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1 Introduction

A subriemannian structure on a manifold M is a pair (D, g) such that D is a
smooth distribution on M and g is a riemannian metric on D. A subrieman-
nian manifold is a triple (M, D, g) such that M is a manifold and (D, g) is a
subriemannian structure on M. In particular, if D = TM then (M, D, g) is
nothing but a riemannian manifold (M, g).

Riemannian geometry tells us that a minimizer (i.e., a shortest path) be-
tween two points of a riemannian manifold (M, g) is a geodesic, provided
that the curve is parametrized by arc-length, and the geodesics are charac-
terized to be the curves satisfying the geodesic equation expressed in local
coordinates as:

'+ Y [hali* =0,

where I‘;k denotes the Christoffel symbol. Conversely, every geodesic is lo-
cally length minimizing.

In the formulation of symplectic geometry, the geodesics z(t) are the
projections to the base manifold M of the integral curves (z(t), p(t)) of the
Hamiltonian vector field E') defined on the cotangent bundle T* M, where E
is the energy function associated to the metric g.

Now in subriemannian geometry, it is also of fundamental importance to
study minimizers between two points of a subriemannian manifold (M, D, g).
Since the metric g is defined only on the subbundle D of TM in this subrie-

mannian case, there is no canonical means to define the length of a general



curve v : [a,b] — M. But we can well speak of the length of v if v is an
integral curve of D, that is, if ¥(t) € D,y for all ¢.

On the other hand Chow’s theorem tells that if M is connected and if D
is nonholonomic (in other word, bracket-generating), then any two points of
M can be joined by a piecewise smooth integral curve of D.

Hence, especially for a nonholonomic subriemannian manifold (M, D, g),
it makes sense and is important to study the minimizers (length minimizing
piecewise smooth integral curves) between two points of the subriemannian
manifold (M, D, g). However, contrary to the riemannian case, this problem
is very subtle, mainly because the space Cp(p, q) of all integral curves of D
joining p and q may have singularities, while the space C(p, q) of all curves
joining p and q has no singularity and is a smooth infinite dimensional man-
ifold, which makes difficult to apply directly the method of variation to the
subriemannian case.

For a subriemannian manifold (M, D, g) we define a normal biextremal

to be an integral curve of the Hamiltonian vector field B associated to the
Hamiltonian function £ : T*M — R, where E is the energy function associ-
ated with the subriemannian metric g. We then define a normal extremal
to be the projection to M of a normal biextremal. Then, as in riemannian
geometry, a normal extremal is locally a minimizer.

However, R. Montgomery ([5], [6]) and I. Kupka [3] discovered that there
exists a minimizer which is not a normal extremal, and hence called it ab-
normal. The appearance of abnormal minimizers is a surprising phenomenon
never arising in riemannian geometry but peculiar to subriemannian geome-
try.

If D is a distribution on M, then the annihilator bundle D+, considered
as a submanifold of the symplectic manifold T* M, carries a (singular) charac-
teristic distribution Ch(D<1). An integral curve of this characteristic system
Ch(D%) contained in D+\{zero section} is called an abnormal bieztremal, of
which the projection to M is called an abnormal extremal.

A rigorous application of the Pontryagin Maximum Principle of Optimal
Control Theory to subriemannian geometry shows that a minimizer of sub-
riemannian manifold (M, D, g) is either a normal extremal of (D, g) or an
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abnormal extremal of D.

This settled the long discussions that had been made until 1990’s by many
mathematicians with erroneous statements, and gave a right way to treat the
problem of length-minimizing paths in subriemannian geometry.

In this paper we will give a survey on the problem of length-minimizing
paths mainly following Liu and Sussmann [4]. We then consider this problem
in a concrete case of the standard Cartan distribution. Referring to (8], we
will carry out detailed computation of extremals, which will well illustrate
how normal and abnormal extremals appear in subriemannian geometry.

