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1 Introduction
The subject which we are going to deal with has a quite classical background in the
complex function theory. Cf. Corvaja-Noguchi [4] for the details of this talk.

(a) Nevanlinna’s unicity theorem. We begin with the famous five points theorem
of R. Nevnalinna.

Theorem 1.1. (Unicity Theorem) Let $f,$ $g:Carrow P^{1}(C)$ be two non-constant mero-
morphic functions. If there are five distinct points $a_{i}\in P^{1}(C),$ $1\leq i\leq 5$ such that
$Suppf^{*}a_{i}=Suppg^{*}a_{i}(1\leq i\leq 5)$ , then $f\equiv g$ .

This follows from Nevanlinna’s Second Fundamental Theorem, also called Second Main
Theorem (Acta 1925, (Second Th\’eor\‘eme fondamental” due to [6]; abbreviated $(SFT” )$ :

Theorem 1.2. (SFT) Let $f$ : $Carrow P^{1}(C)$ be a meromorphic function, and $a_{i}\in P^{1}(C),$ $1\leq$

$i\leq q_{f}$ be distinct $q$ points. Then

$(q-2)T_{f}(r) \leq\sum_{i=1}^{q}N(r, Suppf^{*}a_{i})+smal1$-term.

Here $T_{f}(r)$ denotes the order function (energy integral) of $f$ : $Carrow P^{1}(C)$ , and $N(r, *)$

denotes the counting function for a point distribution in the disk of radius $r$ with center
at the origin (cf. \S 3 for notation).

Proof of Theorem 1.1. By Nevanlinna’s SFT 1.2 we have

$(5-2=3)T_{f(}$ or $g)(r) \leq\sum_{i=1}^{5}N(r, Suppf^{*}( or g^{*})a_{i})+smal1$-term.
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Suppose $f\not\equiv g$ . Then the assumption implies that

$\sum_{i=1}^{5}N(r, Suppf^{*}a_{i})\leq N(r, (f-g)_{0})\leq T_{f-g}(r)+O(1)$

$\leq T_{f}(r)+T_{g}(r)+O(1)\leq\frac{2}{3}\sum_{i=1}^{5}N(r, Supp\int^{*}a_{i})+smal1$ -term.

Thus, $1 \leq\frac{2}{3}$ ; a contradiction. $\square$

Remark. The number 5 in the above unicity theorem is optimal for the following trivial
reason: Set $f(z)=e^{z},$ $g(z)=e^{-z};a_{1}=0,$ $a_{2}=\infty,$ $a_{3}=1,$ $a_{4}=-1$ . Then $f^{*}a_{i}=$

$g^{*}a_{i},$ $1\leq i\leq 4$ . Note that by setting $\sigma(w)=w^{-1}$ and $D= \sum_{1}^{4}a_{i}$ we have

$\sigma^{*}D=D$ , $\sigma\circ f=g$ ; $f(z),$ $g(z)\in C^{*}$ .

Theorem 1.3. (E.M. Schmid 1971) Let $E$ be an elliptic curve, and let $a_{i}\in E,$ $1\leq$

$i\leq 5$ , be distinct five points. Let $f,$ $g$ : $Carrow E$ be holomorphic maps. If $Suppf^{*}a_{i}=$

$Suppg^{*}a_{i},$ $1\leq i\leq 5$ , then $f\equiv g$ .

Theorem 1.4. (H. Fujimoto 1975) Let $f,$ $g:Carrow P^{n}(C)$ be holomorphic curves such that
at least one of them is linearly non-degenerate. Let $\{H_{j}\}_{j=1}^{3n+2}$ be hyperplanes of $P^{n}(C)$ in
geneml position. If $f^{*}H_{j}=g^{*}H_{j},$ $1\leq j\leq 3n+2$ (as divisors, counting multiplicities),

then $f\equiv g$ .

