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Vassiliev-type invariants revisited
Toru Ohmoto (Hokkaido Univ.)
Dec. 8, 2009 at Nihon Univ. Sakura-Jousui, Tokyo.

In this talk, we revisit an ‘old and new’ theme on the topology of bifurca-
tion locus T in the infinite dimensional space M of smooth mappings from a m-fold
M to Euclidean space, initiated by R. Thom [27],

M= C°(M,R") 5T := {C* unstable maps}.

(A) Study HO(M-T) as the space of all isotopy invariants of C* structural
stable maps = Vassiliev-type invariants ...

(B) Study M as a representation space of the diffeomorphism group
Diff(M) = Thom polynomials ... .

As for (A), I will describe a general framework based on the Thom-
Mather theory, and state an elementary observation (Theorem 3.3 below):
for generic maps M — R" where m = dimM > 2, a naive analog to finite type
knot invariants is not so fruitful. The order-one invariants were studied in
several cases (recent works are, e.g., [30], [31], [22]), however we have still
missed a proper definition of Vassiliev-type invariants of higher order for such
maps. As for (B), I will only comment about a few examples and propose
a further direction.

All spaces and mappings are of class C* thoughout.

1 Mapping space

1.1 A-equivalence and invariant stratification

Let M be a compact manifold of dimension m without boundary, and N a
manifold of dimension n without boundary. Denote the space of smooth
maps, equipped with C* topology, by M := C*(M, N).

A map ¢ : U - M (U being finite dimensional) is called of type C* if
the evaluation map M x U — N is a C* map (Frechet manifold structure
on M).

The A-equivalence group or right-left group is the direct product of dif-
feomorphism groups

Ay = Difi(M) x Diff(N) acting on Mby (¢, 7).f :=7o0 fog™.

Also put ?{?M y = the connected component containing (idy, idn).
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Definition 1.1 f,g : M —» N (€ M) are A-equivalent if Ay n.f = Amn-gie.,
3(‘P» T) € ﬂM,N s.t. 8= (90, T)f

M—N

M—N

We say f is a C*-structurally stable map, if the orbit of Apy.f is an open set in
M. If (m,n) is in so-called Mather’s nice range, structurally stable maps form
an open dense subset in M (C*®-Structural Stability Theorem, proved by John
Mather). Often say generic maps for short.

Any orbits Ay y.f become Ay y-invariant Frechet submanifolds of M.
We are interested in finite codimensional orbits (or families of orbits).

Definition 1.2 In this note, a multi-singularity type means a A-type of germs
f:M,S — N, f(S) (S and f(S) are finite),

i.e., an unordered l-tuple @ = (@, - - - , @;) of A-classes of multi-germs ¢; : R™,§ ; —
R",0 where [ = |f(S)| and |S| = X |S]. Here a; may be a family (moduli) of
A-classes of multi-germs. The (A.-)codimension of a is defined by s = |a| :=
2. codim a; (codim means A.-codimension).

Assume that |a| = 5 < co. We put
[(a) := Closure{ f € Ty | f has multi-singularities of type a } c T',.

By definition, I'(a) = I'(a;) N - - -NI'(e;) in M, and if a is a multi-singularity
type adjacent to b, then I'(d) is contained in I'(a). The set I'(a) becomes a
pseudo-algebraic subset in M in the sense of [17]: In particular, its smooth |
part is a Frechet submanifold of codimension s.

PutTe :={ fe M| codim Ayy.f = o }and Uy := M -Tw.

Lemma 1.3 codim Ayn.f < o (ie., f € Up) if and only if there exists a finite
subset S in M such that

1) the germ f : M,S — N, f(S) is of A.-finite codimension;

2) each point x € f~1(f(S)) — S is not critical;

3) For any finite S’ away from S, the germ of f at S’ is stable.
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Theorem 1.4 (Mather [17])
Assume that (m,n) belongs to the nice range. Then I'« has infinite codimension,
and there exists a filtration

Mo T =I1>oI2D--D>ID>: DT, codimI =+

by Ay n-invariant closed pseudo-algebraic subsets I's such that there is a topolog-
ically locally trival fibration nt : T's —T's41 — Y5 where each fibre is an Ay n-orbit
and Y is a finite dimensional manifold.