2 Nonholonomic distributions

Let M be a differentiable manifold. A subbudle D of its tangent bundle T M
of M of rank r is alternatively called a distribution on M of dimension r, since
it gives a law which assigns to every point p € M an r-dimensional subspace
D, of the tangent space T,M. A section of D on an openset U C M is a
local vector field X defined on U such that X, € D, for all p € U. A local
basis of D on U is a system of sections X3,..., X, of D defined on U such
that {(X1)p,...,(Xr)p} forms a basis of D, for all p € U. It is clear that for
any point pp € M there is an local basis of D defined on a neighbourhood of
po- If {X1,...,X,} is a local basis of D on U, then any section X of D on
U is uniquely written:

X=f1X1+"'+err

with some functions f,..., f, on U, and we say that D is locally generated,
or defined, by X;,..., X,.

Let D+ denotes the annihilators of D, that is, D = |J D} with
pEM

Dy = {a € TyM;{a,v) = 0 for all v € D,}.
Clealy D' is a subbundle of the cotangent bundle T*M of rank s, where

s=dimM—r. If {w!,...,w*} is a local basis of D1, we say that D is locally
defined by the Pfaff system {w?,...,w"} or by the Pfaff equations:

W= =w =0



In this sense, a distribution is also called a differential system or a Pfaff
system.

Given an r-dimensional distribution D on M, one of the most important
problems that has been studied since the nineteenth century is to study
integral manifolds of D. An immersed submanifold f : S — M is called an
integral manifold of D if

f*TSS C Df(s) forallse S.

Evidently the dimension of an integral manifold is < r. However, it is not

always the case that there exists an r-dimensional integral manifold.

Definition 1 A distribution D of dimensionr on M is called completely in-
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tegrable if about every point py € M there is a coordinate system (U, (z!,...,z"))

such that all the submanifolds of U given by "' = const, z"*? = const, ...,

2™ = const are integral manifolds of D.

As is well-known, the Frobenius theorem gives a criterion for D to be
completely integrable:

Theorem 1 (Frobenius) A distribution D on M is completely integrable
if and only if D is involutive, that is, D satisfies the condition: “For any
open set U C M, the Lie bracket [X,Y] of sections X,Y of D on U is also
a section of D.” Moreover, if D is completely integrable then the manifold

M is a disjoint union | JLy of the mazimal connected r-dimensional integral

A
manifolds Ly of D, each Ly being called a leaf of D.

The problem of finding integral manifolds of distributions which are not
completely integrable are treated by Cartan-Kahler theory.

Now let us proceed to consider integral curves of D. In order to well
analyse the length functional we had better expand the class of curves to
consider to that of the absolutely continuous curves: A continuous curve
v : I — M, I being an interval [a, b] of R, is absolutely continuous if it has a
derivative for almost all ¢, and if in any coordinate system the components of
this derivative are measurable functions. We then define an integrable curve
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of D to be an absolutely continuous curve y : I — M such that ¥ € D, for
almost all £ € I. An integral curve of D is also called integral path, D-arc,
or horizontal curve.

If {X3,...,X;} is a local basis of D defined on an open set U C M, then
a curve y : I — U is an integral curve of D if

(%) ¥(t) = () ( X1y + - + () (Xr)y)

for some functions c;(t), ..., ¢,(t). Conversely if the function c,(t),...,c.(¢)
are assigned then the curve «(t) is determined by the ordinary differential
equation (). In control theory c,,...,c, are interpreted as control parame-
ters and D (or X,...,X,) is regarded as a control system.

If two points p,q € M can be joined by an integral curve of D, we say
that q is reachable from p, If D is completely integrable then the set of all
points reachable from p is the leaf passing through p.

Let us now introduce a class of distributions which are in a sense at the
opposite end from the completely integrable distributions.

Definition 2 A distribution D on M 1is called nonholonomic or bracket-
generating if for any local basis X,,...,X, of D on U the collection of all
vector fields {X;, [Xi, X, [Xi, [X;j, Xk]),- ..} generated by Lie brackets of the
X; spans the whole tangent bundle TU.

This definition can be rephrased as follows: Let D denote the sheaf of
germs of section of D. Define the sheaves {D*},>; inductively by setting
first D! = D and then

D! = DF + [DL,D¥] (k>1).

Then D is completely integrable if D' = D?, and nonholonomic if |JD* =
TM.

