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1. INTRODUCTION

This survey contains the results presented in my talk at the conference
Representation Theory of Finite Groups and Algebms, and Related Topics
in RIMS, Kyoto. It is based on a joint paper with Erik Darp\"o [3] where
many of the theorems presented here are proved.

Let $k$ be a field. For an arbitrary finite dimensional algebra $A$ over $k$ ,
there is no known way of naturally defining a tensor product on the category
of left A-modules. However, if $A$ is for instance the group algebra over a
finite group $G$ , then the underlying structure provided by $G$ yields a tensor
product defined by diagonal action. For path algebras over quivers one can
similarly define a tensor product point-wise and arrow-wise. Our aim is to
study this tensor product.

Quivers were introduced by Gabriel [5] and have ever since played an
important role in the representation theory of finite dimensional algebras.
A quiver $Q$ is an oriented graph and as such consist of a set of vertices $Q_{0}$

and a set of arrows $Q_{1}$ between the vertices. For example the following
quiver has 3 vertices and 2 arrows:

$1arrow^{\alpha}2arrow^{\beta}3$

To each quiver $Q$ we associate its path algebra, the modules over which
can be interpreted as representations of $Q$ . A representation $V$ of $Q$ assigns
to each vertex $x\in Q_{0}$ a vector space $V_{x}$ (over k) and to each arrow $xarrow\alpha y$

a linear map $V(\alpha)$ : $V_{x}arrow V_{y}$ . The direct sum of representations is defined
point-wise, i.e. for representations $V$ and $W$ of $Q$ , their direct sum $V\oplus W$

is defined by
$(V\oplus W)_{x}=V_{x}\oplus W_{x}$

for each $x\in Q_{0}$ and

$(V\oplus W)(\alpha)=V(\alpha)\oplus W(\alpha)$

for each $\alpha\in Q_{1}$ . We define the tensor product $V\otimes W$ similarly: set

$(V\otimes W)_{x}=V_{x}\otimes W_{x}$
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for each $x\in Q_{0}$ and
$(V\otimes W)(\alpha)=V(\alpha)\otimes W(\alpha)$

for each $\alpha\in Q_{1}$ . Since the tensor product is defined point-wise it commutes
with direct sums. To describe it completely it is therefore enough to solve
the following problem: Given indecomposable representations $V$ and $W$ of
a quiver $Q$ , find the decomposition of $V\otimes W$ into indecomposables. This
problem has a commonly studied analogy in group representation theory
and is called the Clebsch-Gordan problem, as it originates from the invariant
theory of Clebsch and Gordan [2].

A classical instance of the Clebsch-Gordan problem is for the loop quiver. $\mathfrak{O}\alpha$

If $k$ is algebraically closed, the indecomposable representations of $Q$ are
given by Jordan blocks

$J_{\lambda}(l)=\{\begin{array}{llll}\lambda 1 \ddots \ddots \lambda 1 \lambda\end{array}\}$

where $l$ is the size of the matrix and $\lambda\in k$ is the eigenvalue. The Clebsch-
Gordan problem then amounts to finding the Jordan normal form of the
Kronecker product of two Jordan blocks. In characteristic zero this problem
was originally solved by Aitken [1], but has also been solved independently
by Huppert [11] and Martsinkovsky-Vlassov [13]. The solution is given by
the following Theorem.

Theorem 1. For all $\lambda,$ $\mu\in k\backslash \{0\}$ and positive integers $l,$ $m$ the following
formulae hold:

(1) $J_{\lambda}(l)\otimes J_{\mu}(m)\sim\oplus_{i=0}^{l-1}J_{\lambda\mu}(l+m-2i-1)$ if $l\leq m$ and char $k=0$ ,
(2) $J_{\lambda}(l)\otimes J_{0}(m)\sim lJ_{0}(m)$ ,
(3) $J_{0}(l)\otimes J_{0}(m)\sim(m-l+1)J_{0}(l)\oplus\oplus_{i=1}^{l-1}2J_{0}(i)$ if $l\leq m$ .

