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1. INTRODUCTION

Let $G$ be a finite group and $p$ a prime dividing the order of $G$ . There are several
conjectures connecting the representation theory of $G$ with the representation the-
ory of certain p-local subgroups (i.e. the p-subgroups and their normalizers) of $G$ .
For example, it seems to be true, that if $P$ is a Sylow p-subgroup of $G$ , then the
number of complex irreducible characters of $G$ of degree coprime with $p$ equals the
same number for the normalizer $N_{G}(P)$ .

This conjecture, called McKay conjecture [55], and its block-theoretic version
due to Alperin [1] were generalized by various authors. In [50], Isaacs and Navarro
proposed the following refinement of the McKay conjecture: If $k$ is a residue class
modulo $p$ different from zero, then the two numbers above should still be equal
when we count only those characters having a degree in the residue classes $kor-k$ .

In a series of papers [30], [31], [32], Dade developed several conjectures expressing
the number of complex irreducible characters with a fixed defect in a given p-block
of $G$ in terms of an alternating sum of related values for p-blocks of certain $p\succ 1oca1$

subgroups of $G$ . The ordinary conjecture is the simplest one among others, and the
most complicated one is called the inductive form, which implies all the other. If
$G$ has a trivial Schur multiplier and a cyclic outer automorphism group, it follows
that Dade’s inductive conjecture is also true for $G$ in this case. Dade claimed that,
if the inductive form is true for all finite simple groups, then it is true for all finite
groups. In [31], Dade proved that his (projective) conjecture implies the McKay
conjecture. Motivated by the Isaacs-Navarro conjecture [50], Uno [60] suggested a
further refinement of Dade’s conjecture including the p’-parts of character degrees.

In [51], Isaacs, Malle and Navarro reduced the McKay conjecture to a question
about finite simple group. In particular, they showed that every finite group will
satisfy the McKay conjecture if every finite non-abelian simple group is “good“.

This note is organised as follows: In Section 2, we fix notation and state Dade’s
and Uno’s invariant conjectures in detail. In Section 3, we sketch the proof of
Dade’s and Uno’s invariant conjecture for some exceptional groups in the defining
characteristic. In Section 4, we deal with the McKay conjecture for the Big Ree
groups $2F_{4}(q)$ in characteristic 2. In Section 5, we present some new results on
Dade’s conjecture.
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2. CONJECTURES OF DADE AND UNO

Let $R$ be a p-subgroup of a finite group $G$ . Then $R$ is radical if $O_{p}(N(R))=$

$R$ , where $O_{p}(N(R))$ is the largest normal p-subgroup of the normalizer $N(R)$ $:=$

$N_{G}(R)$ . Denote by Irr$(G)$ the set of all irreducible ordinary characters of $G$ , and by
Blk$(G)$ the set of $l\succ blocks$ . If $H\leq G,\tilde{B}\in$ Blk$(G)$ , and $d$ is an integer, we denote
by Irr $(H,\tilde{B}, d)$ the set of characters $\chi\in$ Irr$(H)$ satisfying $d(\chi)=d$ and $b(\chi)^{G}=\tilde{B}$

(in the sense of Brauer), where $d(\chi)=\log_{p}(|H|_{p})-\log_{p}(\chi(1)_{p})$ is the p-defect of $\chi$

and $b(\chi)$ is the block of $H$ containing $\chi$ .
Given a p.subgroup chain

$C:P_{0}<P_{1}<\cdots<P_{n}$

of $G$ , define the length $|C|$ $:=n,$ $C_{k}$ : $P_{0}<P_{1}<\cdots<P_{k}$ and

$N(C)=N_{G}(C)$ $:=N_{G}(P_{0})\cap N_{G}(P_{1})\cap\cdots\cap N_{G}(P_{n})$ .

The chain $C$ is said to be radical if it satisfies the following two conditions:
(a) $P_{0}=O_{p}(G)$ and
(b) $P_{k}=O_{p}(N(C_{k}))$ for $1\leq k\leq n$ .

