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ABSTRACT. This is a preannouncement version of the forthcoming paper [Kall].
Let $\phi(s, x, \lambda)$ be the Lerch zeta-function defined by (1.1) below, and $I_{m_{1},m_{2}}(s_{1}, s_{2};a, \lambda)$

the product average of higher derivatives of $\phi(s, x, \lambda)$ , given in the form (1.2). The present
investigation proceeds with our previous study [Ka2][Ka9] to establish a gencral explicit
formula for (1.2) (Theorem 1); this further leads us to show that a complete asymptotic
expansion exists for (1.2) when $s_{1}=\sigma+it$ and $s_{2}=\sigma_{2}-it$ in the descending order of
$t$ as $tarrow\pm\infty$ (Theorem 2). The existence of such an asymptotic expansion of (1.2) has
been shown in particular when $m_{1}=m_{2}=0$ and $a=1$ by the author [Ka2]; however,
it is rather remarkable that a similar asymptotic series still exists in the most general
setting into this direction. Our main formula (2.13) with (2.14) and (2.15) is reduced, for
e.g., to an improvement upon the previous result (1.6) on the critical line $\sigma=1/2$ (see
Corollary 2.3), and to similar asymptotic expansions of (1.2) in more extended regions
(Corollaries 2.1 and 2.2), in particular including the line $\sigma=1$ (Corollary 2.4).

1. INTRODUCTION

Throughout the following, $s=\sigma+it$ denotes a complex variable, $x$ and $\lambda$ complex
parameters with $x>0$ , and the notation $e(\lambda)=e^{2\pi i\lambda}$ is frequently used. The Lerch
zeta-function $\phi(s, x, \lambda)$ is defined by

(1.1) $\phi(s, x, \lambda)=\sum_{l=0}^{\infty}e(\lambda l)(l+x)^{-s}$ $({\rm Re} s=\sigma>1)$ ,

and its meromorphic continuation over the whole s-plane; it is an entire function for
$\lambda\in \mathbb{R}\backslash \mathbb{Z}$ , while if $\lambda\in \mathbb{Z}$ it is reduced to the Hurwitz zeta-function $\zeta(s, x)$ , and further
to the Riemann zeta-function $\zeta(s)=\zeta(s, 1)$ .

We write $\phi^{(m)}(s, x, \lambda)=(\partial/\partial s)^{m}\phi(s, x, \lambda)(m=0,1, \ldots)$ in the sequel. The present
paper proceeds further with our previous study [Ka2] [Ka9] of the mean squares of Lerch
zeta-functions. We shall first prove a general explicit formula for the product average of
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$\phi^{(m)}(s, x, \lambda)$ , in the form

(1.2) $I_{m_{1},m2}(s_{1}, s_{2};a, \lambda)=\int_{0}^{1}\phi^{(m_{1})}(s_{1}, a+x, \lambda)\phi^{(m)}2(s_{2}, a+x, -\lambda)dx$

for any nonnegative integcrs $m_{1}$ and $m_{2}$ , where $s_{1}$ and $s_{2}$ arc independent complex vari-
ablcs, and $a>0$ and $\lambda$ fixed real numbers (Theorem 1); this leads us to show that a
complete asymptotic expansion exists for (1.2) when $s_{1}=\sigma_{1}+it$ and $s_{2}=\sigma_{2}-it$ in the
descending order of $t$ as $tarrow\pm$oo (Theorem 2), the casc $\sigma_{1}=\sigma_{2}$ and $m_{1}=m_{2}$ of which
in particular yields complete asymptotic expansions of the mean square

(1.3) $\int_{0}^{1}|\phi^{(m)}(s, a+x, \lambda)|^{2}dx$ $(m=0,1,2, \ldots)$

as ${\rm Im} sarrow\pm\infty$ (Corollaries 2.3-2.5). When $m=0$ and $a=1$ , the existence of complete
asymptotic expansions of (1.3) were shown in [Kal]; however, it is rather remarkable that
similar asymptotic series still exist for more general product averages such as (1.2).

We give here a brief overview of the history of research related to the integrals of the
type (1.2). Let $\Gamma(s)$ denote the gamma function. Then Mikolas [Mil] in 1956 proved the
formula

(1.4) $\int_{0}^{1}((s_{1}, x)\zeta(s_{2}, x)dx=2(2\pi)^{s_{1}+s-2}2\Gamma(1-s_{1})\Gamma(1-s_{2})$

$\cross\cos\{\frac{\pi}{2}(s_{1}-s_{2})\}\zeta(2-s_{1}-s_{2})$

if $\max({\rm Re} s_{1}, {\rm Re} s_{2}, {\rm Re}(s_{1}+s_{2}))<1$ ; otherwise the integral divcrges since $((s, x)$ has a
singularity at $x=0$ (see also [Mi2] for variants of (1.4)). It is hence natural to considcr the
function $\zeta(s, x)-x^{-s}=\zeta(s, 1+x)$ (by (1.1)), for which the singularity in $x$ is removed.
The mean square $I_{0}(s)= \int_{0}^{1}|\zeta(s, 1+x)|^{2}dx$ was already studied in 1952 by Koksma-
Leckerkerker [KL], who proved that $I_{0}(1/2+it)=O(\log t)$ for $t\geq 2$ . Improvements upon
this result were due to various authors; we refer the reader, for e.g., to [KM3] or [Ka9].