The following theorem of Chow (2] is fundamental.

Theorem 2 (Chow) Let M be a connected manifold and D a nonholonomic
distribution on M, then there exists for any two points p,q € M a piecewise
smooth integral curve by which p and q can be joined.

A detailed proof can be also found in [11], or in [7].



3 Subriemannian distance

If (M, D, g) is a subriemannian manifold, and p € M, v € D,,, we define the
length ||v||g of v by
1
lvllg = gp(v,v)?

If v: [a,b] — M is an integral curve of D, then we define the length of v by

b
Il = | Wrto)lsde.

If v is not an integral curve, we agree to define ||y||; = +00. We then define
a function dy : M x M — R U {oo} by

dg(p, q) = inf{||l7llg; Oy = (. 9)},

where we denote 0y = (y(a),y(b)).

If M is connected and D is bracket-generating, then dg : M x M — R
is a metric function on M and the topology on M that the metric deter-
mines coincides with the original manifold topology of M. The first asser-
tion follows from Chow’s theorem and the second assertion follows from the
Ball-Box Theorem ([9], See p.29 ). The distance dy : M x M — R is called
subriemannian distance or Carnot-Caratheodory metric.

If an integral curve v : [a,b] — M of D satisfies

dg(v(a),v(8)) = 17llg,

«v is called a minimizer. Concerning minimizers, here we cite the following.

two theorems ([7], p.10 ):

Theorem 3 (Local existence) If D is a nonholonomic distribution on a
manifold M, then any point p of M is contained in a neighbourhood U such
that every q in U can be connected to p by a minimimizer.

Theorem 4 (Global Existence) Let M be a connected manifold and D a
nonholonomic smooth distribution on M, and suppose that M is complete
relative to the subriemannian distance function. Then any two points of M
can be joined by a minimizer.
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4 Hamiltonian formalism

If M is a manifold and k € {0,1,---,} U {00}, we use C*(M) to denote the
set of all real-valued functions on M that are class C*, and V*(M) to denote
the set of all vector fields of class C* on M.

If N is a symplectic manifold with symplectic 2-form Q, and H € C*(N),
we use H to denote the Hamiltonian vector field associated to H. H is
the vector field V on N such that Q(X,V) = (dH, X) for every vector field
X on N. If H € C¥(N) and k > 1, then vector field H is of class C*1. If
H,K € C*(N), then the Poisson bracket { H, K} is the directional derivative
of K in the direction of —ﬁ, ie.,

(H,K} = (dK,H) = Q(H, K).
The we have the following formulas
{H,KL} ={H,K}L+ {H,L}K,

{H’ {K’ L}} + {K’ {L’H}} + {La {H’K}} =0,

and
—_ = —
HK=HK+KH.
Note also the fact that the map H — H is a Lie algebra homomorphism
from (C*(N),{,}) to (V=(N),[,])-
The cotangent bundle T*M of a manifold M has a natural symplectic

structure determined by the 2-form Qs = dw)s, where wys is the Liouville
form given by

wrr(2, \)(©) = (A, dny(v)  for v € Ty (T™M),

73, being the projection T*M — M. Relative to a coordinate chart T"x =
(z1,...,2™ )\1,..., ) induced by a chart k = (z!,...,2") on M, we have
the formulas

Wy = Z /\jda:j,
J

Qu =Y d)j A dz;,
J
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H = Z (6)\] 8:53 B 89:,- 8)\,) !

J
OHOK OHOK
{H, K} = XJ: (ax,. dz; Oz; aAj) '

To each vector field X on M we associated the function Hy : T*M — R
given by

Hx(g,)) = (A, X(q)) for A e T /M.
Then Hy is of class C* if and only if X is. Moreover,
drt (H x(z,))) = X(z) for all (z,)) € T*M

The identify
{Hx,Hy} = Hixy]

holds for X,Y € V!(M), and therefore the map X — Hx is a Lie algebra
homomorphism from (V=°(M),[,]) to (C®(N),{, }).

If X € V(M) then the vector field ﬁ x is called the Hamiltonian lift
of X.