Schmid’s and Fujimoto‘s theorems are deduced from some SFT $s$ in the corresponding
cases. It is an interesting problem to decrease the number (five” in Theorem 1.1, and the
case of “three” is critical:

Theorem 1.5. Let $a_{i}\in\hat{C}(1\leq i\leq 3)$ be distinct points. Let $f$ and $g$ be distinct
nonconstant meromorphic functions on $C$ such that $f^{*}\{a_{i}\}=g^{*}\{a_{i}\}$ as divisors for all
$i=1,2,3$ . Then there is no meromorphic function $h$ on $C$ other than $f$ and $g$ , satisfying
$h^{*}\{a_{i}\}=f^{*}\{a_{i}\}(i=1,2,3)$ .

By a linear fractional transformation we may assume $\{a_{i}\}_{i=1}^{3}=\{0,1, \infty\}$ . Imposing $\int$

and $g$ to have values in the multiplicative group $C^{*}=C\backslash \{0\}$ , we have

Corollary 1.6. Let $f,$ $g:Carrow C^{*}$ be nonconstant and holomorphic. If $f^{*}\{1\}=g^{*}\{1\}$ ,

then $f\equiv g$ or $f \equiv\frac{1}{g}$ ; i. e., with the automorphism $\phi(w)=\frac{1}{w}$ of $C^{*}$ fixing 1, $ttf=\phi og$
”

holds.

N.B. The above Corollary is most relevant to the present talk. By our main Theorem
2.1 which will be stated soon later, the above condition “ $f^{*}\{1\}=g^{*}\{1\}$

” (as divisors) can
be replaced by $f^{-1}\{1\}=g^{-1}\{1\}$ (as sets); this special case is already a new result even
in the classical setting.

The following is a kind of unicity problem in arithmetic theory, which is sometimes
called a “support problem”:
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Erd\"os’ Problem (1988). Let $x,$ $y$ be positive integers. Is it true that

$\{p$ ; prime, $p|(x^{n}-1)\}=\{p$ ; prime, $p|(y^{n}-1)\},\forall n\in N$

$\Leftrightarrow x=y$ ?

The answer is Yes:

Theorem 1.7. (Schinze11960/75, Corrales-Rodorig\’afiez and R. Schoof, JNT 1997; cf.
[4] $)$

(i) Suppose that except for finitely many prime $p\in Z$

$y^{n}\equiv 1(mod p)$ whenever $x^{n}\equiv 1(mod p),\forall n\in$ N.

Then, $y=x^{h}$ with some natural number $h\in$ N.

(ii) Let $E$ be an elliptic curve defined over a number field $k$ , and let $P,$ $Q\in E(k)$ .
Suppose that except for finitely many prime $p\in O(k)$

$nQ=0$ whenever $nP=0$ in $E(k_{p})$ .

Then either $Q=\sigma(P)$ with some $\sigma\in$ End$(E)$ , or both $P,$ $Q$ are torsion points.

(b) Yamanoi’s Unicity Theorem. K. Yamanoi proved in Forum Math. 2004 the
following striking unicity theorem:

Theorem 1.8. Let $A_{i},$ $i=1,2$ , be abelian varieties, and let $D_{i}\subset A_{i}$ be irreducible divisors
such that

St $(D_{i})=\{a\in A_{i};a+D_{i}=D_{i}\}=\{0\}$ .

Let $f_{i}:Carrow A_{i}$ be (algebmically) nondegenemte entire holomorphic curves. Assume that
$f_{1}^{-1}D_{1}=f_{2}^{-1}D_{2}$ as sets. Then there exists an isomorphism $\phi$ : $A_{1}arrow A_{2}$ such that

$f_{2}=\phi\circ f_{1}$ , $D_{1}=\phi^{*}D_{2}$ .

N.B. (i) The new point is that we can determine not only $\int$ , but the moduli point of
a polarized abelian variety $(A, D)$ through the distribution of $f^{-1}D$ by a nondegenerate
$f:Carrow A$ .

(ii) The assumptions for $D_{i}$ to be irreducible and the triviality of St $(D_{i})$ are not restric-
tive. There is a way of reduction.

(iii) For simplicity we assume them here.

