g\rangle\langle g|$ .

$1$ Any GCS system has some K\"ahler structure, but it is not always easy to find appro-
priate coordinates as physical phase spaces like the case discussed in \S 1.2.
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Definition 11 (Symbols of operators) Components of a l-pammeter fam-
$ily$ of mappings $\{\Sigma^{(s)}:\mathcal{L}(\mathcal{H})arrow \mathbb{C}\}_{s\in \mathbb{R}}$ defined by $\Sigma^{(s)}(\hat{A});=Tr[\hat{A}K_{-s}(\eta)]$

$(\hat{A}\in \mathcal{L}(\mathcal{H}))$ are called symbols of opemtors in $\mathcal{L}(\mathcal{H})^{11}$

Definition 12 (Generalized distribution functions) Symbols of density
opemtors $\rho\in \mathcal{T}(\mathcal{H})$ are called generalized distribution functions (on the
phase space $X$). They also form a l-parameter family $\{F_{\rho}^{(s)}(\eta);=\Sigma^{(s)}(\rho)=$

$Tr[\rho K_{-s}(\eta)]\}_{s\in \mathbb{R}}$ .

It is remarkable that these distribution functions and kernel operators are
Fourier duals via the density operator $\rho$ .

Our definition of kernel operators is compatible with Brif and Mann’s
formulation of distribution functions on (real) differentiable manifolds [4].
They presented that their distribution functions have properties as quasi-
probability distributions shown in proposition 9, i.e., the estimation for-
mula of Husimi functions by coherent states $F_{1}(x)=\langle x|\rho|x\rangle(x\in X)$

and the reconstruction formula of states with Glauber-Sudarshan functions
$\rho=\int_{x\in X}d\mu(x)|x\rangle F_{-1}(x)\langle x|$ .

The remaining problem is how to realize our distribution functions $F_{\rho}^{(s)}$

on coherent phase spaces. For this, we need to find an explicit form of the
kernel operator $K_{s}$ . It is difficult to obtain the general solution of this prob-
lem, but we can propose a typical and conceptual example which satisfies
the axiom in definition 10 with ingredients of GCS system. Let us show the
concrete formula of $K_{s}(\eta)$ .

Proposition 13 Set some $GCS$ system $\{G, T, \psi_{0}\}$ with phase space $(X, d\sigma^{2})$ .
Let us consider a l-parameter family of opemtors $\{K_{s}(\eta)\}_{s\in \mathbb{R}}$ with an index
$\eta\in X$ defined below:

$K_{s}(\eta)$ $:= \int_{\xi\in X}d\mu(\xi)D(\xi)e^{\frac{s}{2}d_{\sigma}(0,\xi)^{2}}e^{\omega_{\sigma}(\xi,\eta)}$ (2)

where

$d\mu$ : the measure which is compatible with the metric $d\sigma^{2}$ ,
$D(\cdot)$ : the shift operator,
$d_{\sigma}$ : the distance induced from $d\sigma^{2}$ ,
$\omega_{\sigma}$ : the symplectic form of coherent phase space as a symplectic manifold.

Then $\{K_{s}(\eta)\}_{s\in \mathbb{R}}$ satisfies $(K.1)-(K.5)$ introduced in definition 10.

1lFrom the viewpoint of algebraic probability theory, these symbols of operators are
rather the (normal) states of the system described by $\mathcal{G}$ .
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The proof needs a few properties of shift operators symplectic forms $[$6 $]^{}$

This proposition means that $\{K_{s}(\eta)\}_{s\in \mathbb{R}}$ gives a family of distribution func-
tions via the procedure in definition 11-12, containing a generalized version
of Wigner, Husimi and Glauber-Sudarshan functions. The formula (2), actu-
ally, recovers eq. (1) as its specialized form. We emphasize that this construc-
tion of $K_{s}$ is canonical and related to some algebraic viewpoints. Especially,
it can be naturally understood with the method of GNS construction, and
the Gaussian-like factor $e^{\frac{s}{2}|\alpha|^{2}}$ appearing in eq.(l) is generalized as a molli-
fier of kernel operators $(if s<0)$ . The complete proof of proposition 13 and
the details of algebraic aspects mentioned above will be given in a paper [6]
in preparation.

We have constructed a scheme how to define generalized distribution
functions associated to GCS systems on the basis of their geometric struc-
tures. Our distribution functions have the same properties as Brif and
Mann’s version, i.e., the estimation formula of Husimi functions, the recon-
struction formula of states and so on. Moreover, our scheme enables some
quantitative analyses for quantum systems via geometries of GCS systems;
for example, we can concretely calculate the Wehrl entropy $S_{W}[F_{\rho}^{(1)}]$ $:=$

$- \int_{X}d\mu(\eta)F_{\rho}^{(1)}logF_{\rho}^{(1)}$ , which measures degrees of incoherence of quantum
states in some sense [2].

3 Summary

In this article we have reviewed general structures of GCS systems mainly
based on Perelomov $s$ theory, and discussed its application to formulation
of distribution functions on physical phase spaces. As the main result, we
obtain concrete forms of kernel operators or quantum Fourier transforms of
distribution functions. It is remarkable that (K\"ahler) geometric structures
of coherent phase spaces play essential roles there. We believe that our
distribution functions are powerful tools for concrete and conceptual inves-
tigation of quantum systems in various contexts, especially in information
geometric ones.

Both of the authors are very grateful to Mr. H. Ando, Mr. T. Hasebe,
Mr. K. Okamura, Mr. H. Saigo and Prof. S. Tanimura for their valuable
discussions and comments.
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