Here $A\sim B$ means that $A$ is similar to $B$ . The first formula in Theorem
1 fails in positive characteristic. An algorithm for determining the corre-
sponding decomposition in characteristic $p>0$ has been found Iima and
Iwamatsu [12], but no explicit formula is known.

For Dynkin quivers of type A, D and $E_{6}$ , the solution is found in [10] and
[9] over an arbitrary field. In tame type the solution has been found for
extended Dynkin quivers of type A in [7] and for the double loop quiver

$\alpha C\cdot \mathfrak{O}\beta$

with relations $\alpha^{n}=\beta^{n}=\alpha\beta=\beta\alpha=0$ in [8]. However, these tame cases are
only reduced to the loop case. And thus, one piece of the puzzle remains for
fields that are not algebraically closed. In the sequel we will try to remedy
this situation.

If the description of indecomposables is complicated, a solution to the
Clebsch-Gordan problem along the lines of Theorem 1 becomes hard to
digest. To obtain a more qualitative grasp of the solution we introduce the
representation ring.
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Let $S(Q)$ be the set of isomorphism classes of representations of the quiver
$Q$ . It has the structure of a semi-ring with addition and multiplication
defined by

$[V]+[W]=[V\oplus W]$

and
[$V$] $[W]=[V\otimes W])$

where [V] denotes the isomorphism class of the representation $V$ . The rep-
resentation ring of $Q$ is the Groethendieck ring associated to $S(Q)$ and is
denoted $R(Q)$ . As an abelian group $R(Q)$ is freely generated by the isomor-
phism classes of indecomposables, and the structure constants are given by
the Clebsch-Gordan coefficients.

In the Dynkin case we have the following general description. For each
$k\in N$ set $R_{k}=\mathbb{Z}[T_{1}, \ldots T_{k}]/(T_{i}T_{j}|1\leq i,j\leq k)$ .
Proposition 1. If $Q$ is of Dynkin type A, D or $E_{6_{f}}$ then there are natuml
numbers $k_{r}\in N$ such that

$R(Q) arrow-\prod_{r=1}^{n}R_{k_{\gamma}}$

The precise numbers $k_{r}$ depend on the type and orientation of $Q$ , and can
be found in [10] and [9].

2. THE LOOP OVER A PREFECT FIELD

As mentioned earlier the loop case plays an important role in all known
solutions for quivers of tame type. We proceed to study this case under the
assumption that $k$ is perfect, i.e. every irreducible polynomial $f(x)\in k[x]$

has distinct zeros in the algebraic closure $\overline{k}$ .
Assume that $Q$ is the loop quiver. $0\alpha$

A representation $V$ of $Q$ is completely determined by the linear operator
$V(\alpha)$ . We obtain a module over $k[x]$ by declaring that the action of $x$ should
be given by $V(\alpha)$ . In fact, this gives rise to an equivalence of categories

$rep_{k}Qarrow-k[x]$ –mod,
where $rep_{k}Q$ denotes the category of representations of $Q$ and $k[x]$ –mod
denotes the category of k[x]-modules. We define the tensor product on
$k[x]$ –mod via this equivalence. Moreover, let $R$ be the representation ring
of $k[x]$ with respect to this tensor product. The following classification result
for $k[x]$ –mod is well-known.

Theorem 2. The modules $k[x]/f(x)_{z}^{s}$ where $s$ is a positive integer and
$f(x)\in k[x]$ is irreducible and monic, classify all indecomposable finite-
dimensional k[x]-modules up to isomorphism.

Our aim is to decompose $k[x]/f(x)^{s}\otimes k[x]/g(x)^{t}$ for all $s,$ $t>0$ and
irreducible polynomials $f(x),g(x)$ . The two last formulae in Theorem 1 hold
independent of the ground field and translating to our setting we obtain:
Proposition 2. Let $s$ and $t$ be positive integers and $f(x)\in k[x]$ irreducible
with $f(0)\neq 0$ . Then the following formulae hold.
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(1) $k[x]/x^{s}\otimes k[x]/f(x)^{t}arrow\sim t(\deg f)k[x]/x^{s}$ .
(2) $k[x]/x^{s}\otimes k[x]/x^{t}arrow\sim(t-s+1)k[x]/x^{s}\oplus\oplus_{i=1}^{s-1}2k[x]/x^{i}$ if $s\leq t$ .