Remark 1.5 1) HO(M - T') classifies all C*®-structurally stable maps up to 7{2,] N

2) The rank of HY(M -T) (also H(T's — I's+1)) is at most countable.

3) Each component of Y corresponds to the moduli space of certain multi-singularities.
4) For a multi-singularity type a of codimension s, '(a) — T's41 becomes an Ay y-
invariant Frechet submanifold of codimension s in M; I'y — I's4; is a union of
(countably many) such Frechet submanifolds.

5) If (m, n) is out of the nice range, I',, may have finite codimension. In this case,
Theorem 1.4 holds when replacing M by U := M —Tw.

1.2 Contact equivalence for M

Let B C N be a p-dimensional closed submanifold and p : M X N — M the
projection. Put

Kunp :={ H € Diff(M x N) | H preserves M x B and fibers of p }.

N

B sy S e VB

M

Definition 1.6 f,g : M — N are Kp-equivalent if
3H € Kp s.t. H(graph(f)) = graph(g).

Theorem 1.7 T, := {f € M, codim Kp.f = oo} has infinite codimension in M.
Moreover, there exists a filtration

—

M>T=)T;>Ty> - -d2T;>---dTe,  codimTy=s
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by Kp-invariant closed pseudo-algebraic subsets such that there is a topologically

locally trival fibration ng : Ty — Tspy — Z, where each fibre is an Kg-orbit and Z,
is a finite dimensional manifold.

Notice that f € M —T iff f is transverse to B. So, H(M - T) classifies
diffeo-types of submanifolds f~!(B) in M.

2 Vassiliev complex

2.1 Spectral sequence

Take Mather’s filtration of U (Theorem [17]) and its ‘dual filtration”: Put
Us .= M~-Tg,

then we have invariant open subsets of V:

M—r=(uocfulc%c---cfusc--.cU%cM
s=0

We think of a spectral sequence associated to this filtration: the first E;-
terms are
ETJ = HSH((LI.” U-y) « Ht(rs ~Ts41)

with a coefficient ring R. The arrow indicates the Alexander duality for func-
tional spaces in the sense of Eells [7], that is, the Thom isomorphism for
coorientable components of the s-codimensional manifold I'y — I's4; (for a
non-coorientable connected component the Thom class within integer co-
efficients vanishes, but it works within Z,-coefficients). Thus E; 0 is the
R-module generalted by coorientable components in I'y — I'y4, espec1ally,

EY? = H'Up) = HM - D).
The first cochain complex is
0 - E} » E' > EY >

where the operator d; : E}' — E';”" is the connection homomorphism 4
of cohomology exact sequence for the triple (U1, Us, Us-1). As usual, we
putforr>1,

o . kerld, 1 E}' > Efrirly

r+l ° lm[dr : E:—r,t+r—l - E-;',t]




with d,,1, and we have a natural homomorphism Ej; — H*(M).
Instead, we may take

0 - E}" - E%’t - E:;" - ..

and E¥ (s 2 1), that approximates H*(U,Up) = H* (M, M -T), the coho-
mology with support onT.

2.2 Vassiliev complex

Define C%A) = 0 and for s > 1,
C’(A) =®R-a

the vector space generated by coorientable A-classes a of multi-singularities
of codimension s (precisely saying, it is defined as an inductive limit of
vector spaces generated by coorientable strata of codimension s in some
invariant Whitney stratifications of multi-jet spaces, cf. [28], [19]). The
coboundary 4 is defined by using versal unfoldings. C*(A) is regarded as
a submodule of E ‘;'0 by a simple identification

C'(A) c E}°, ar T(a).
The coboundary 8 : C*(A) - C**1(A) is induced from d;.

Definition 2.1 The cochain complex (C*(A), d) is called the local Vassiliev com-
plex for A-classification of multi-singularities.