2 Main Results

We want to uniformize the results in the previous section. Therefore we deal with semi-
abelian varieties.
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Let $A_{i},$ $i=1,2$ be semi-abelian varieties:

$0arrow(C^{*})^{t_{i}}arrow A_{i}arrow A_{0i}arrow 0$ ,

where $A_{0i}$ are abelian varieties. Let $D_{i}\subset A_{i},$ $i=1,2$ , be irreducible divisors such that

St $(D_{i})=\{0\}$ (for simplicity).

For real-valued functions $\phi(r)$ and $\psi(r)(r>1)$ , we write $\phi(r)\leq\psi(r)||_{E}$ if there is a
Borel subset $E\subset[1, \infty)$ such that $m(E)<\infty$ , and $\phi(r)\leq\psi(r),$ $r\not\in E$ . We set

$\phi(r)\sim\psi(r)||\Leftrightarrow$ ョ$E,$ ョ$C>0,$ $C^{-1}\phi(r)\leq\psi(r)\leq C\phi(r)||_{E}$ .

Main Theorem 2.1. ([4]) Let $f_{i}:Carrow A_{i}(i=1,2)$ be non-degenemte holomorphic
curves. Assume that

$\underline{Suppf_{1}^{*}D_{1}}\subset\underline{Suppf_{2}^{*}D_{2_{\infty}}}$ (germs at $\infty$), (2.2)

and
$N_{1}(r, f_{1}^{*}D_{1})\sim N_{1}(r, f_{2}^{*}D_{2})||$ . (2.3)

Here $N_{1}(r, f_{1}^{*}D_{1})=N(r, Suppf_{1}^{*}D_{1}))$ . Then there is a finite \’etale morphism $\phi$ : $A_{1}arrow A_{2}$

such that
$\phi\circ f_{1}=f_{2}$ , $D_{1}\subset\phi^{*}D_{2}$ .

If equality holds in (2.2), then $\phi$ is an isomorphism and $D_{1}=\phi^{*}D_{2}$ .

N.B. Assumption (2.3) is necessary (see Example below).
The following corollary follows immediately from the Main Theorem 2.1.

Corollary 2.4. (i) Let $f$ : $Carrow C^{*}$ and $g$ : $Carrow E$ with an elliptic curve $E$ be
holomorphic and non-constant. Then

$\underline{f^{-1}\{1\}}_{\infty}\neq\underline{g^{-1}\{0\}}_{\infty}$ .

(ii) If $\dim A_{1}\neq\dim A_{2}$ in the Main Theorem 2.1, then

$\underline{f_{1}^{-1}D_{1}}\neq\underline{f_{2}^{-1}D_{2_{\infty}}}$ .

N.B.

(i) The first statement means that the difference of the value distribution property
caused by the quotient $C^{*}arrow C^{*}/\langle\tau\rangle=E$ cannot be recovered by any later choice
of $f$ and $g$ , even though they are allowed to be arbitmrily tmnscendental.

$C$
$arrow f$

$\searrow$

$g$

$c*$

$\downarrow/\langle\tau\rangle$

$E$
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(ii) The second statement implies that the distribution of $f_{i}^{-1}D_{i}$ about $\infty$ contains the
topological informations such as $\dim A_{i}$ and the compactness or non-compactness
of $A_{i}$ . It is already interesting to observe that this works even for one parameter
subgroups with Zariski dense image.

Example. Set $A_{1}=C/Z(\cong G_{m})$ and let $D_{1}=1$ be the unit element of $A_{1}$ . Let $f_{1}$ :
$Carrow A_{1}$ be the covering map. Take a number $\tau\in C$ with $\Im\tau\neq 0$ . Set $A_{2}=C/(Z+Z\tau)$ ,

which is an elliptic curve. Let $D_{2}=0\in A_{2}$ and $f_{2}:Carrow A_{2}$ be the covering map.

Then $\int_{1}^{-1}D_{1}=Z\subset Z+\tau Z=f_{2}^{-1}D_{2}$ : assumption (2.2) of the Main Theorem 2.1 is

satisfied. There is, however, no non-constant morphism $\phi$ : $A_{1}arrow A_{2}$ . Note that

$N_{1}(r, f_{1}^{*}D_{1})\sim r$ , $N_{1}(r, f_{2}^{*}D_{2})\sim r^{2}$ .

