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1 Introduction

It is a long-standing conjecture that there is no stable theory with a finite
number (> 1) of countable models. Tanovié¢ [2] proved that if a countable
complete theory T" with I(w,T) = 3 has infinitely many definable elements
then 7' is unstable and has a dense definable ordering. In this note, we
weaken the assumption of the result.

Definition 1 Let F = {y;(z) : ¢ € I} be a family of consistent formulas over
(). We say that F is a strongly orthogonal family if the following condition
is satisfied:

(*) If each o; (i € I) is an elementary permutation of the domain M.
Then Ui€ ; 0i is an elementary mapping.

Example 2 For each i € I, let ¢; € dcl(B). Then {tp(c;) : ¢ € I} is a
strongly orthogonal family.

Example 3 (A modification of Ehrenfeucht’s example) Let L = {<, Up }new-
For each n € w, let D,, be the convex set (-oo,n\/§) of Q. Let T be the
theory of (Q, <, Dy)new, Where the interpretation of U, is D,.

In T there is no definable element, since neither U, nor -U, has end
points. Even in a fixed sort of 79, we don’t have infinitely many definable
elements. Let ¢,(z) be the formula U,1(z) A ~U,(z). Then the set F =
{pn(z) : n € w} forms a strongly orthogonal family.
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Definition 4 Let F be a pairwise inconsistent family of L-formulas with
free variable z. We say that p(x) € S(0) is an F-limit type if whenever ¢(z)
is a member of p(z) then there are infinitely many formulas ¥ (z) € F with
©(z) A (z) consistent.

Remark 5 Let F = {pi(z) : i € w} be a set of pairwise inconsistent L-
formulas.

1. An F-limit type exists. An F-limit type is a nonprincipal type.

2. Let p(z) be an F-limit type. Then there is an infinite subset Fq of F
such that (1) p(z) is an Fy-limit type and (2) for every ¢(z) € p(z),
{q(z) € Fo : p(z) ¢ q(z)} is finite. Proof: Choose ¢n(z) (n € w) such
that p(z) is equivalent to {¢n(z) : n € w} and that for every n € w
T + V2(pns1(z) — n(z)). Let I be the set of all n € w such that
©n(x) A =ny1(x) belongs to some q € F. First we claim that [ is an
infinite set. Otherwise, there is n* € w such that I C {0,...,n*—1}. For
every n > n* and every q € F, we have q(z) F ¢n(z) — @ns1(z). By
the definition of F-limit type, there are at least two types qo,q1 € F
such that ¢n-(z) € qe(z) (k = 0,1). Then we have go(z) F p and
qi(xz) F p. A contradiction . Thus I is an infinite set and p(z) is
equivalent to {¢n,(z) : n € I'}. For each n € I, choose g, € F such that
on(x) A =@ni1(z) € go(z). Then Fy = {gn : n € w} has the required
properties.

In this paper, T is a countable complete theory formulated in the language L.
Since we are interested in theories with a finite number of countable models,
throughout we assume that T is a small theory (i.e. S(0) is countable). In
section 1, we discuss the case where T has a strongly orthogonal infinite
family. We show that if T' has three countable models then T" must be
unstable. In section 2, we discuss the case where T has a strongly orthogonal
infinite family of algebraic formulas, and show that if 7" has three countable
models then T has the strict order property (and in fact it has a dense tree).

Lemmas 9 and 10 can be proved in a similar way as corresponding lemmas
in [2].



2 Strongly Orthogonal Family of Isolated
Types

In this section, we show the following:

Proposition 6 Let T be a theory with three countable models. Suppose that
there is a strongly orthogonal infinite family of L-formulas. Then T is un-
stable.

T is a stable theory with I(w,T) = 3. We fix a strongly orthogonal
infinite family F = {¢;(z) : i € w}. Using the fact that T is small, we may
assume that each ,(z) generates a principal type p;(xz). We fix an F-limit
type p*(z). Our aim is to derive a contradiction from these assumptions.

Lemma 7 Let q(z) be a principal type. Then there are only finitely many
types p;(y) € F such that q¢ and p; are not weakly orthogonal.

Proof: ~ Suppose otherwise and for simplicity we assume that no p;(z) is
weakly orthogonal to ¢q. For each i choose a formula 6;(z,y) witnessing that
g(z) and p;(y) are not weakly orthogonal. Then, by the assumption that g; is
an isolated type, E;(u,v) = Yy [pi(y) — (6;(u,y) « 0;(v,y))] is a B-definable
equivalence relation on ¢™. Moreover E; has at least two equivalence classes.

Claim A Let a = q. For any i, the class ag, is pM-definable.

Let r = tpy,(a/pM). By the stability, r is a definable type. So there is a
finite tuple d from pM and a formula §(y, z) such that for any b = pM,

0;(z,b) € r <= 4(b,d) holds.
Let ¢(z,d) be the L(d)-formula
Vy(pi(y) — (6(y,d) < bi(z,y))).

Clearly ¢(z,d) defines the set E;(z,a). (End of Proof of Claim A)

Let {a; : i € w} be a set of realizations of g.

Claim B {E;(z,q;) : i € w} is consistent.

31



32

By claim A, the class apg, is pM-definable. Choose elements b;y, ..., bix; € pM
and a formula p;(x, by, ..., bik,) equivalent to E;(z,ap). Choose an automor-
phism o; that maps ag to a;. Let 7; be the restriction of o; to the domain p{"'.
Then by the strong orthogonality we see that (J;c, 7: is an elementary map-
ping. Since {E;(z,a0) : i € w} is consistent, {;(z, T;bi1, ..., Tibix,) : 1 € w} is
also consistent. So {E;(z,0i(ap)) : 1 € w} is consistent.