Denote by $\mathcal{R}=\mathcal{R}(G)$ the set of all radical p-chains of $G$ .

Suppose $1arrow Garrow Earrow\overline{E}arrow 1$ is an exact sequence, so that $E$ is an extension
of $G$ by $\overline{E}$ . Then $E$ acts on $\mathcal{R}$ by conjugation. Given $C\in \mathcal{R}$ and $\psi\in$ Irr $(N_{G}(C))$ ,
let $N_{E}(C, \psi)$ be the stabilizer of $(C, \psi)$ in $E$ , and

$N_{\overline{E}}(C, \psi)$ $:=N_{E}(C, \psi)/N_{G}(C)$ .

For $\tilde{B}\in$ Blk$(G)$ , an integer $d\geq 0$ and $U\leq\overline{E}$ , we define

Irr $(N_{G}(C),\tilde{B}, d, U)$ $:=\{\psi\in$ Irr $(N_{G}(C),\tilde{B},$ $d)|N_{\overline{E}}(C,$ $\psi)=U\}$ .

Dade’s invariant conjecture can be stated as follows:

Dade’s Invariant Conjecture ([32]) If $O_{p}(G)=1$ and $\tilde{B}\in$ Blk$(G)$ with defect
group $D(\tilde{B})\neq 1$ , then

$\sum_{C\in’\mathcal{R}/G}(-1)^{|C|}$
Irr $(N_{G}(C),\tilde{B}, d, U)|=0$ ,

where $\mathcal{R}/G$ is a set of representatives for the G-orbits of $\mathcal{R}$ .

Let $H$ be a subgroup of $G,$ $\varphi\in$ Irr$(H)$ , and let $r(\varphi)=r_{p}(\varphi)$ be the integer
$0<r(\varphi)\leq(p-1)$ such that the p’-part $(|H|/\varphi(1))_{p’}$ of $|H|/\varphi(1)$ satisfies

$( \frac{|H|}{\varphi(1)})_{p’}\equiv r(\varphi)mod p$ .

Given $1\leq r<(p+1)/2$ , let Irr$(H, [r])$ be the subset of Irr $(H)$ consisting of those
characters $\varphi$ with $r(\varphi)\equiv\pm rmod p$ . For $\tilde{B}\in$ Blk$(G),$ $C\in \mathcal{R}$, an integer $d\geq 0$ and
$U\leq\overline{E}$ , we define

Irr $(N_{G}(C),\tilde{B}, d, U, [r])$ $:=$ Irr $(N_{G}(C),\tilde{B}, d, U)\cap$ Irr$(N_{G}(C), [r])$ .
The following refinement of Dade $s$ conjecture is due to Uno.
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Uno’s Invariant Conjecture ([60], Conjecture 3.2) If $O_{p}(G)=1$ and $\tilde{B}\in$

Blk$(G)$ with defect group $D(\tilde{B})\neq 1$ , then for all integers $d\geq 0$ and 1 $\leq r<$

$(p+1)/2$ ,

$\sum_{C\in’\mathcal{R}/G}(-1)^{|C|}|$
Irr $(N_{G}(C),\tilde{B}, d, U, [r])|=0$ .

Note that if $p=2$ or 3, then Uno’s conjecture is equivalent to Dade’s conjecture.

3. $DADE’ S/$UNO’s INVARIANT CONJECTURE FOR SOME EXCEPTIONAL GROUPS

In this section, we sketch the proof of Dade’s$/Uno$ ’s invariant conjecture for
some exceptional groups in the defining characteristic. Let Aut $(G)$ and Out $(G)$ be
the automorphism and outer automorphism groups of $G$ , respectively. Let $n$ be a
positive integer and

$G\in\{G_{2}(p^{n})(p\geq 5),$ $3D_{4}(p^{n})(p=2$ or odd), 2 $F_{4}(2^{2n+1})\}$ .