Thus, $N_{1}(r, f_{1}^{*}D_{1})$ di $N_{1}(r, f_{2}^{*}D_{2})||$ : assumption (2.3) fails.

3 SFT for semi-abelian varieties

For a closed subscheme $Z\subset X$ of a compact complex space $X$ and an entire holomorphic

curve $f$ : $Carrow X,$ $f(C)\not\subset SuppZ$ , we write

$T_{f}(r, \omega_{Z})=\int_{1}^{r}\frac{dt}{t}\int_{\Delta(t)}f^{*}\omega_{Z}$ ,

$\underline{f^{*}Z}_{k,a}=\min\{ord_{a}f^{*}Z, k\}(k\leq\infty)$ ,

$N_{k}(r, f^{*}Z)= \int_{1}^{r}\frac{dt}{t}(\sum_{a\in\Delta(t)}\underline{f^{*}Z}_{k,a})$ ,

$N(r, f^{*}Z)=N_{\infty}(r, f^{*}Z)<T_{f}(r, \omega_{Z})+O(1)$ .

The last equation is referred as Nevanlinna‘s inequality which is a direct consequence of
the First Fundamental Theorem (FFT), also called First Main Theorem (FMT). The FFT
for holomorphic curves into complex algebraic varieties is established (cf. [9])

Let $A$ be a semi-abelian variety, and let $f$ : $Carrow A$ be an entire holomorphic curve. Set

$\bullet$ $J_{k}(A)\cong A\cross C^{nk}$ : the k-jet bundle over $A$ ;

$\bullet$ $J_{k}(f):Carrow J_{k}(A)$ : the k-jet lift of $f$ ;

$\bullet$ $X_{k}(f)$ : the Zariski closure of the image $J_{k}(f)(C)$ in $J_{k}(A)$ .

The following is the SFT for holomorphic curves into semi-abelian varieties.

Theorem 3.1. (Nog.-Winkelmann-Yamanoi, Acta $2002$ & [9] & Yamanoi Forum Math.
2004) Let $f$ : $Carrow A$ be algebmically non-degenemte.

(i) Let $Z$ be an algebmic reduced subvariety of $X_{k}(f)(k\geqq 0)$ . Then there exists a
compactification $\overline{X}_{k}(f)$ of $X_{k}(f)$ such that

$T_{J_{k}(f)}(r;\omega_{\overline{Z}})=N_{1}(r;J_{k}(f)^{*}Z)+o(T_{f}(r))||$ . (3.2)
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(ii) Moreover, if codim $X_{k}(f)Z\geqq 2$ , then

$T_{J_{k}(f)}(r;\omega_{\overline{Z}})=o(T_{f}(r))||$ . (3.3)

(iii) If $k=0$ and $Z$ is an effective reduced divisor $D$ on $A$ , then $\overline{A}$ is smooth, equivariant,
and independent of $\int$ ; furthermore, (3.2) takes the form

$T_{f}(r;L(\overline{D}))=N_{1}(r;f^{*}D)+o(T_{f}(r, L(\overline{D})))||$ . (3.4)

4 Proof of the Main Theorem

Let me first recall

Theorem 4.1. ( ${\rm Log}$ Bloch-Ochiai, Nog. 1977 Hiroshima Math.J./81 Nagoya Math. J.)
Let $f$ : $Carrow A$ be an entire holomoprhic curve into a semi-abelian variety A. Then the
Zariski closure $\overline{f(C)}^{Zar}$ is a tmnslate of a subgmup.

Proof of Main Theorem 2.1. With the given $f_{i}$ : $Carrow A_{i}(i=1,2)$ we set $g=(f_{1}, f_{2})$ :
$Carrow A_{1}\cross A_{2}$ . Then $A_{0}=\overline{g(C)}^{Zar}$ is a semi-abelian variety by the above ${\rm Log}$ Bloch-
Ochiai $s$ Theorem; $p_{i}:A_{0}arrow A_{i}$ be the projections; $E_{i}=p_{i}^{*}D_{i}$ . It follows that

$T_{f_{1}}(r)\sim T_{f_{2}}(r)\sim T_{g}(r)=T(r)$ .