From Claim A, we also know the following.

Claim C For each n € 2¥, q(z) U q(y) U{Ei(z,y) : ¢ < n, n() = 1} U
{=Ei(z,y) : i <n, n(i) =0} is consistent.

From Claim B, we have continuum many complete types over . But this is
impossible, since I(w,T) < w.

Lemma 8 Let q be a principal type. Then g and p* are weakly orthogonal.

Proof: Suppose otherwise and choose a formula 6(z,y) such that both
p*(z) U q(y) U {0(z,y)} and p*(z) U q(y) U {—0(z,y)} are consistent. Let
x(y) € q(y) be a formula isolating g. Then the formula

Jyo3y1 [x (%) A X (1) A O(z,90) A —0(z, 1))

belongs to p*(z). Since p* is an F-limit type, this formula belongs to infinitely
many p;’s. Among such p;’s, by the previous lemma, there is p; such that p;
and q are weakly orthogonal. Then we can choose a |= p; and by, b, such that

M = x(bo) A x(b1) A B(a, bo) A —0(a, by)].

Since x(y) isolates q(y), we have tp(b;) = g (j = 0,1). Thus we have two
distinct extensions tp(abg) and tp(ab;) of p;(z) U g(y). This contradicts the
weak orthogonality of p; and q.

Lemma 9 Let r(z) € S(@) be a type with CB(r) = 1. Let b |= r and
ag,a; = p*. Suppose that tp(ai/ao) is semi-isolated and that tp(b/ao) is not
semi-isolated. Then tp(agh) = tp(a1b).

Proof:  Let x(y) be a formula isolating r(y) among the types with CB-
rank > 1. By way of contradiction, we assume that the lemma is not true.
Choose a formula 6(z,y) such that M = 6(ao, b) A —8(ay,b) A x(b). Choose
a formula v(z, ag) witnessing the semi-isolation of tp(ai/ao). Then we have
M [ 3z[0(ao, b) A —=0(z,b) A x(b) A ¥(z,a0)]. Since tp(b/aop) is not semi-
isolated, we can choose b’ and a} with the following properties:
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1. M E0(ap,b') A=0(a),b') A x(b') A(a), ag)-
2. tp(d') # tp(b), so tp(¥) is a principal type.

By our choice of ¥(z, ag), a realizes the type p*. So tp(agb’) and tp(ab’) are
two distinct extensions of p*(z) U tp(Y'), contradicting lemma 8.

Lemma 10 Let r = tp(b) be a type of CB-rank 1. Let a be a realization of
p* such that tp(a/b) is isolated while tp(b/a) is not semi-isolated. Let Y(z,z’)
be the formula

Vylx(y) = (0(z,y) — 0(z', )],

where 0(x,b) is a formula isolating tp(a/b), and x(y) is a formula isolating
r among the types with CB-rank > 1. Then, for any o’ = p*, the following
are equivalent:

1. tp(a'/a) is semi-isolated;
2. M= ¢(a,a).

Proof: 1 = 2: Assume 1. Let b’ be any element satisfying x(y). First
suppose that tp(d') is principal. Then tp(d’) and p* are weakly orthogonal by
lemma 8, so we have the equivalence of (a,t’) and 6(a’,b’). Next suppose
that tp(b') is nonprincipal and that 6(a,?’) holds. Now ¥’ realizes r = tp(b).
So we have tp(ab’) = tp(ab), as 0(z, b) isolates the type tp(b/a). In particular,
tp(d’'/a) is not semi-isolated.

2 = 1. Assume 2. Notice that b satisfies x(y) A (a,y). So, by 2, we have
M = 0(d’,b). From this and the fact that §(z,b) isolates tp(a/b), we have
tp(a') = tp(a) = p*. Thus, tp(a’/a) is a semi-isolated type.

Proof of Proposition 6: Since T has exactly three countable models, for any
two nonalgebraic types ¢; (i = 1,2) there are a; = ¢; (i = 1,2) such that
tp(ai/ag) is isolated while tp(az/a;) is not semi-isolated. This can be shown
using the fact that if I(w,T) = 3 then every type is a powerful type (see [1]).
So the assumption of the last lemma 10 is fulfilled. Thus the semi-isolation
is definable on p*™. Since the semi-isolation relation is an infinite order, we
get a contradiction. So we have shown that 7" is unstable.
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3 Strongly Orthogonal Family of Algebraic
Types

Proposition 11 Let T be a theory with I(w,T) = 3. Suppose that there is
a strongly orthogonal infinite family of algebraic types. Then T has the strict
order property.

We fix a strongly orthogonal infinite family F = {p;(z) : i € w}, where
each p;(x) is an algebraic type.

In section 2 lemma 7, by assuming the stability we proved the weak
orthogonality of p; and q. However if each p; is an algebraic type, we can
prove the same result without assuming the stability.

So let us recall the proof there. We assumed that each p; and ¢ are
not weakly orthogonal. For each i, we defined an equivalence relation
Ei(u,v) = Agep, (bi(uv, d) & 6;(v,d)), where 6;(u,v) is a witness of the non-
weak-orthogonality. It is a (-definable equivalence relation on ¢™, having at
least two equivalence classes. The main task was to show that each class is
pM-definable. We used the stability at this point. But, if ¢; is an algebraic
type, the stability assumption is not necessary. The rest can be proven sim-
ilarly. So we can show that 7" has the strict order property. The existence of
a dense tree can be proved using the argument in [3].
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