The operator 8 : C5(A) — C**!(A) can explicitly be written down as
follows. Let @ € C5(A) and b € C**1(A). Take a versal deformation of b.
On the parameter space, the bifurcation diagram ‘¥(a) of type a is defined:
It is either empty or 1-dimensional semi-algebraic curves approaching the
origin. Count the incidence coefficient [a; b], defined by the algebraic inter-
section number of ¥(a) with a small oriented sphere centered at the origin:
Then da = Y [a; b] b, the sum taken over all generators b. An example is
shown in subsection 2.4 described below.

Remark 2.2 Notice that the Vassiliev complex is determined only by the local
classification of singularities. In fact, although there are possibly many connected
components in each I'(a) — 'y, they are regarded as just ‘one stratum’ in the
complex C(A). A more finer subcomplex, say an enriched Vassiliev complex,

Cs(A) € Ef°

41
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may be obtained by some additional ‘non-local’ data to C*(A). Some choices are
to input: the data of configurations of Sy, -+ , Sx on M at which a multi-signularity
occurs (when m = 1, these data are called cord-diagrams or weight systems), the
placement of the singular point locus in M (if m > 2), the topological types of
singular fibers (if m > n), and so on.

2.3 Local invariants for generic maps

There is a natural homomorphism, for s > 1,
H*(C(A))(= kerd) - E5° - EX — H' (M, M ~T) - H'(M).
In particular, if H'(M) = 0, we have H!(C(A)) - HYM -T).

Definition 2.3 A function v € H'(M —-T) is called a local invariant Sfor generic
maps if it comes from H!(C(A)) (cf. Goryunov [6]) . If we take some enriched
complex instead, then we say v is semi-local or enriched-local.

Local invariants should be “ Euler characteristic associated to stable objects "
which are determined only by local modifications and initial data, e.g.

- number of individual singular points, § ¥(f), or more generally,

Euler characteristics of singular point sets of several types y(Z(f)),

Euler characteristics of images x(f(M)), x(f(Z(f))), etc,

- Whitney index (rotation number), normal Euler numbers, Smale invari-
ants for generic immersions;

- total linking number for oriented links; Bennequin invariants for critical
value sets (a sort of linking numbers) ... ...

Some related works are listed below:

(m,n) object/singularities

(1,1) | functions on circle bundles Kazarian [13]

(1,2) | generic curves, wavefronts Arnold [2], [3], Aicardi [1]
(1,3) | knots and links Vassiliev [29]

(2,1) | Morse function/singular fibres  Saeki-T.Yamamoto [24]

(2,2) | generic maps Ohmoto-Aicardi [20]

(2,3) | generic maps Goryunov [6]

(2,4) | generic immersions and 2-knots Kamada [12], Habiro et al [16]
(3,2) | generic maps M.Yamamoto [30]

(3,3) | geneirc maps Oset-Sinha [22]

(3,4) | generic immersions Ekholm [8]

(3,5) | generic immersions Ekholm [8], Saeki-Szués-Takase [26]
(4,3) | generic maps/singular fibres Saeki (23], T.Yamamoto [31]




2.4 Examples of local invariants

e (m,n) =(1,2) (Arnold [2])
= Basic invariants J*, J~, St for generic immersed plane curves (Precisely
saying, St is not local in the above sense, but semi-local; J* are local).

o (mn)=Q2,4)

Codim. 0: immersions with transverse double pts (=generic immersion).
Codim. 1: A;-singularity, and tangency of two sheets.

Codim. 2: A,-singularity, and triple points

= Local invariants of generic immersion f : M? — R* are § of double
points d(f) and normal Euler number e(f).

e (m,n)=(2,3) (Goryunov [6])

Codim. 0: maps with Cross-cap and transverse double/ triple pts (=generic
maps).

Codim. 1: There are 12 types

= Local invariants of generic maps M? — R? are {§ of triple pts, § of
Cross-caps, and a new invariant (relating inverse self-tangency)

e (m,n) = (2,2) (Ohmoto-Aicardi [20], [18])
Codim. 0: maps with fold, cusps and double folds (=generic maps).