A consequence of Proposition 2 is that the $\mathbb{Z}$-span of the elements $[k[x]/x^{s}]$

in $R$ forms an ideal $I$ . Moreover, if $V$ is a $k[x]$-module on which $x$ acts as
an automorphism, then [V] acts on $I$ as multiplication by $\dim V$ .

It remains to decompose $k[x]/f(x)^{s}\otimes k[x]/g(x)^{t}$ for all $f,$ $g$ satisfying
$f(O)\neq 0\neq g(0)$ . This corresponds in the algebraically closed case to Jor-
dan blocks of non-zero eigenvalue. To harness the results obtained for $k$

algebraically closed we employ the following lemma due to Noether, see [4].

Lemma 1. Let $K$ be an algebraic field extension of $k$ and $A$ an associative k-
algebm with identity. Further let $V$ and $W$ be finite-dimensional A-modules.
If $K\otimes V$ and $K\otimes W$ are isomorphic as $K\otimes A$ -modules, then $V$ and $W$ are
isomorphic as A-modules.

Our strategy is now to take our problem to the algebraic closure by ten-
soring with $\overline{k}$ and then applying Theorem 1. After that we use Lemma 1 to
get back to the ground field $k$ .

Observe that $J_{\lambda}(1)\otimes J_{1}(l)=\lambda II_{l}+\lambda J_{0}(l)$ . If $\lambda\neq 0$ , then $\lambda J_{0}(l)$ is nilpotent
of degree $l$ and thus $J_{\lambda}(1)\otimes J_{1}(l)\sim J_{\lambda}(l)$ . Applying the strategy outlined
above we obtain the following result.

Proposition 3. For any positive integer $s$ and irreducible polynomial $f(x)\in$

$k[x]$ with $f(0)\neq 0$ , the k[x]-modules $k[x]/f(x)^{s}$ and $k[x]/(x-1)^{s}\otimes k[x]/f(x)$

are isomorphic.

Let $R’$ be the $\mathbb{Z}$-span of the elements $v_{s}$ $:=[k[x]/(x-1)^{s}]$ , where $s>0$ and
$\overline{R}$ the $\mathbb{Z}$-span of all elements of the form $[k[x]/f(x)]$ , such that $f(x)\in k[x]$ is
irreducible with $f(0)\neq 0$ . Moreover, define a ring structure on $R’\otimes_{\mathbb{Z}}\overline{R}\oplus I$

by $(a\otimes b)w=\dim(a)\dim(b)w$ for all $a\in R’,$ $b\in R’$ and $w\in I$ . Using
Proposition 3 one can show the following general description of $R$ .

Theorem 3. The $\mathbb{Z}$-linear map
$\phi:R^{f}\otimes_{\mathbb{Z}}\overline{R}\oplus Iarrow R$ ,

defined by $\phi(a\otimes b+w)=ab+w$ is a ring isomorphism.

By Proposition 2, the structure of $I$ is independent of $k$ . Moreover, the
action of $R’\otimes_{\mathbb{Z}}\overline{R}$ on $I$ is given by dimension. Hence, it remains to describe
the rings $R’$ and $\overline{R}$ . Using Galois theory we obtain the following result for
of $\overline{R}$ .

Proposition 4. Let $G=\mathcal{G}(\overline{k}/k)$ be the absolute Galois group of $k$ and $\overline{k}^{\iota}$

the group of invertible elements in $\overline{k}$ . There is an isomorphism of rings;

$\overline{R}arrow\sim(\mathbb{Z}\overline{k}^{\iota})^{G}$

Where $(\mathbb{Z}\overline{k}^{\iota})^{G}$ denotes the ring of invariants under $G$ .

Proposition 4 can be made more explicit in case $k$ is real or algebraically
closed (see [3]). We proceed to describe the ring $R’$ , which turns out only
to depend on the characteristic of $k$ . In characteristic zero we can apply
Theorem 1 and obtain:
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Theorem 4. Assume that the chamcteris$tic$ of $k$ is zero. The ring morphism
$\phi:\mathbb{Z}[T]arrow R’$ ,

defined by $T\mapsto v_{2}$ is an isomorphism.