5 Normal éxtremals

Let (M, D, g) be a subriemannian manifold. If (p,\) € T*M, then the re-
striction A|p, of A to the subspace D, of T,M has well-defined norm, since

D, is an inner product space. We will use ||\||; to denote this norm. The
function E : T*M — R given by

1
B(z, ) = —5 A2
is the energy function of the subriemannian structure (D, g).

Definition 3 A normal biextremal of a subriemannian structure (D, g) is a
curve I' : I — T*M such that

e 4
(i) T is an integral curve of the Hamiltonian vector field E, namely

. —
['(t) = Erg
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(i) E does not vanish along T'.

A normal extremal is a curve in M which is a projection of a normal
biextremal.

Theorem 5 Let (M, D, g) be a subriemannian manifold. Then every normal
extremal is locally length minimizing.

This theorem is non-trivial, but the proof is similar to that of rieman-
nian case. However, contrary to the riemannian case, the converse of the
theorem does not hold. There appeared several papers asserting that every
minimizer of a subriemannian manifold is a normal extremal. But Kupka [3]
and Montgomery [5] proved that there exists a subriemannian manifold and
a minimizer of the subriemannian manifold which is not a normal extremal.
Such a minimizer is called an abnormal minimizer. In the following sections

we will give a characterization of the abnormal minimizers.

6 Characteristic system

Let (N,2) be a symplectic manifold. For a submanifold S of N we define
the characteristic system (bundle) Ch(S) of by

Ch(S) = TSN (TS)*,
that is, the fibre Ch(S); on s € S is given by
Ch(S)s = T.S N (T:9)1,

where

(T:S)t = {v € T,N;Q(v,u) = 0 for all u € TsS}.

Let Fi,..., F, be local defining equations of S, say, defined on a neigh-
bourhood U of sq € S such that (dFy)s,...,(dF})s are linearly independent
for s € U and

UnS={F=-.--=F =0}

164



From the very definition of Hamiltonian vector field we see immediately that
—
{(F1)sy---, (P_‘:),} forms a basis of (T;9)* for s € U. Hence we have

— —
Ch(9)s = TS N{(F1)sy-- -, (Fr)s)-
Let Qg = 150, where ts: S — N is the canonical inclusion, and let:
Null,(Qs) = {v € T,S;Qs(v,u) = 0 for all u € T,S}.

Then it is clear that
Ch(S)s = Null,(Q2g).

We then have:

Proposition 1 For a submanifold S of a symplectic manifold (N,2), the
characteristic system Ch(S) = QSCh(S)s C TS is given by:

Ch(S)s = TSN (T:9)*
= (TS)N{((F)er---, (Fi)s)
= Null,(Qs)

If dim Ch(S), is constant, then Ch(S) is a completely integrable subbundle
of TS.

The last assertion of the proposition follows from the exactness of the
symplectic form.

7 Abnormal extremals

Let (M, D, g) be a subriemannian manifold. We denote by D* the annihilator
bundle of D and by Ch(D%) its characteristic system.

Definition 4 An abnormal biextremal of (M,D,g) is an curve I' : I —
DA\{O} (O denoting the zero section) such that T'(t) € Ch(D )y for al-
most all t € I. An abnormal extremal of (M, D, g) is a curve in M which is
a projection of an abnormal biextremal.
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It should be remark that the above definition does not depend on the
metric g but depends only on (M, D).

If {X3,...,X,}isalocal basis of D definedon U C M, then Hx,, ..., Hx,
give defining equations of D' on 7},U. Hence by Proposition 5 , we have

Ch(DY), = T.D* N ((Hxy)z - - - (Hx,)s)-

Therefore a curve T' : I — (m},)"1U\{O} is an abnormal biextremal of
(M, D) if and only if

(i) Hx,(I'(t)) =0 forallte Jandi=1,...,r
. — —
(ii) I'(t) € ((Hx,)r@» - - -» (Hx,)r) for almost all t € I

By using the Pontryagin Maximam Principle on Control system, it is
shown that the following theorem holds (see [4], p.81, Appendix B).

Theorem 6 Let (M, D, g) be a subriemannian manifold, and let « : [a, b] —
M be length-minimizer parametrized by arc-length. Then v is a normal ez-
tremal or an abnormal extremal.