As for asymptotic aspects of Lerch zeta-functions, hybrid type mean value theorems for
the weighted mean square $\int_{0}^{\infty}|\phi(\sigma+it, a, \lambda)|^{2}e^{-\delta t}dt$ as $\deltaarrow+0$ were proved by Klusch
[Kll], while an asymptotic formula for the mean square $I_{0}(s; \lambda)=\int_{0}^{1}|\phi(s, 1+x, \lambda)|^{2}dx$ ,
where $\phi(s, 1+x, \lambda)=e(-\lambda)\{\phi(s, x, \lambda)-x^{-s}\}$ (by (1.1)) as ${\rm Im} s=tarrow+\infty$ with the error
term $O(t^{-1})$ was derived by Zhang [Zl]. The author [Ka2] established a complete asymp-
totic expansion of $I(s;\lambda)$ in the descending order of ${\rm Im} s$ as ${\rm Im} sarrow\pm\infty$ , where Atkinson‘s
[At] dissection method was applied upon combined with Mellin-Barnes type integrals.
This type of integrals were extensively applied by Motohashi to investigate higher power
moments and spectral theory of zeta and allied functions (see, for e.g., $[Mo1]-[Mo3]$ ). It is
worth-while noting that the integrals have advantage over heuristic treatments in study-
ing certain asymptotic aspects and transformation properties of zeta and theta functions
$($ see also $[Ka3]-[Ka8][Kal0]$ [KN] $)$ . Egami-Matsumoto [EM] applicd this type of integrals
to investigate a discrete analogue of higher power moments of $\zeta(s, x)$ .

Furthermore, a multiple mean square of $\phi(s, x, \lambda)$ , in the form

$\int_{0}^{1}\cdots\int_{0}^{1}|\phi(s, a+x_{1}+\cdots+x_{m}, \lambda)|^{2}dx_{1}\cdots dx_{m}$

for any integer $m\geq 1$ , was recently studied by the author [Ka9], who established its
complete asymptotic expansion in the descending order of ${\rm Im} s$ as ${\rm Im} sarrow\pm\infty$ ; crucial
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r\^oles here were played by various properties of hypergeometric functions, which wcre again
manipulated with Mellin-Barnes type integrals.

The mean square of the derivative of $\zeta(s, x)$ , on the other hand, were first treated by
Zhang [Zl], who proved an asymptotic formula for $I_{1}(s)= \int_{0}^{1}|\zeta’(s, x)|^{2}dx$ on the critical
line $\sigma=1/2$ as $tarrow+\infty$ with the error term $O(t^{-1/6}\log t)$ . Guo [GI][G2] showed the
same formula for $I_{1}(1/2+it)$ upon making its coefficients more explicit, together with the
improved error term $O(t^{-1}\log^{2}t)$ . Let $\gamma_{j}(x)(j=0,1, \ldots)$ denote the coefficients of the
Taylor series expansion

(1.5) $\zeta(s, x)=(s-1)^{-1}+\sum_{j=0}^{\infty}\gamma_{j}(x)(s-1)^{j}$

at $s=1$ (cf. [Iv)), where $\gamma_{j}(1)=\gamma_{j}(j=0,1, \ldots)$ are the ordinary Euler-Stieltjes
constants. Then a more general mean square

$I_{m}(s)= \int_{0}^{1}|\zeta^{(m)}(s, 1+x)|^{2}dx$ $(m=1,2, \ldots)$

was investigated on the lines $\sigma=1/2$ and $\sigma=1$ by Katsurada-Matsumoto [KM5], who
in particular showed the asymptotic formula

(1.6) $I_{m}( \frac{1}{2}+it)=\frac{1}{2m+1}\log^{2m+1}(\frac{t}{2\pi})+\sum_{j=0}^{2m}\frac{(2m)!\gamma_{j}}{(2m-j)!}\log^{2m-j}(\frac{t}{2\pi})$

$+ \frac{1}{t^{2}}\mathcal{P}_{m}(\log t,$ $\frac{1}{t})-2{\rm Re}\{\frac{m!\zeta^{(m)}(\frac{1}{2}+it)}{(\frac{1}{2}+it)^{m+1}}\}+O(t^{-m-1})$

for $t\geq 2$ , where $\mathcal{P}_{m}(\log t, 1/t)$ denotes some polynomial in $\log t$ and $1/t$ , and the implied
O-constant depends only on $m$ .

It seems quite difficult to determine the exact form of $\mathcal{P}_{m}(\log t, 1/t)$ and to sharpen the
error term $O(t^{-m-1})$ above by elaborating the method developed in [KM5]; considerable
computational complexity arises along with the increase of the multiplicity of differentia-
tion, where the profound difficulty here lies in the asymptotic analysis of the (successively
differentiated) product of the zeta-function and the quotient of gamma functions (see
(2.2) and (2.3) below). We can in fact pass through this crucial step by introducing a
certain auxiliary zeta-function, which allows us to establish (complete) Stirling‘s type
formula for the quotient of gamma functions, together with its explicit remainder term
whose representation is uniformly valid throughout the whole sector $|\arg z|<\pi$ ; this uni-
formity of the representation is most appropriate for the analysis of (2.3) aftcr successive
differentiations.