Then Out $(G)$ is cyclic and the Schur multiplier of $G$ is trivial. So the invariant
conjecture for $G$ is equivalent to the inductive conjecture.

Let $O=$ Out $(G)=\langle\alpha\rangle$ , where $\alpha$ is a field automorphism of order

$|\alpha|=\{\begin{array}{ll}n if G=G_{2}(p^{n})(p\geq 5),3n if G=3D_{4}(p^{n}),2n+1 if G=2F_{4}(2^{2n+1}).\end{array}$

We fix a Borel subgroup $B$ and maximal parabolic subgroups $P$ and $Q$ of $G$ con-
taining $B$ as in [15], [40], [39], [42] and [43]. In particular, we may assume that $\alpha$

stabilizes $B,$ $P$ and $Q$ . We note that the maximal parabolic subgroups $P,$ $Q$ are
the groups denoted by $P_{a},$ $P_{b}$ respectively in [43].

By the remarks on p. 152 in [48], $G$ has only two p-blocks, the principal block
$B_{0}$ and one defect-O-block (corresponding to the Steinberg character). Hence we
have to verify Dade’s$/Uno$ ’s conjecture only for the principal block $B_{0}$ .

By a corollary of the Borel-Tits theorem [26], the normalizers of radical p-
subgroups are parabolic subgroups. The radical p-chains of $G$ (up to G-conjugacy)
are given in Table 1.

Table 1 Radical p-chains of $G$ .

Since $C_{5}$ and $C_{6}$ have the same normalizers $N_{G}(C_{5})=N_{G}(C_{6})$ and $N_{A}(C_{5})=$

$N_{A}(C_{6})$ , it follows that
$|$ Irr $(N_{G}(C_{5}), B_{0}, d, u, [r])|=|$ Irr $(N_{G}(C_{6}), B_{0}, d, u, [r])|$
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for all $d\in N,$ $u||\alpha|$ and $1\leq r<(p+1)/2$ . Thus the contribution of $C_{5}$ and $C_{6}$ in
the alternating sum of Dade’s$/Uno$ ’s invariant conjecture is zero. So Dade’s$/Uno$ ’s
invariant conjecture for $G$ is equivalent to
(1)
$|$ Irr $(G, B_{0}, d, u, [r])|+|$Irr $(B, B_{0}, d, u, [r])|=|$Irr $(P, B_{0}, d, u, [r])|+|$Irr $(Q, B_{0}, d, u, [r])|$

for all $d\in N,$ $u||\alpha|$ and $1\leq r<(p+1)/2$ .
In order to verify (1), we need to determine the character tables of parabolic

subgroups of $G$ . Up to conjugacy, $G$ has four parabolic subgroups: $G,$ $B,$ $P$ and $Q$ .
Here, we present the results on the character tables of parabolic subgroups of $G$ :

For $L\in\{G, B, P, Q\}$ , the action of $O=$ Out$(G)$ on the conjugacy classes of
elements of $L$ induces an action of $O$ on the sets of Irr$(L)$ and then an action on the
parameter sets. Using the degrees and character values on the conjugacy classes we
can describe the action of $0$ on the parameter sets. Suppose $u||\alpha|$ and set $t:= \frac{|\alpha|}{u}$

and $H$ $:=\langle\alpha^{t}\rangle$ . Let Irr $(L, B_{0}, d, [r])=$ Irr $(L, B_{0}, d)\cap$ Irr $(L, [r])$ . Our main task is
to show that

Irr $(G, B_{0}, d, [r])\cup$ Irr $(B, B_{0}, d, [r])$ and Irr$(P, B_{0}, d, [r])\cup$ Irr $(Q, B_{0}, d, [r])$

are isomorphic O-sets. Our approach is similar to that in [41]: we want to use [49,
Lemma (13.23) $]$ , so we have to count fixed points of subgroups $H\leq O$ . Then (1)
is equivalent to

$|$ Irr $(G, B_{0}, d, [r])^{\alpha^{t}}|+|$ Irr $(B, B_{0}, d, [r])^{\alpha^{t}}|=|$Irr $(P, B_{0}, d, [r])^{\alpha^{t}}|+|$ Irr $(Q, B_{0}, d, [r])^{\alpha^{t}}|$ .
Then we compute the number of fixed points of Irr $(L, B_{0}, d, [r])$ under the action
of $H$ and prove that above equation holds.