8 Extremals on the standard Cartan distri-

bution

As was shown by Cartan(1], a generic Pfaff system defined by three Pfaff
equations in the space of five variables, that is, a tangent distribution D
of rank 2 on R® enjoys interesting properties: Its automorphism group
makes a Lie group of dimension not greater than 14, and if the maximal
dimension is attained, then the automorphism group is locally isomorphic to
the exceptional simple Lie group G, and the tangent distribution D is lo-
cally isomorphic to the standard Cartan distribution defined as follows: Let
(z!, 2%, 23,24, 2°) be the standard coordinates of R® and let the vector fields

Xi,...,Xs be given by:
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_ a lla 3 112
Xo=gat 0 g (@ +300)55

0 0 0

Xs=o5 Xa=g50 =55

These vector fields satisfy the following bracket relations:

[X1, X2] = X3
(X1, X3) = X4
[X2, X3] = X5

The others are trivial

The dual basis w?, ...,w® of Xj,..., X; is given by:

(Wl = da!
w? = dz?
j w3 = dz® — L(z'da? — 22dz?)
wt = dzt + (23 — Lo'2?)da!
| W =da® + (z° + j2'a?)dz?.

Then we have the following the structure equations:

N

dw! =0

dw? =0

dwd + Wl Aw? =0

dw? + W' Aw? =0

| dw® +w?Awd=0.

Let us take D to be the tangent distribution spanned by X; and X3, that

is,

F(D) = (Xl,X2> = {w3 = (.4)4 = u.)5 = O}

Then, choosing a subriemannian metric g on D so that {X1(p), X2(p)} forms
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an orthonormal basis of D,,, we consider the subriemannian manifold (R D, g).

Let us determine the normal extremals and the abnormal extremals of

this subriemannian manifold.



If (22, 22, 2°

energy function E of (D, g) is given by

1
E = —%[{Pl - %3:2173 —(z* - ’2'3»‘1332)1’4}2

1 1
+ {p2+ §z1p3 — (23 + —2-:1:1:1:2)175}2].

Then the Hamiltonian vector field E is given by

YJA—

= 0 0 1, 1, 0 1,
E = —A-a—'xT—Ba ( A——xB)$§+($—§$$
1 s, 1 0
+ @+ 2% xz)B +{"fb‘ PaA+ (5 P3—§$2P5)B 30,
P1
1, 1 1, .0 G
+ {(237 P4 2193)/4 5% 2953}32)2 + (—psA pf’B)@pa’
where
1, 3 139
(1) A = P1—§$p3—($—§$$)174
1 1
(2) B = p2+§m1p3 (z® +2a: 122)ps.

Then we see that a normal biextremal of (D, g) satisfies

(3) Il = —A

(4) g2 = -B

(5) 3 = —;-sz - %mlB

(6) = (2%- ;xlﬁ)A

(7) = (2 + %xlmz)B

(8) p = l1132294/4 + (lps - l302175)5’
2 2 2

. 1 1 1
(9) P2 = (—‘2‘173 + 5331174)14 - §xlpsB

,z4, 2% p1, P2, D3, P4, s) are the local coordinates in T*R®, the

0
ozt
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(10) p3s = —psA— psB
(11) pg = 0
(12) ps = 0

Differentiating the equation (1), and substituting (3),(4),(5),(8),(10),(11) into
it, we have

(13) (l.:'l = p3$.2.

Similarly differentiating (2), and substituting (3),(4),(5),(9),(10),(12) into it,
we have

(14) £? = —pyzl.