2. STATEMENT OF RESULTS

Let $\Gamma(s)$ denote the gamma function, and $(s)_{k}=\Gamma(s+k)/\Gamma(s)$ for any $k\in \mathbb{Z}$ Pochham-
mer’s symbol. Note in particular that $(s)_{-h}=1/(s-1)\cdots(s-h)$ for any $h\geq 1$ . We
write

$f^{(m,n)}(u_{0}, v_{0})= \frac{\partial^{m+n}f}{\partial u^{m}\partial v^{n}}(u,v)=(u0,vo)$ $(m, n=0,1, \ldots)$

for a function $f(u, v)$ holomorphic at $(u, v)=(u_{0}, v_{0})$ , where the indcx $(m, n)$ indicates
(in this order) the multiplicities of each differentiation in terms of the first or the second
variable.
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The proofs of Theorems 1 and 2 will in fact be initiated from the case $m=1$ of [Ka9,
Theorem 2] yielding Formula (3.3) with (3.4) below, one of the mcrits of which is that it
contains the indcpendent complex variables $s_{1}$ and $s_{2}$ . We can therefore differentiate both
sides of (3.3) successively to obtain the following Theorem 1. Let $L(s, \chi)$ denote the Dirich-
let L-function attached to a Dirichlet character $\chi$ modulo $q$ . Then the same principle was
first applied by the author [Kal] to study the discrete mean square $\sum_{\chi(modq)}|L^{(m)}(s, \chi)|^{2}$

for any integer $m\geq 1$ , where the summation is taken over all Dirichlet characters $\chi$

modulo $q$ .
Our first mein result asserts

Theorem 1. Let $I_{m_{1},m_{2}}(s_{1}, s_{2)}\cdot a, \lambda)$ be defined by (1.2) with any nonnegative integers $m_{1}$

and $m_{2}$ , where $s_{1}$ and $s_{2}$ are independent complex variables, and $a>0$ and $\lambda$ are any real
numbers. Define the set $\tilde{E}\subset \mathbb{C}^{2}$ by

(2.1) $\tilde{E}=\{(s_{1}, s_{2});s_{1}+s_{2}\in \mathbb{Z}, s_{1}+s_{2}\leq 2\}\cup\{(s_{1}, s_{2});s_{1}\in \mathbb{Z} or s_{2}\in \mathbb{Z}\}$ .

Then for any integer $N\geq 1$ in the region $1-N<{\rm Re} s_{j}=\sigma_{j}<1+N(j=1,2)$ except

the points at $\tilde{E}$ the formula

(2.2) $I_{m_{1},m_{2}}(s_{1}, s_{2};a, \lambda)=-a^{1-s_{1}-s2}\sum_{j=0}^{2}\frac{(m_{1}+m_{2})!}{(m_{1}+m_{2}-j)!}\frac{(-\log a)^{m_{1}+m2^{-j}}}{(1-s_{1}-s_{2})^{j+1}}m_{1}+m$

$+R^{(m)}1,m2(s_{1}, s_{2};\lambda)+R^{(mm_{1})}2,(s_{2}, s_{1};-\lambda)$

$-S_{N}^{(mm)}1,2(s_{1}, s_{2};a, \lambda)-S_{N}^{()}m2,m1(s_{2}, s_{1};a, -\lambda)$

$-T_{N}^{(mm_{2})}1,(s_{1}, s_{2};a, \lambda)-T_{N}^{(m_{2},m_{1})}(s_{2}, s_{1};a, -\lambda)$

holds, where $R,$ $S_{N}$ and $T_{N}$ are defined by

(2.3) $R(s_{1}, s_{2}; \lambda)=\zeta_{\lambda}(s_{1}+s_{2}-1)\Gamma(s_{1}+s_{2}-1)\frac{\Gamma(1-s_{2})}{\Gamma(s_{1})}$ ,

(2.4) $S_{N}(s_{1}, s_{2};a, \lambda)=\sum_{n=0}^{N-1}\frac{(s_{1})_{n}}{(1-s_{2})_{n+1}}a^{1-s_{2}+n}e(\lambda)\phi(s_{1}+n, a+1, \lambda)$ ,

(2.5) $T_{N}(s_{1}, s_{2};a, \lambda)=\frac{(s_{1})_{N}}{(1-s_{2})_{N}}a^{1-s+N}2\sum_{l=1}^{\infty}\frac{e(l\lambda)}{l^{s_{1}+s_{2}-1}}\int_{l}^{\infty}\frac{y^{s_{1}+s2^{-2}}}{(a+y)^{s_{1}+N}}dy$ .