4. $McKAY$ CONJECTURE FOR $2F_{4}(q)$

In [51], Isaacs, Malle and Navarro reduced the McKay conjecture to a question
about finite simple groups. They showed that the conjecture is true for every finite
group if every finite non-abelian simple group satisfies certain conditions. In this
section, we sketch the proof of Isaacs-Malle-Navarro version of McKay conjecture
for $G=2F_{4}(q)$ .

Let Aut $(G)$ and Out $(G)$ be the automorphism and outer automorphism groups
of $G$ , respectively. Let $O=$ Out $(G)$ and $A=$ Aut $(G)$ . Then $O=\langle\alpha\rangle$ and Aut $(G)=$

$Gx\langle\alpha\rangle$ , where $\alpha$ is a field automorphism of (odd) order $2n+1$ . We write $Irr_{2’}(B)$ and
$Irr_{2’}(G)$ for the set of irreducible characters of odd degree of $B$ and $G$ , respectively.
Since $B$ is $\alpha$-invariant we get an action of $O$ on $Irr_{2’}(B)$ and $Irr_{2’}(G)$ . Our main
task is to show that $Irr_{2’}(B)$ and $Irr_{2’}(G)$ are isomorphic O-sets. Our approach is
similar to that in [41]: we want to use [49, Lemma (13.23)], so we have to count
fixed points of $Irr_{2’}(B)$ and $Irr_{2’}(G)$ under the action of subgroups $H\leq O$ .
Theorem 4.1. ([42, Section 6]) For $q=2^{2n+1}\geq 8$ , the group $2F_{4}(q)$ is good for
the prime 2 in the sense of [51, Section 10].
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5. RESULTS ON $DADE’ S$ CONJECTURE

So far, Dade’s conjecture has been proved for the following cases:

(a) Sporadic simple groups:

(b) Classical groups:

$GL_{n}(q)$ ord., $p|q$ Olsson, Uno [57]
$GU_{n}(q)$ ord., $p|q$ Ku [53]
$GL_{n}(q),$ $GU_{n}(q)$ invar., $p\{q$ An [9]
$Sp_{2n}(q),$ $SO_{m}^{\pm}(q)$ ord., $p$ $\dagger$ $q,$ $p,$ $q$ odd An [11]
$L_{2}(q)$ final Dade [33]
$L_{3}(q)$ final, $p|q$ Dade
$L_{n}(q)$ ord., $p|q$ Sukizaki [59]

(c) Exceptional groups:
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$2B_{2}(2^{2n+1})$ final Dade [33]
$2G_{2}(3^{2n+1})$ final $p\neq 3$ An [2], $p=3$ Eaton [35]
$G_{2}(q)$ final,2,3 $|q,$ $p\{qq\neq 3,4$ An [8], [10]
3 $D_{4}(q)$ final, $p(q$ An [7]
$2F_{4}(2^{2n+1})$ ord, $p\neq 2$ An [5]
$2F_{4}(2)’$ final An [3]

Here, we present some new results on Dade’s conjecture for exceptional groups:

$G_{2}(q)$ final, $p|q(p\geq 5),$ $q=3,4$ Huang [46], [47]
3 $D_{4}(q)$ final, $p|q$ ($p=2$ or odd) An, Himstedt, Huang [14], [41]
$2F_{4}(2^{2n+1})$ final, $p=2$ Himstedt, Huang [44]

Together with the results in [8], [10], [7] and [5], this completes the proof of
Dade’s conjecture for $G_{2}(q),$ $3D_{4}(q)$ and $2F_{4}(2^{2n+1}).$ ,
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