By Nog. Math. Z. (1998) and a translation we may assume $g(O)=0\in E_{1}$ . Let $E_{i}=$

$\sum_{\nu}(F_{i}+a_{x\nu})$ be the irreducible decomposition and $F_{i}\ni 0$ .
If $F_{1}\neq F_{2}$ , then codim $A_{0}F_{1}\cap F_{2}\geq 2$ . It follows from our SFT, Theorem 3.1 that

$T(r)\sim N_{1}(r, f_{1}^{*}D_{1})\sim N_{1}(r,g^{*}(F_{1}\cap F_{2}))=o(T(r))||$ .

This is a contradiction. Therefore we see that $F_{1}=F_{2}$ . Moreover, we deduce that

(i) $E_{1}\subset E_{2}$ ,

(ii) St $(E_{1})\subset$ St $(E_{2})$ , and they are finite,

(iii) $p_{i}$ are isogenies,

(iv) $A_{1}\cong A_{0}/St(E_{1})arrow^{\phi}A_{0}/St(E_{2})\cong A_{2}$ .

$\square$
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5 Arithmetic Recurrences

Due to the well-known correspondence between Number Theory and Nevanlinna Theory,

it is tempting to give a number-theoretic analogue of Theorem 2.1 as P\’al Erd\"os Problem-
$Schinzel-Corrales-Rodorig\acute{a}\tilde{n}ez\$Schoof Theorem.

A related problem asks to classify the cases where $x^{n}-1$ divides $y^{n}-1$ for infinitely

many positive integers $n$ . The natural generalization to several variables is represented
by Pisot’s problem, asking to characterize the pairs of linear recurrent sequences $(n\mapsto$

$f_{1}(n)),$ $(n\mapsto f_{2}(n))$ such that $f_{1}(n)$ divides $f_{2}(n)$ for every integer $n$ (or for infinitely many
integers $n$).

We would like to deal with the case of a semi-abelian variety with a given divisor,

i.e., a polarized semi-abelian variety. As it often happens, the complex-analytic theory

is more advanced, and we dispose only of partial results in the number theoretic case.
In the present situation, we can prove an analogue of the Main Theorem 2.1 only in the

linear toric case, but not in the general case of semi-abelian varieties, that is left to be a
Conjecture. Here is our result in the number theoretic case.

Theorem 5.1. ([4]) Let $\mathcal{O}_{S}$ be a ring of S-integers in a number field $k$ . Let $G_{1},$ $G_{2}$ be
linear tori, let $g_{i}\in G_{i}(\mathcal{O}_{S})$ be elements genemting Zariski-dense subgroups, and let $D_{i}$

be reduced divisors defined over $k$ , with defining ideals $\mathcal{I}(D_{i})$ , such that each irreducible
component has a finite stabilizer and St $(D_{2})=\{0\}$ .

Suppose that for infinitely many $n\in N$ ,

$(g_{1}^{n})^{*}\mathcal{I}(D_{1})\supset(g_{2}^{n})^{*}\mathcal{I}(D_{2})$ . (5.2)

Then there exist an \’etale morphism $\phi$ : $G_{1}arrow G_{2}$ , defined over $k$ , and $h\in N$ such that
$\phi(g_{1}^{h})=g_{2}^{h}$ and $D_{1}\subset\phi^{*}(D_{2})$ .

N.B.

(i) Theorem 5.1 is deduced from the main results of Corvaja-Zannier, Invent. Math.
2002.

(ii) By an example we cannot take $h=1$ in general.

(iii) By an example, the condition on the stabilizers of $D_{1}$ and $D_{2}$ cannot be omitted.

(iv) Note that inequality (inclusion) (5.2) of ideals is assumed only for an infinite se-
quence of $n$ , not necessarily for all large $n$ . On the contrary, we need the inequality
of ideals, not only of their supports, i.e. of the primes containing the corresponding
ideals.