Furthermore, for any integer $K\geq 0$ the expression

(2.6) $T_{N}^{(mm)}1,2(s_{1}, s_{2};a, \lambda)=\sum_{k=1}^{K}U_{N,k}^{()}m1,m2(s_{1}, s_{2};a, \lambda)+V_{N,K}^{(mm)}1,2(s_{1}, s_{2};a, \lambda)$

follows in the same region of $(s_{1}, s_{2})$ above, where $U_{N,k}$ and $V_{N,K}$ are given by

(2.7) $U_{N,k}(s_{1}, s_{2};a, \lambda)=\frac{(-1)^{k-1}(2-s_{1}-s_{2})_{k-1}(s_{1})_{N-k}}{(1-s_{2})_{N}}a^{1-S2+N}$

$\cross\sum_{l=1}^{\infty}\frac{e(l\lambda)}{l^{k}(a+l)^{s_{1}+N-k}}$ ,
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(2.8) $V_{N,K}(s_{1}, s_{2};a, \lambda)=\frac{(-1)^{K}(2-s_{1}-s_{2})_{K}(s_{1})_{N-K}}{(1-s_{2})_{N}}a^{1-s_{2}+N}$

$\cross\sum_{l=1}^{\infty}\frac{e(l\lambda)}{l^{s_{1}+s2^{-1}}}\int^{\infty}\frac{y^{s_{1}+s2^{-K-2}}}{(a+y)^{s_{1}+N-K}}dy$ .

Here the empty sums are to be regarded as null.

Remark. The exceptional set $\tilde{E}$ in (2.1) is defined by collecting all singular points of the
factors on the right side of (2.2); formulae similar to (2.2) for the exceptional points
$(s_{1}, s_{2})\in\tilde{E}$ can be deduced as the limiting cases of Theorem 1 (see, for e.g., Corollar-
ies 2.1, 2.3 and 2.4).

Remark. On the right sides of (2.7) and (2.8) (which is reduced to (2.5) if $K=0$), both
the infinite series converge in the region ${\rm Re} s_{1}>1-N$ , since the integral in each tcrm is
of order $O(l^{-{\rm Res}_{2}-N-1})$ as $larrow+\infty$ ; the expressions on the right sides are hence valid for
${\rm Re} s_{1}>1-N$ and ${\rm Re} s_{2}<1+N$ .

Let $\alpha$ and $\nu$ be any complex parameters. In order to describe our second main result,
we introduce N\"orlund $s$ generalized Bernoulli polynomials $B_{h}^{(\nu)}(\alpha)(h=0,1, \ldots)$ defined
by the Taylor series expansion

(2.9) $( \frac{z}{e^{z}-1})^{\nu}e^{\alpha z}=\sum_{h=0}^{\infty}\frac{B_{h}^{(\nu)}(\alpha)}{h!}z^{h}$

for $|z|<2\pi$ , where $\{z/(e^{z}-1)\}^{\nu}=\exp[\nu\log\{z/(e^{z}-1)\}]$ and the $\log\{\cdot\}$ here takes
the principal branch of logarithms. Note that $B_{h}^{(1)}(\alpha)=B_{h}(\alpha)(h=0,1, \ldots)$ are the
usual Bernoulli polynomials. We write sgn $t=t/|t|$ for $t\neq 0$ , and use the convention
that $\zeta(s, 0)=\zeta(s)$ throughout the following. Theorem 1 particularly yields complete
asymptotic expansions of (1.2) when $s_{1}=\sigma_{1}+it$ and $s_{2}=\sigma_{2}-it$ in the descending order
of $t$ as $tarrow\pm\infty$ .

Our second main result asserts

Theorem 2. Let $m_{1},$ $m_{2},$ $a_{f}\lambda,$ $I_{m_{1},m_{2}},$ $R,$ $S_{N},$ $T_{N},$ $U_{N,k}$ and $V_{N,K}$ be as in Theorem 1,
and define the set $E\subset \mathbb{R}^{2}$ by

$E=\{(\sigma_{1}, \sigma_{2});\sigma_{1}+\sigma_{2}\in \mathbb{Z}, \sigma_{1}+\sigma_{2}\leq 2\}$ .

Let further $P_{m}(\sigma, \tau, \log(|t|/2\pi))$ and $Q_{h}^{m_{1},m}2(\sigma_{1}, \sigma_{2}, \tau;\log(|t|/2\pi))$ be the polynomials in
$\log(|t|/2\pi)$ defined by

(2.10) $P_{m}(\sigma,$ $\tau;\log(\frac{|t|}{2\pi}I)=(-1)^{m}\sum_{j=0}^{m}(\begin{array}{l}mj\end{array})(^{(m-j)}(2-\sigma, \tau)\log^{m-j}(\frac{|t|}{2\pi}I$

for $\sigma\neq 1$ and $m=0,1,$ $\ldots$ , and

(2.11) $Q_{h^{1}}^{m,m2}(\sigma_{1},$ $\sigma_{2},$
$\tau;\log(\frac{|t|}{2\pi}))$

$=(-1)m_{1+2}m_{2} \sum_{j=0}^{m_{1}+m2}A_{h,j}^{m_{1},m}(\sigma_{1}, \sigma_{2}, \tau)\log^{m_{1+2}}m-j(\frac{|t|}{2\pi}I$
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for $h=1,2,$ $\ldots\rangle$ where