The apparent contour (= critical value set (discriminant)) of a generic map
M? — R? looks like

Codim. 1: there are 10 types a=LB, - ,C|of (multi-)germs: Here three
examples named by S, B, Ky are depicted below (These are coorientable: an
orientation of parameter is defined as the number of double pts (or cusps)
increases — from the picture on the left to the picture on the right).
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Codim. 2: there are 20 types 8 = I, II,II1,A%,- - - of (multi-)germs: The type
IIT has the following bifurcation diagram (2-parameter):

Then incidence coefficients [a; b] (b = III) are counted as follows:
[S;1IIN =2, [B;1II] =-2. [Ky;III] =-1.

The same computations for any a, b can be done, and then we have

0 —> Cl(Azn) = 210 —2> CU(Ayy) ~ 220 2

= rank H(C(A); Z) = 3 and local invariants (over R 3 ;l{) are generated
modulo constants by

Ac =2AI : § of cusps;
Ad = AL + ALy : # of double folds;
Av = A} - A2 + Al ;. projective Bennequin invariant.



Those generates local invariants of generic maps M? — R2. Further, note
that type B (beak-to-beak) can be separated into two types according to
how components of contour curves are mutually connected, that yields an
semi-local invariant, see Hacon-Mendes-Romero Fuster [10]:

Aly = Al - Aby + Aby ;. §f of components of critical set C(f).

Remark 2.4 The projective Bennequin number itself is an interesting invariant for
apparent contours. Although it is not easily computed, there is a nice algorithm of
Bellettini et al [4].

3 Finite type invariants of mappings

3.1 Finite type invariants of mappings: Global A-classification

Let M = C®°(M,N). For a = (@}, -+, a;) where all «; are of codimension 1,
a normal slice to I'(a) is denoted by

= . [—1, 1] - M, (tl’ U 9tk) g ':‘tl---tk’ =0 € rk

We define finite type invariants in a naive sense as follows. Let R be a
commutative ring.

Definition 3.1 A functionv : M—I" — Ris an invariant of order r if the following
equality holds for any k > r + 1 and for any k-parameter family =% having type
a=(ay, - ,a) withcodime; =1,

DlaavEs.)=0 ()

€

where the sum is taken over 2% combinations of ¢ = +1.

- Let V, denote the R-module generated by invariants of order r. By
definition, we have a filtration

VoCViC - C Ve :=UV,cH°(M-r).
r=0

Obviously Vy = H°(M), constant functions over connected components
of M. In a natural way, V., becomes a graded ring: the multiplication
Vr X V) = V41 is defined by viva(f) := vi(/)va(f) (f e M=T).
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Remark 3.2 In case of M = S! and N = R3, Vassiliev constructed a simplicial
resolution of I" in M X R™, and introduced a spectral sequence for the resolution
space, which produces {Vs}:‘;o of knot invariants (For simplicity, let the coefficient
ring R = Q). In our terminology there is some enriched Vassiliev complex so
that H*(C,,(A)) =~ V,/V,_; and ‘initial data’ (called an actuality table) gives an
inductive construction of an injective homomorphism H*(C,,(A)) — V; for each
§=0,1,2,---.

Theorem 3.3 Let (m, n) be in the nice range. Let the source manifold M be closed,
without boundary and of dimension m > 2. Assume that H (M) = 0 (for example,
N =R").

1. If m + 1 < n, any finite type invariants v : M —T — R are polynomials in
local invariants modulo constants, i.e.

V,/Vo = @, Sym* (Vi/Vy),  Vi/Vo = HY(C(A)).

2. If m+1 = n, finite type invariants v : M - T — R, whose value do not
change along any “non-transverse strata” in T', are polynomials in local
invariants modulo constants.

Theorem says that the above naive definition is somehow irrelevant for
generic maps with source dimension greater than 1. A similar statement as
the claim 1 in Theorem has already been known in particular dimension:
n = 2m (Kamada [12), Januszkiewicz-Swiatkowski [11]) and n = 2m—1 (m >
4) (Ekholm [9]).