Assume that char $k=p>0$ and let $\alpha\in$ N. Let $G_{\alpha}=\langle\sigma_{\alpha}\rangle$ be the cyclic
group of order $q$ $:=p^{\alpha}$ . Then there is an algebra isomorphism

$kG_{\alpha}arrow k[T]/T^{q}$

defined by $\sigma_{\alpha}\mapsto T+1$ . Hence the modules $kG_{\alpha}/(\sigma_{\alpha}-1)^{s}$ , where $1\leq s\leq q$

classify all indecomposable $kG_{\alpha}$-modules. Let $A_{\alpha}$ be the representation ring
of $kG_{\alpha}$ . Then we may view $A_{\alpha}$ as a subring of $R’$ by identifying $[kG_{\alpha}/(\sigma_{\alpha}-$

$1)^{s}]$ with $v_{s}$ . This identification gives rise to chain of inclusions
$A_{0}\subset A_{1}\subset\ldots\subset\cup A_{\alpha}=R^{f}$ .

$\alpha\in N$

The rings $A_{\alpha}$ have been described by Green in [6]. Set $w_{\alpha}=v_{p^{\alpha}+1}-v_{p^{\alpha}-1}$ .
Under our identification [6, Theorem 3] becomes the following:

Theorem 5. Assume that char $k=p>0$ and let $\alpha\in$ N. Set $q=p^{\alpha}$ . Then

$w_{\alpha}v_{r}=\{$ $v_{r-q}+2v_{pq}-v_{(2p-1)q-r}v_{r+q}-v_{q-r}v_{r+q}+v_{r-q}$

if $1\leq r\leq q$

if $q<r\leq(p-1)q$

if $(p-1)q<r\leq pq$

Moreover this equation defines the multiplicative structure of $R’$ .

Thus we have described the rings $R’$ and $\overline{R}$ . Together our results on the
ideal $I$ , this completes our description of the representation ring $R$ .

REFERENCES
[1] A. C. Aitken. The normal form of compound and induced matrices. Proc. London

Math. Soc., 38:354-376, 1935.
[2] A. Clebsch and P. Gordan. Theorie der Abelschen Functionen. B. G. Teubner, 1866,
[3] E. Darp\"o and M. Herschend. On the representation ring of the polynomial algebra

over a perfect field. Math. Z., 2009. Published online. DOI 10.1007/s00209-009-0532-9.
[4] M. Deuring. Galoissche Theorie und Darstellungstheorie. Math. Ann., 107(1):140-

144, 1933.
[5] P. Gabriel. Unzerlegbare Darstellungen. I. Manuscnpta Math., 6:71-103; correction,

ibid. 6 (1972), 309, 1972.
[6] J. A. Green. The modular representation algebra of a finite group. Illinois J. Math,

6:607-619, 1962.
[7] M. Herschend. Solution to the Clebsch-Gordan problem for representations of quivers

of type $A_{n}$ . J. Algebra Appl., $4(5):481-488$ , 2005.
[8 $|$ M. Herschend. Galois coverings and the Clebsch-Gordan problem for quiver repre-

sentations. Colloq. Math., 109(2):193-215, 2007.
[9] M. Herschend. On the representation rings of quivers of exceptional Dynkin type.

Bull. Sci. $Math_{)}$ 132(5):395-418, 2008.
[10] M. Herschend. On the representation ring of a quiver. Algebr. Represent. Theory)

2009. Published online. DOI 10.1007/sl0468-008-9ll8-l.
[11] B. Huppert. Angewandte lineare Algebra. Walter de Gruyter & Co., 1990.
[12] K. Iima and R. Iwamatsu. On the Jordan decomposition of tensored matrices of

Jordan canonical forms, 2006. http:$//arxiv.org/$abs/math/0612437.
[13] A. Martsinkovsky and A. Vlassov. The representation rings of $k[x]$ . preprint.

22