(2.12)
$A_{h,j}^{m_{1},m2}( \sigma_{1}, \sigma_{2}, \tau)=(-1)^{j}\sum_{j_{1}+j_{2}=j}0\leq j_{2}\leq m_{2}0\leq j_{1}\leq m_{1}(\begin{array}{l}m_{1}j_{1}\end{array})(\begin{array}{l}m_{2}j_{2}\end{array})\frac{\partial?}{\partial d_{1}^{1}\partial\sigma_{2}^{j_{2}}}\{B_{h}^{(2-\sigma 1^{-\sigma 2)}}(1-\sigma_{2})$

$\cross(\sigma_{1}+\sigma_{2}-1)_{h}\zeta(2-\sigma_{1}-\sigma_{2}, \tau)\}$

for any real $\tau\geq 0$ . Then for any integer $N\geq 1$ , in the region $1-N<\sigma_{j}<1+N$

$(j=1,2)$ except the cases of $(\sigma_{1}, \sigma_{2})\in E$ the formula
(2.13) $I_{m_{1},m2}(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)$

$=-a^{1-\sigma-\sigma 2}1 \sum_{j=0}^{m_{1}+m_{2}}\frac{(m_{1}+m_{2})!}{(m_{1}+m_{2}-j)!}\frac{(-\log a)^{m1+m-j}2}{(1-\sigma_{1}-\sigma_{2})^{j+1}}$

$+R^{(m_{1},m)}2(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R^{(m2,m_{1})}(\sigma_{2}-it, \sigma_{1}+it, -\lambda)$

$-S_{N}^{(mm)}1,2(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)-S_{N}^{(mm_{1})}2,(\sigma_{2}- it, \sigma_{1}+it;a, \lambda)$

$-T_{N}^{(mm)}1,2(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)-T_{N}^{(mm1)}2,(\sigma_{2}- it, \sigma_{1}+it;a, -\lambda)$

holds for any $t\in \mathbb{R}\backslash \{0\}$ . Furthermore, for any integer $H\geq 0$ the expression

(2.14) $R^{(m_{1},m2)}(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R^{(mm_{1})}2,(\sigma_{2}-it, \sigma_{1}+it;-\lambda)$

$=( \frac{|t|}{2\pi})^{1-\sigma_{1}-\sigma 2}P_{m_{1}+m2}(\sigma_{1}+\sigma_{2},$ { $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}))$

$+ \sum_{h=1}^{H}\frac{(-1)^{h}(it)^{-h}}{h!}(\frac{|t|}{2\pi})^{1-\sigma_{1}-\sigma 2}Q_{h}^{m_{1},m}2(\sigma_{1},$ $\sigma_{2},$ { $\lambda$ sgn $t$} $; \log(\frac{|t|}{2\pi}))$

$+R_{H}^{(m_{1},m_{2})}(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R_{H\sim}^{(m_{2},m_{1})}(\sigma_{9} - it, \sigma_{1}+it;-\lambda)$

follows, where $R_{H}^{(m1,m)}2(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R_{H}^{(mm_{1})}2,(\sigma_{2}-it, \sigma_{1}+it;-\lambda)$ is the remainder
term represented by a certain Mellin-Bames type integral, and also for any integer $K\geq 0$

the expression

(2.15) $T_{N}^{(m_{1},m)}2( \sigma_{1}+it, \sigma_{2}-it;a, \lambda)=\sum_{k=1}^{K}U_{N,k}^{(m_{1},m_{2})}(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)$

$+V_{N,K}^{(m_{1},m)}2(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)$

together with that of $T_{N}^{(mm_{1})}2,(\sigma_{2}-it, \sigma_{1}+it;a, -\lambda)$ follows, both in the same region of
$(\sigma_{1}+it, \sigma_{2}-it)$ above; Formula (2.13) with (2.14) and (2.15) gives a complete asymptotic
expansion in the descending order of $t$ as $tarrow\pm\infty$ , where each term of the asymptotic
series is estimated as

(2.16) $\frac{(-1)^{h}(it)^{-h}}{h!}(\frac{|t|}{2\pi})^{1-\sigma 1^{-\sigma}}2Q_{h}^{m_{1},m2}(\sigma_{1},$ $\sigma_{2},\{\lambda$ sgn $t \}_{)}\log(\frac{|t|}{2\pi}))$

$=O(|t|^{1-h-\sigma_{1}-\sigma 2}\log^{m_{1}+m2}|t|)$ ,

(2.17) $R_{H}^{(m_{1},m_{2})}(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R_{H}^{(m_{2},m_{1})}(\sigma_{2}-it_{\dot{e}}\sigma_{1}+it;-\lambda)$

$=O(|t|^{-H-\sigma_{1}-\sigma 2}\log^{m_{1}+m2}|t|)$ ,
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$U_{N,k}^{(m_{1},\tau n)}2(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)=O(|t|^{-k})$ ,
(2.18)

$U_{N,k}^{(m_{2},m_{1})}(\sigma_{2}-it, \sigma_{1}+it;a, -\lambda)=O(|t|^{-k})$

and
$V_{N,K}^{(m_{1},m)}2(\sigma_{1}+it, \sigma_{2}-it;a, \lambda)=O(|t|^{-K-1})$ ,

(2.19)
$V_{N,K}^{(m_{2},m_{1})}(\sigma_{2}-it, \sigma_{1}+it;a, -\lambda)=O(|t|^{-K-1})$

for any $H\geq h\geq 1$ and $K\geq k\geq 1$ , and for any $\sigma_{j}$ and $t$ with $1-N<\sigma_{j}<1+N$
$(j=1,2)$ and $|t|\geq 2$ . Here the implied O-constants depend at most on $H,$ $K,$ $a,$ $m_{j}$ and
$\sigma_{j}(j=1,2)$ .