Sketch of the proof. Let a = (ay,- -+ , @) where codima; = 1, and recall

I'(a) = ﬂ I'(e)) :={ f € I's | f has multi-singularities of type a }.

o The self-transverse locus U(a) is irreducible, that is, any f,g € T'(a) — g4
can be joined by some generic path y in I'(a): y(0) = f, y(1) = g.

This is because m > 2 and M is connected. (Remark that the case of m = 1
is completely different: I'(a) has many irred. components labeled by ‘non-
local’ data called cord-diagrams.)

o If m+1 < n, y meets only self-transverse loci I'(a) N T'(B) for B of codi-
mension 1.

Roughly saying, codimension one invariant cycles Y a;3; in I'(a) are de-
termined by the same type coherent system for local invariants, and an
estimate about the dimension of invariants of order s leads us to conclude
the assertion stated in the theorem.




e Ifm+1 > n y also meets ‘non-transverse loci’ T(a) N T(B) for B of
codimension 2. For example, in case of m = n = 2, there is a self-tangency
locus T(B) nT(LV) (a = (B), B = AV)):

When our curve y(#) (red sheet) passes through the beaks point, our invari-
ant v may change. In order to define ‘non trivial higher order’ Vassiliev-
type invariants, we can not ignore these kinds of jumps of invariants.

3.2 Finite type invariants for closed n-folds : Global K-classification

Recall the classical Thom-Pontjagin construction. Let M be a compact ori-
ented n-manifold, and embed it in R™*¢ (£ > n): The classifying map of
the normal bundle of rank £ is p : M — B where B := BSO(f) is the
Grassmanian of oriented ¢-planes in R%; it is naturally extended to a map
preserving base points to the Thom space N¢ := MS o(%)):

f:Sn+f-->Ne, f(po) = o0 € Ng.
Take p to be generic: fis transverse to Band M = f“(B).

classifying
map

embedding
SRR
re ™ o e N .
g Sy Thom-Pontrjagin Construction
}M JA8

e, gixd
R
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The cobordism group of oriented n-manifolds is
Qi(n) = o Jim C=(S™, NeYpase) = m0(2™ Neo).
We put

M= C=(S" Nedbase» B:=BSO(E)CNe (£ 0)

Note that M - T is the space of closed oriented #-mfds (see R. Thom, sec-
tion 3 in [27]). It follows from Theorem 1.7 that there is a Kp-invariant
stratification L

MoI'=IoIho---.

A global version of Martinet’s versality theorem is stated as follows (Kazar-

ian [15]): Lete : $™* x M = N¢ be the evaluation map e(p, f) := f(p), and
denote by np the restriction to e '(B) of the projection to the second factor

M. Then, we may regard np as the “universal C* stable map", and I' as
the “discriminant set of 75"

oMP — o Y(B) ¢ S™EX M- N,

! ;l;.””’
PP — M

In fact, any C*-structural stable maps Q@ — P with dimQ - dimP = n can
be obtained as a fiber product of 7p and a smooth map P — M transverse
to I' (uniquely up to isotopies).

Universal family

Mapping space

Let M be a connected component of M. Note that H(M ~T) classifies
all compact oriented n-manifolds belonging 10 a fixed cobordism class”.

Remark 3.4
The set of diffeomorphism types of compact n-dimensional C*-manifolds is at
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most countable (classical, Milnor etc).
(2) The ‘null-cobordant’ component in M is

Mo = C2(S™, S Vpase, B={0)c St ¢>0.

Note Q"i(1) = Q°7(2) = Q°7(3) = 0. So, in these cases, M = Mo.

(n = 1) Saeki [23] introduced a cochain complex for topological types of singular
fibre, which is equivalent to a (enriched) Vassiliev complex for Kp-inv. filtration
of T.

(n = 3) Sirokova [25] dealt with “the space of closed ori. 3-mfds”.

Remark 3.5
HT; - I’2 consists of maps f having one Morse singularity A; on f~ 1(B), ie., a
handle surgery: for 0 < k < [”“],

. 2 2 2
Al,k'(xl"" axn+l’z)'_)(_x%—“°—xk+xk+] +'“+xn+1$z)-

This is coorientable, except for n odd, k = ["”]

2) T, — T3 consists of maps f having either of two Morse singularities, or - one
Aj-singularity (=cancelation of surgeries) *

. 2
Agk 1 (X1, Xna L1 ) P> (O + X £ X5 £ - 2 X, 1,9, D).