On the other hand, p4, ps are constant by (11), (12). Then integrating (10),
we have:

(15) p3 = paz’ + psz? + C,

where C is a constant. Therefore the second order differential equations with
respect to 2! and 2 are given in the formulae (13), (14) and (15). These
equations for (z!,z%) can be written in the following form:

2\ 0 1) (a2
2 ) B\ o) \s2 )

where p3 is a linear function given by (15). Since the acceleration vector

2

1 21
( - ) is obtained by the rotation of % of the velocity vector ( .2) with the
x

scalar multiplication of p3, this equation represents the equation of motion
of an electron moving in a plane under a magnetic field whose direction
is perpendicular to the plane and whose magnitude is given by the linear
function p; = pyz! + psz? + C. By a change of local coordinates:

T = p4$1 + psz? + C
Yy = psa’ — paz?,
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we have
Z=-—-zy
J = zt.
Then we also have
Y= lzz +k
y= 2 ’
where k is a constant. By substituting this equation into Z = —zy, we have
1 3
= —=z"— kz.
z 5% z
So we have ; ) )
5{32}2 = —-8-.'124 - 5’6332,
and
T =+4/—=z¢— kz?
Since

—%zz(:vz +4k) >0

we see k < 0. If k = 0, we have £ = & = 0. Therefore z! and z? run along
the line

p4$1 + psl‘z +C=0.

If k<0,
p4.’1:1 +p5:1:2 +C

moves periodically between —2+/—k and 2v/—k.
Now we will give the differential equations that an abnormal extremal I :

I(= [a, 8]) = T*R3\{O} of D must satisfy. If we choose the local coordinates

1 .2 4

(2}, 22, 23, 24, 2%, py, P2, P3, Pa, ps) in T*RS, the Hamiltonian function Hy, and

Hx, can be expressed as

1 1
Hx, = p1— '2—332193 — (2® - '2'371332)174,

1 1
P2+ =zlps — (22 + =2 2?)ps.

Hx, 2 2



By the definition of an abnormal extremal of (M, D), Hx, and Hy, should
vanish along the curve I'. Hence we have:

1 1
P — §$2P3 — (2° - ‘2'1‘1332)294 =0,
14 3,1 129
p2+§a:p3—(m +§zx)p5=0.
Now the Hamiltonian lift of H x, of X; and H x, of X7 can be expressed as:
= 0 1,0 3 1440
Ha = 5507 3% 55 - (0~ 32%)ga
1$2 0 (1 1 24 0
2 1746291 2 P4 217362 P46p3,
— 0 1 15) 1 0
H T LA ST g g AL
X2 Oz? + 2% 623 (" + gt * )63;5
- (1 __l )8 +1$1 _8_+ _8_
2173 5 Ds op; T 2 p562 psap3

Then the following conditions must be satisfied:

I(t) = o (8)(H x)rey + 02(8) (H x2)r0s)

where a'(t) and a?(t) are some functions on I.

Therefore if I'(t) = (z(t), p(t)) is an abnormal extremal of (M, D) then
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(z(t), p(t)) satisfies the following equations,
(16) ! = al
(17) g2 = q?

. 1 1
(18) 13 = —§a1m2 + -2-0.2:1:1

- 1
(19) 4 = —al(z®- 53:1:1:2)

. 1
(20) 8 = —a?(z%+ 5:1;13:2)

. 1 1 1
(21) P = —501582174 - 02(5133 - 5332175)

1 1 1
(22) P2 = al(—§$1P4 +5ps) + 5“29311?5
(23) Ps = a'py+a’ps
(24) ps = 0
(25) ps = 0
1, 3 1,9
(26) pl-amps—(x—yx)m =0
1 1

(27) p2 + 5331793 - (z*+ 5-’51932)195 =0

Differentiating the equation (27), and substituting (16), (17), (18), (22), (23),
(25) into it, we have

p3.'17.1 = 0.
Similarly differentiating (26), and substituting (16), (17), (18), (21), (23),
(24) into it, we have

p327.2 = 0.
From these equations on account of (16), (17), it follows that if

(a'(to), a(to)) # O at to, then p3 = 0 around t,. Therefore we may assume
p3 = 0, and we have

ps = (a' (t)pa + @’ (t)ps) = 0.

Hence we have
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where ¢ is a function along the abnormal biextremal. If we set

o= [ ol

zh(t) ) _ s q'
(56) v (5)+(3)

5

we have

where ¢! = z'(a), ¢* = 2%(c). Then z3, z*, 2° are obtained by integrating
(18), (19), (20). Thus the lines in (z!,z?)-space give rise to the abnormal
extremals.
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