One can observe that the first term on the right side of (2.13) has a singularity at each
point $(\sigma_{1}, \sigma_{2})$ with $\sigma_{1}+\sigma_{2}=1$ ; this in fact cancels out with that included in the first
term on the right side of (2.14). We use hereafter the convention that $\gamma_{j}=\gamma_{j}(0)$ for
$j=0,1,$ $\ldots$ (see (1.5)). The limiting case $(\sigma_{1}, \sigma_{2})arrow(\sigma, 1-\sigma)$ of Theorem 2 then asserts

Corollary 2.1. Let $m_{1},$ $m_{2},$ $a,$ $\lambda,$ $I_{m_{1},m2},$ $R,$ $S_{N},$ $T_{N},$ $U_{N,k}$ and $V_{N,K}$ be as in Theorem 1,
$\hat{P}_{m}(\tau;\log(|t|/2\pi))$ the polynomial in $\log(|t|/2\pi)$ defined by

(2.20) $\hat{P}_{m}(\tau;\log(\frac{|t|}{2\pi}))=(-1)^{m}\{\frac{1}{m+1}\log^{m+1}(\frac{|t|}{2\pi})+\sum_{j=0}^{m}\frac{m!\gamma_{j}(\tau)}{(m-j)!}\log^{m-j}(\frac{|t|}{2\pi})\}$

with $\tau\geq 0$ and $m=0,1,$ $\ldots$ , and $Q_{h}^{m_{1},m2}$ by (2.11). Then for any integer $N\geq 1$ , in the
region $1-N<\sigma<N$ the formula
(2.21) $I_{m_{1},m2}( \sigma+it, 1-\sigma-it;a, \lambda)=\frac{\partial^{m_{1}+m_{2}}}{\partial\sigma_{1}^{m_{1}}\partial\sigma_{2^{2}}^{m}}\{-\frac{a^{1-\sigma_{1}-\sigma}2}{1-\sigma_{1}-\sigma_{2}}$

$+R(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R(\sigma_{2}-it, \sigma_{1}+it;-\lambda)\}_{\sigma_{1}=\sigma ,\sigma_{2}=1-\sigma}$

$-S_{N}^{(m_{1},m)}2(\sigma+it, 1-\sigma-it;a, \lambda)-S_{N}^{(m_{2},m_{1})}(1-\sigma- it, \sigma+it;a, -\lambda)$

$-T_{N}^{(m_{1},m_{2})}(\sigma+it, 1-\sigma-it;a, \lambda)-T_{N}^{(m_{2)}m_{1})}(I-\sigma-it, \sigma+it;a, -\lambda)$

holds. Furthemore, for any integer $H\geq 0$ the expression

(2.22) $\frac{\partial^{m_{1}+m_{2}}}{\partial\sigma_{1}^{m_{1}}\partial\sigma_{2}^{m_{2}}}\{-\frac{a^{1-\sigma_{1}-\sigma 2}}{1-\sigma_{1}-\sigma_{2}}$

$+R(\sigma_{1}+it, \sigma_{2}-it;\lambda)+R(\sigma_{2}-it, \sigma_{1}+it;-\lambda)\}_{\sigma_{1}=\sigma ,\sigma 2=1-\sigma}$

$= \frac{(-\log a)^{m_{1}+m2+1}}{m_{l}+m_{2}+1}+\hat{P}_{m_{1}+m_{2}}(${ $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}I)$

$+ \sum_{h=1}^{H}\frac{(-1)^{h}(it)^{-h}}{h!}Q_{h}^{m_{1},m_{2}}(\sigma$. $1-\sigma,$ { $\lambda$ sgn $t$} $; \log(\frac{|t|}{2\pi}))$

$+R_{H}^{(m_{1},m)}2(\sigma+it, 1-\sigma-it;\lambda)+R_{H}^{(m2m_{1})}(1-\sigma-it, \sigma+it;-\lambda)$

follows, and also the expression (2.15) follows in particular for $T_{N}^{(m_{1},m)}2(\sigma+it,$ $1-\sigma-$

it; $a,$ $\lambda)$ and for $T_{N}^{(mm_{1})}2,(1-\sigma - it, \sigma+it;a, -\lambda)$ , both in the same region of $\sigma+it$

above; Formula (2.21) with (2.22) and (2.15) gives a complete asymptotic expansion in the
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descending order of $t$ as $tarrow\pm\infty_{f}$ where each term of the asymptotic series is estimated
as $(2.16)-(2.19)$ .

