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v OPERATIONS IN K-THEORY AND EXISTENCE OF
SINGULAR MAPS

BOLDIZSAR KALMAR AND TAMAS TERPAI

ABSTRACT. We introduce new obstructions to the existence of fold maps with ori-
entable cokernel bundle by relating K-theory and the + operation of Grothendieck
[Ati61] to the h-principle of Ando [And04]. We compute these obstructions for
fold maps of the projective spaces.

1. INTRODUCTION

For n > k > 0, let M™ and Q™" * be a smooth closed n-dimensional and a
smooth (n — k)-dimensional manifold, respectively. We call a smooth map from M
to @ a corank 1 map if the rank of its differential is not less than n — k — 1 at any
point of M. For a corank 1 map f: M — Q@ let ¥ denote the set of singular points
in M.

A basic example of a corank 1 map is a smooth map M — @ with only Morse
type singularities, that is a fold map. Note that the restriction f|y; is an immersion
if f is a fold map.

Ando’s h-priciple [And04] states that there exists a fold map f: M — @ such
that the immerison f|y is coorientable if and only if there exists a fiberwise epi-
morphism TM & e! — TQ, also see [Sae92]. Note that in the case of even k the
immersion f|y; is always coorientable.

We call a corank 1 map f: M — @Q tame if the 1-dimensional cokernel bundle
coker df |5 of the restriction df|y: TM|x — f*TQ is trivial. For example, every
fold map is tame for k =0 mod 2 [And04] and it is easy to construct not tame fold
maps for odd £ < n — 3, even between orientable manifolds.

Ando’s h-priciple [And04] enables us to reduce the problem of the existence of
tame fold maps (and more generally tame corank 1 maps) to the existence of n — k
linearly independent sections of TM @ e! if Q is stably parallelizable.

If such a partial framing exists, then clearly the Stiefel- Whitney classes w;(T"M)
vanish for ¢ > k + 2. Hence we obtain the following easy

Proposition 1.1. Let n+1 = 2P°m, where m > 1 is odd. There is no tame corank
1 map from RP™ to any stably parallelizable Q% if 2P(m — 1) > k + 2.
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However, the tangential Stiefel- Whitney and Pontryagin classes of RP?"~! van-
ish, thus in order to obtain obstructions in this case, we need something else. By
applying K-theory and following [Ati61], we obtain

Proposition 1.2. If M™ admits a tame corank 1 map into a stably parallelizable
Q™*, then 4*([TM] — [€"]) = 0 for i > k+2.

Here <y denotes the 7 operation in real K-theory, see [Ati61]. Proposition 1.2
can be useful if the higher tangential Stiefel-Whitney and Pontryagin classes of M
vanish. For example, we obtain

Corollary 1.3. Let n > 4, 2"1 — 208" > k4 2 and Q stably parallelizable.

(1) RP?"! admits no fold map into Q¥ ~17% if k is even,

(2) RP?T'! admits no fold map with orientable singular set into Q¥"~1-% if k is
odd.

However, by using much sophisticated and deeper results of Atiyah, Bott and
Shapiro [ABS64] and Steer [Ste67], which determine the geometric dimensions of
the tangent bundles of the projective spaces, we have the stronger

Proposition 1.4. There ezxists a tame corank 1 map from the projective space FP"
into an (n— k)-dimensional stably parallelizable manifold if and only if (n+1)d(F)—
q(n+ 1,F) < k+ 1, where d(F) denotes the dimension over R of the (skew) field
F € {R,C,H} and g(n+1,F) denotes the Radon- Hurwitz number associated to n+1
and F.

2. RESULTS

Let M™ and Q™ * be a closed n-manifold and an (n—k)-manifold, respectively.
For a finite CW-complex X, Kg(X) and Kg(X) denote the reduced and unreduced
real K-rings of X, respectively, with I?R(X ) € Kr(X). Recall that for a finite CW-
complex X the geometric dimension g.dim(z) of an element z € Kg(X) is the
least integer k such that z +k is a class of a genuine vector bundle over X (see e.g.
[Ati61]).

Similarly to [And04}, we have

Proposition 2.1. The following are equivalent:

(1) M admits a tame corank 1 map into Q,

(2) there is a.fiberwise epimorphism TM @ e* — TQ.

If Q 1s stably parallelizable, then (1) and (2) hold if and only if g.dim([TM]—[e"]) <
k+1.

For a finite CW-complex X, let A, = 3~ A't*, where \* are the exterior power
operators (for details, see [Ati61]). Define vy, = > ;o) 7't' to be the homomorphism
A¢j1—¢ of Kr(X) into the multiplicative group of formal power series in ¢t with
coefficients in Kg(X) and constant term 1. By the above proposition and [Ati61,
Proposition 2.3], we immediately have
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Corollary 2.2. ! If M admits a tame corank 1 map into a stably parallelizable Q,
then

(1) wi(TM) =0 fori>k+2,

(2) pi(TM) =0 for 21 > k+1,

(3) Y ([TM]—[e"])) =0 fori>k+2.