(v) One might ask for a similar conclusion assuming only the inequality of supports.
There is some answer for it, but it is of a weaker form.
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6 l-parameter Analytic Subgroups

In S. Lang’s ”Introduction to Transcendental Numbers“, Addison-Wesley, 1966, he wrote
at the last paragraph of Chap. 3

“Independently of transcendental problem one can raise an interesting question of
algebraic-analytic nature, namely given a l-parameter subgroup of an abelian variety
(say Zariski dense), is its intersection with a hyperplane section necessarily non-empty,
and infinite unless this subgroup is algebraic¿‘

In 6 years later, J. Ax (Amer. J. Math. (1972)) took this problem:

Theorem 6.1. Let $\theta$ be a reduced theta function on $C^{m}$ with respect to a lattice $\Gamma\subset C^{m}$ .
Let $L$ be a l-dimensional affine subspace of $C^{m}$ . Then either $(\theta|L)$ is constant or has an
infinite number of zeros; $|\{(\theta|L)=0\}\cap\triangle(r)|\sim r^{2}$ .

N.B. In the talk at Kyoto I spoke that it seemed to be still open that $|\{(\theta|L)=$

$0\}/\Gamma|=\infty$ unless $f(C)$ is algebraic. Later on, I found that it is not difficult to deduce
the infinity of $|\{(\theta|L)=0\}/\Gamma|$ for non-algebraic $g$ from the growth estimate in Theorem
6.1, once it is noticed:

Proof. We necessarily assume $m\geq 2$ . Let $\phi$ : $Carrow C^{m}/\Gamma$ be a l-parameter subgroup
with dense Zariski image, and $D=\{\theta=0\}/\Gamma$ . If $\phi(C)\cap D$ is finite, then there would
be a point $a_{0}\in D$ such that $\lim\sup_{rarrow\infty}|\{z\in\triangle(r);\phi(z)=a_{0}\}|/r^{2}>0$ . By translation
we may assume $a_{0}=0$ . Since $\phi$ is a group homomorphism and $Ker\phi$ is discrete, $Ker\phi$

had to be a lattice of $C$ (with compact quotient). Thus $\phi$ would be factored through an
elliptic curve (Contradiction). $\square$

By making use of our SFT, Theorem 3.1 we are able to obtain a more exact growth
estimate and detailed geometric property of the intersection $f(C)\cap D$ .

Theorem 6.2. Let $f$ : $Carrow A$ be a l-pammeter analytic subgroup in a semi-abelian
variety $A$ with $v=f^{f}(0)$ . Let $D$ be a reduced divisor on $A$ .

(i) If $A$ is abelian and $H(\cdot,$ $\cdot)$ denotes the Riemann form associated with $D_{f}$ then we
have

$N(r;f^{*}D)=H(v, v)\pi r^{2}+O(\log r)$ ,
$=(1+o(1))N_{1}(r;f^{*}D)$ .

(ii) Assume that $\dim A\geq 2$ . Let $f$ be an arbitmw algebmically non-degenemte holo-
morphic curue and assume that St $(D)$ is finite. Then there is an irreducible com-
ponent $D’$ of $D$ such that then $f(C)\cap D’$ is Zariski dense in $D$‘; in particular,
$|f(C)\cap D|=\infty$ .
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Proof. (i) Note that the first Chern class $c_{1}(L(D))$ is represented by $i\partial\overline{\partial}H(u),$ $u))$ . It
follows from our SFT Theorem 3.1 that

$N(r;f^{*}D)=T_{f}(r;L(D))+O(\log r)$

$= \int_{0}^{r}\frac{dt}{t}\int_{\Delta(t)}iH(v, v)dz\wedge d\overline{z}+O(\log r)$

$=H(v, v)\pi r^{2}+O(\log r)$

$=(1+o(1))N_{1}(r, f^{*}D)$ .

(ii) If the claim does not hold, there exists an algebraic subset $E$ such that $f(C)\cap D\subset$

$E\subsetneq D$ and codim $AE\geq 2$ . Then our SFT Theorem 3.1 yields that

$N(r, f^{*}E)=o(r^{2})=N(r, f^{*}D)\sim r^{2}||$ (contradiction).

口
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