The case $m_{1}=m_{2}$ and $(\sigma_{1}, \sigma_{2})=(\sigma, \sigma)$ of Theorem 2 is reduced to

Corollary 2.2. Let $m\geq 0$ be an arbitmrily fixed integer, $a,$ $\lambda_{f}P_{l},$ $Q_{h}^{m,m},$ $R,$ $S_{N},$ $T_{N}$ ,
$U_{N,k}$ , and $V_{N,K}$ as in Theorem 2. Then for any integer $N\geq 1$ , in the region $1-N<\sigma<$

$1+N$ except on the line $\sigma=n/2(n=2,1,0, -1, \ldots)$ , the formula

(2.23) $\int_{0}^{1}|\phi^{(m)}(\sigma+it, a+x, \lambda)|^{2}dx=-a^{1-2\sigma}\sum_{j=0}^{m_{1}+m_{2}}\frac{(m_{1}+m_{2})!}{(m_{1}+m_{2}-j)!}\frac{(-1)^{j}\log^{2m-j}}{(1-2\sigma)^{j+1}}$

a

$+2{\rm Re} R^{(m,m)}(\sigma+it, \sigma-it;\lambda)-2{\rm Re} S_{N}^{(m,m)}(\sigma+it, \sigma-it;a, \lambda)$

$-2{\rm Re} T_{N}^{(m,m)}(\sigma+it, \sigma-it;a, \lambda)$

holds. Furthermore, for any integer $H\geq 0$ the expression

(2.24) 2 ${\rm Re} R^{(m,m)}( \sigma+it, \sigma-it;\lambda)=(\frac{|t|}{2\pi})^{1-2\sigma}P_{2m}(2\sigma,$ { $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}))$

$+ \sum_{h=1}^{[H/2]}\frac{(-1)^{h}t^{-2h}}{(2h)!}(\frac{|t|}{2\pi})^{1-2\sigma}Q_{2h}^{m,m}(\sigma,$
$\sigma,$ { $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}))$

$+2{\rm Re} R_{H}^{(m,m)}(\sigma+it, \sigma-it;\lambda)$

follows, and also for any integer $K\geq 0$ the expression (2.15) follows in particular for
$T_{N}^{(m,m)}(\sigma+it, \sigma-it;a, \lambda)_{r}$ both in the same region of $\sigma+it$ above; Formula (2.23) with
(2.24) and (2.15) gives a complete asymptotic expansion in the descending order of $t$ as
$tarrow\pm\infty$ , where each term of the asymptotic series is estimated as $(2.16)-(2.19)$ .

We next supplement two exceptional (but important) cases of Theorem 2. One can
observe that the region with $N=1$ in Corollary 2.1 or 2.2 includes the lines $\sigma=1/2$ and
$\sigma=1$ . When $N=I$ either the case $\sigma=1/2$ of Corollary 2.1 or the limiting case $\sigmaarrow 1/2$

of Corollary 2.2 gives

Corollary 2.3. Let $m\geq 0$ be an arbitmrily fixed integer, and $a,$ $\lambda,$ $R,$ $T_{1},$ $U_{1,k}$ and $V_{1,K}$

be as in Theorem 1, and $\hat{P}_{m}$ and $Q_{h}^{m,m}$ defined by (2.20) and (2.11) respectively. Then the
formula

(2.25) $\int_{0}^{1}|\phi^{(m)}(\frac{1}{2}+it,$ $a+x,$ $\lambda)|^{2}dx=\frac{\partial^{2m}}{\partial\sigma_{1}^{m}\partial\sigma_{2}^{m}}\{-\frac{a^{1-\sigma 1^{-\sigma 2}}}{1-\sigma_{1}-\sigma_{2}}$

$+2{\rm Re} R(\sigma_{1}+it, \sigma_{2}-it\cdot\lambda)\}\sigma 1=1/2\sigma_{2}=1/2$

$-2{\rm Re} \{e(\lambda)\phi^{(m)}(\frac{1}{2}+it,$ $a+1,$ $\lambda)a^{1/2+it}\sum_{j=0}^{m}\frac{m!}{(m-j)!}\frac{(-\log a)^{m-j}}{(\frac{1}{2}+it)^{j+1}}\}$

$-2{\rm Re} T_{1}^{(m,m)}( \frac{1}{2}+it,$ $\frac{1}{2}$ – $it$ ; $a+1,$ $\lambda)$
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holds for any $t\in \mathbb{R}$ . Furthermore, for any integer $H\geq 0$ the expression

(2.26) $\frac{\partial^{2m}}{\partial\sigma_{1}^{m}\partial\sigma_{2}^{m}}\{-\frac{a^{1-\sigma 1^{-\sigma}}2}{1-\sigma_{1}-\sigma_{2}}+2{\rm Re} R(\sigma_{1}+it, \sigma_{2}-it;\lambda)\}_{\sigma_{2}=1}1\prime_{2}^{2}$

$=- \frac{\log^{2m+1}a}{2m+1}+\hat{P}_{2m}(${ $\lambda$ sgn $t$} $; \log(\frac{|t|}{2\pi}))$

$+ \sum_{h=1}^{[H/2]}\frac{(-1)^{h}t^{-2h}}{(2h)!}Q_{2h}^{m,m}(\frac{1}{2},$ $\frac{1}{2};$ { $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}))$

$+2{\rm Re} R_{H}^{(m,m)}(\sigma+it, \sigma-it;\lambda)$

follows, and also the expression (2.15) follows in particular for $T_{1}^{(m,m)}(1/2+it,$ $1/2-$

it; $a,$ $\lambda)$ , both on the lines $t\in \mathbb{R}\backslash \{0\}$ ; Fomula (2.25) with (2.26) and (2.15) gives a
complete asymptotic expansion in the descending order of $t$ as $tarrow\pm\infty$ , where each term
of the asymptotic series is estimated as $(2.16)-(2.19)$ .