Remark 2.3. Note that the conditions (1) and (2) may not give strong results in
general: for example, all the positive degree Stiefel-Whitney and Pontryagin classes
of RP?"~! vanish?, and if k¥ + 1 > n/2, then condition (2) is satisfied trivially for
any M. In particular cases, though, condition (1) can still give strong results, e.g.
all Stiefel-Whitney classes of RP?"~% of degree up to 2" — 2 are non-zero.

For an integer s let 2F() be the maximal power of 2 that divides s, and define
k(n) = max{0 < s < 2"7! : s — R(s) < 2! — n}. By using Corollary 2.2 (3) and
following a similar argument to [Ati61], we obtain the following:

Proposition 2.4. For n > 4, RP¥ ! does not admit tame corank 1 map into any
stably parallelizable Q¥ ~17*% for k < k(n) — 2.

Remark 2.5. Obviously sq = 271 — gmin{rr+27>n} gatisfies sy +n — R(so) < 2"71,
thus s¢ < x(n) and we obtain that RP?"~! admits no fold map with orientable sin-
gular set into R2" #2745 g5 n > 4 and j > 1. Also, since min{r : 7+2" >
n} < [log,n], the same conclusion holds in the case of the target R2"H 4208245
for n > 4 and j > 1. For example, there exists neither a fold map from RP*! to
R24+% for 0 < j < 5 nor a fold map with orientable singular set from RP3! to
R?2+% for 0 < j < 4.

Remark 2.6. However, we have stronger results about maps of the projective spaces
that follow immediately from Proposition 2.1 and [Ste67], which determines the
geometric dimensions of the tangent bundles of projective spaces in terms of Radon-
Hurwitz numbers.

Proof of Proposition 2.1. (2) = (1): By [And04], if there is a TM ® ¢! — TQ
epimorphism, then there is a fold map M — @ with orientable singular set. (1)
= (2): Assume that we have a tame corank 1 map f: M — Q. The bundle
coker df|y, = (f*TQ/f*df (TM))]y is considered as a subbundle of f*T'Q and it is
trivial. Similarly to [And04, Proof of Lemma 3.1], let L: ¢! — T'Q be an extension
of the bundle monomorphism cokerdf|s — f*TQ — TQ as a bundle homomor-
phism covering f. Then df + L is an epimorphism TM @ ! — TQ.

Finally, if (1) or (2) holds and @ is stably parallelizable, then by the above,
we have TM @ el @ eV 2 (@ f\TQ®eN = ¢ ® eVt F for some N > 0 and a
(k + 1)-dimensional bundle ¢. Thus g.dim([TM] — [e"]) < k+ 1.

1Compare with [Ati61, Proposition 3.2).

2We have w(TRP?"-1) = (1 4 2)?" =1 € Zy[x]/2?" = H*(RP? ~1;Z;), where z denotes the
generator of H'(RP%'~1;Z,). The natural homomorphism H*(RP?"~1;Z) — H*(RP? ~1;Z,)
is an isomorphism for all positive even s. Our claim follows by applying the fact that p; = w;
mod 2.
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If Q is stably parallelizable and g.dim([TM]—[e"]) < k41, then TM @M =
(Ll @ gN4n—k-1 o ¢kl @y TQ @ eN-1 for some N > 0, and thus TM @ el =
¢k @ TQ, which proves (2). O

Proof of Proposition 2.4. Let ¢(n) denote the cardinality of the set {0 < s < n:
s=0,1,2,4 mod 8}. By [Ati61, §5], [TRP"] — [e"] = (n+ 1)z and +*([TRP"] -
[*]) = 271("*")z, i > 1, where z denotes the generator of Kp(RP™) = Zypen).
Therefore +*([TRP™) — [¢]) = 0 if and only if 2¢® divides 2¢-("!). Let r(n)
denote the greatest integer s for which 2"1(":”) is not divisible by 29", Then
by Proposition 2.1 there is no tame corank 1 map of RP?"~! into R?"-1-* for
k< r(2"—-1)—2. It is easy to see that (2" —1) =2""1—-1ifn > 3. By a
classical result of E. Kummer, the highest power c(s) of 2 which divides (2:) can
be obtained by counting the number of carries when s and 2" — s are added in base
2. For s < 2™ — 1, we claim that ¢(s) = n — R(s), where 28 is the maximal
power of 2 which divides s. Indeed, 2" — 1 — s is obtained by negating the binary
form of s bitwise, hence 2" — s is obtained by negating the binary form of s bitwise
from the (n — 1)st to the R(s)th binary position, where both of s and 2" — s have
the digit 1, and after that position both have digits 0. Therefore when we add s
and 2" — s in base 2, we have n — R(s) carries. By the definition of 7(n) it follows
that (2" — 1) is the largest integer s for which s+ n — R(s) < 21, O

When n is not a power of 2, we have the following easy results for RP™!.

Proposition 2.7. Let n = 2Pm, where m > 1 is odd . Then (J3) is odd. Hence
’U)2D(m_1) (TRPTI—I) 7—‘- 0.

Proof. 1t is obvious from [Gla99], details are left to the reader. O
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