Az
Al k+1 - Al,k
> el

3) The ‘self-tangential locus’ belongs to f’g.
Naive finite type invariants are defined in the same way as before:

Definition 3.6 A locally constant functionv : M -T>RR being a commutative

ring) is of order r if
A}
Z €1 g V(E¢g) =0
€

for any k-tuple self-intersection (k > r + 1), i.e., any connected components of
Ti @k - The1-

Theorem 3.7 (Folklore)

1) In case of n even, finite type invariants are generated only by the Euler charac-
teristics y : M — T2 f - x(f~1(B)), modulo constants.

2) In case of n (> 1) odd, finite type invariants are generated only by the semi-
Euler characteristics y, : M — T Zs, f V> x2(f~1(B)), modulo constants.
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This is almost trivial and well-known perhaps. The proof is the same
as before: the locus T'(a) is irreducible for any a = (A1 x,, -+ ,A1x,), that means
that the above naive definition allows us to forget any information about
glueing maps of a specified surgery of type a.

Remark 3.8 In particular, Betti number functions f > by(f~1(B)) are not finite
type invariants in the naive sense.

Any n-tuple self-intersection of this type has non-zero values.

In order to keep the information of glueing maps of surgeries, we need
more restrictions, i.e., not to be allowed to make other surgeries freely. A
way to make such a restriction is to consider smaller mapping space: For
instance, take an open subset of M with fixed Betti numbers, e.g., the space of
homology spheres. That is the case as the theory of finite type invariants for
homology 3-spheres (Ohtsuki [21]) and its generalization (Cochran-Melvin
[5]).

Let Mzys be the space of Z-homology 3-sphere

Mzrs € M = C®(S**, 8 page-

A codimension 1 stratum of i:(Al,z) in Mpys corresponds to the Dehn
surgery along a framed knot with framing coefficient +1.

The self-transverse locus I'(@) —T 441 in Mzus has quite many connected
components, each of which is labeled by an ‘algebraically split’ framed
link. Further, many components become coorientable.

The picture below dipicts strata adjacent to the stratum labeled by the
Borromean link (a component of the triple-point locus f(AlAlAl) of the
discriminant T in Mzus). White walls (labeled by the trivial knot) are
non-coorientable; On the other hand, colored walls (labeled by the trefoil
knot) form a coorientable cycle in Mzgs, which distinguishes the Poincaré
3-fold from the standard 3-sphere $°>.



B p-e
> 7
&D

// A double pt locus
doubje pt locus / / - —_— +
triple pt locus { Q) K ( Q) +1 L

4 Characteristic classes for fiber bundles

Let M be a compact, connected oriented manifold. We regard the affine
space M = C*(M, R¢) as a representation of the diffeomorphism group G =
Diff M.

First, recall the classifying space of the topological group G = Diff M of
orientation preserving diffeomorphisms. If n is quite high, C*(M,R%)-T =
Emb(M, R%), the space of all embeddings of M in R’. Sending ¢ — oo, we
may identify the classifying space of G with the topological quotient

BDiff M = Emb(M, R*)/Diff M.

Denote it by BG for short and put EG = Emb(M,R*). Since EG is highly
connected, the canonical map EG — BG gives the universal principal bun-
dle for the group G. Let BM := (EGxM)/G, the associated bundle with fibre
M, then any smooth fiber bundle E — B (B paracompact), with fiber M and
structure group G = Diff M, can be obtained, up to isomorphisms, from the
universal bundle BM — BG via the classifying map p : B — BG. Any ele-
ment of H*(BG) is called a universal G-characteristic class: G-characteristic
classes of E — B are defined by their p*-image in H*(B).

Now think of the composition of an embedding of M and a fixed ‘pro-
jection” onto R” for some small 7,

incl

M — R®%

N

]Rn
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Then the map must admit unavoidable (structurally stable) singularities
and by using these data let us try to characterize the topology of M, that
was an idea of R. Thom.

So we put M = C*(M,R") and BM — BG to be the associated bundle
with fibre M. Now M is a contractible space, hence the Borel cohomology
H (M) := H*(BM) is isomorphic to Hg(pf) = H*(BG).

The Vassiliev complex has much meanings in this equivarant setting:
We then have (under assumption N = R"),

H*(C(A) - EX —» HE(M) ~ H*(BG).

We denote by Tp. € H*(BG) the G-characteristic class associated to a cocy-
cle ¢ = 3 Aa; € C°(A). In fact, it holds (Kazarian [14]) that Tp, is written
as a universal polynomial in the relative Novikov-Landweber classes

7ucl(Tx) = w1l (Ta) -+ - B (T)

where T, is the relative tangent bundle of 7 : E — B (see below) and c!
means Pontrjagin class, Euler class (with rational coefficients) or Stiefel-
Whitney class (coefficients in Z,). This means the following: Suppose that
we are given a fiber bundle  : E — B with fiber M over a manifold B and
a smooth map f : E — R” over the total space of the bundle.

E+f+R" = BM
| e
B B—TBG

To any multi-singularity type a and appropriately generic f : E — R”,
we associate the bifurcation locus Bq(f) (C B), which is a locally closed
submanifold consisting of points » € B over which the map f;, : Ep =~
M — R" admits the multi-singularity of type a at some finite points of Ej,.
Given a Vassiliev cocylce ¢ := } 4;a; € C*(A) and a generic f, we define
the bifurcation cycle Bc(f) to be the geometric cycle 3 4;Bq,(f) in B: It is a
geometric presentation of the G-characteristic class

Dual [B.(f)] = p’T pc.

Here n should be reasonably small: For if we take n to oo, cocycles of BG
live in M-T.

Thus interesting problems from this singularity approach would be:
- Find the precise forms of universal polynomials Tp. for given classes



[c] € H*(C(A)),

- Find nontrivial relations among those G-characteristic classes Tp.’s,

- Find elements in H*(C(A)) representing torsion parts of G-characteristic
classes (as geometric realization), etc.

Example 4.1 For example, in case that M is oriented circle S,
H'(BS') = H'(BU()) = Zei]

where c| is the first Chern class of complex line bundles. In [13] Kazarian observed
that the class c| can be realized by some bifurcation locus of functions E — R or
maps E — R? over total space E of S !-bundles (Also, for a classification of singu-
larities of bifurcation loci, he computed the corresponding universal polynomials
in c;). But if one takes R as the target space, ¢ can not be realized by any bifur-
cation points, i.e., ¢ lives in the space of knots (embeddings).

Example 4.2 Recall that for an oriented C*-surface bundle 7 : E — B with fibre a
closed oriented surface M, the r-th Morita-Miller-Munford class e,(E) € H*' (B, Z)
is defined to be the pushforward 7,e(T,)"*! where T, is the relative tangent bundle
over the total space E and e(T,) € H%(E;Z) is the Euler class. It is obvious that
the MMM class e,(E) is realized by the Z2-bifurcation locus of generic maps E —
R™! (r 2 1), where X2 means singularities ¢ : R2,0 — R™*!, 0 of dimkerdyp = 2:

[B2(N)] = 7. [Z2()] = mee(T ® Fre™) = me(T)™! = e,(E).

In case of generic maps f : E — R? (ie., r = 1) with dim B = 2, By2(f) consists
of discrete points b in B, over which there is a point p € Ej, such that the germ
E,p — R? of f at p is A-equivalent to

Ly +1hy : (2 £y + x> + ay, xy + bx)

where x, y are local coordinates of fibre and a, b are local coordinates of B (=de-
formation parameters). As another example, there is a work by Saeki- Yamamoto
[24] which shows that e)(E) is realized by the codimension 2 bifurcation locus
corresponding to a special topological type of singular fiber of generic functions
f + E = R: The singular fiber consists of 3 circle components each two of which
meet at 2 nodal points.
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