One can further observe that the case $N=1$ of Corollary 2.2 implies the formula on
the line $\sigma=1$ ; this asserts

Corollary 2.4. Let $m\geq 0$ be an arbitmrily fixed integer, $a,$ $\lambda,$ $R,$ $T_{1},$ $U_{1,k}$ and $V_{1,K}$ as
in Theorem 1, and $P_{m}$ and $Q_{h}^{m_{1},m_{2}}$ defined by (2.10) and (2.11) respectively. Then the
formula

(2.27) $\int_{0}^{1}|\phi^{(m)}(1+it, a+x, \lambda)|^{2}dx=a^{-1}\sum_{j=0}^{2m}\frac{(2m)!}{(2m-j)!}\log^{2m-j}$ a

$+2{\rm Re} R^{(m,m)}(1+it, 1-it;\lambda)$

$-2{\rm Re} \{e(\lambda)\phi^{(m)}(1+it, a+1, \lambda)a^{it}\sum_{j=0}^{m}\frac{m!}{(m-j)!}\frac{(-\log a)^{m-j}}{(it)^{j+1}}\}$

$-2{\rm Re} T_{1}^{(m,m)}(1+it, 1-it;a, \lambda)$

holds for any $t\in \mathbb{R}\backslash \{0\}$ . Furthemore, for any integer $H\geq 0$ the expression

(2.28) 2 ${\rm Re} R^{(m,m)}(1+it, 1-it; \lambda)=(\frac{|t|}{2\pi})^{-1}P_{2m}(2,$ { $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}))$

$+ \sum_{h=1}^{[H/2]}\frac{(-1)^{h}t^{-2h}}{(2h)!}(\frac{|t|}{2\pi})^{-1}Q_{2h}^{m,m}(1,1,$ { $\lambda$ sgn $t$ } $; \log(\frac{|t|}{2\pi}))$

$+2{\rm Re} R_{H}^{(m,m)}(1+it, 1-it;\lambda)$

follows, and also the expression (2.15) follows in particular for $T_{1}^{(m,m)}(1+it, 1-it;a, \lambda)$ ,
both on the lines $t\in \mathbb{R}\backslash \{0\}$ ; Formula (2.27) with (2.28) and (2.15) gives a complete
asymptotic expansion in the descending order of $t$ as $tarrow\pm\infty$ , where each term of the
asymptotic series is estimated as $(2.16)-(2.19)$ .

3. A FUNDAMENTAL FORMULA

The detailed proofs of Theorems 1 and 2, together with their corollaries, will be given
in the forthcoming paper [Kall], so we content ourselves here by describing a formula
which is fundamental in proving Theorems 1 and 2.
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Atkinson [At] first developed the dissection device to treat the product $((s_{1})\zeta(s_{2})$ in
two independcnt complex variables; this method was further applied, upon enhanced by
a Mellin-Barnes type integral technique, to study the product $\phi(s_{1}, x, \lambda)\phi(s_{2}, x, -\lambda)$ by
the author [Ka2] [Ka9], in which an initial r\^ole was played by the dissection formula

(3.1) $\phi(s_{1}, x, \lambda)\phi(s_{2}, x, -\lambda)=\zeta(s_{1}+s_{2}, x)+R(s_{1}, s_{2};\lambda)+R(s_{2}, s_{1};-\lambda)$

$+g(s_{1}, s_{2};x, \lambda)+g(s_{2}, s_{1};x, -\lambda)$ ,

where $R$ is defined by (2.3), and $g$ by the Mellin-Barnes type integral

(3.2) $g(s_{1}, s_{2};x, \lambda)=\frac{1}{2\pi i}\int_{C}\frac{\Gamma(s_{1}+w)\Gamma(-w)}{\Gamma(s_{1})}\zeta(s_{1}+s_{2}+w, x)\zeta_{\lambda}(-w)dw$.

Here $C$ denotes the vertical path, directed upward, which is suitably indented to separate
the (possible) poles of $\Gamma(s_{1}+w)\zeta(s_{1}+s_{2}+w, x)$ at $w=1-s_{1}-s_{2}$ and $w=-s_{1}-n$
$(n=0,1, \ldots)$ from those of $\Gamma(-w)\zeta_{\lambda}(-w)$ at $w=-1-n(n=0,1, \ldots)$ . The formula
which is fundamental in proving Theorem 1 is obtained (in principle) by integrating both
sides of (3.2); the case $m=1$ of our previous result [Ka9, Theorem 1] asserts

Proposition 1. Let $\tilde{E}\subset \mathbb{C}^{2}$ be the set defined by (2.1). Then for any integer $N\geq 0$ in
the region $I-N<\sigma_{j}<1+N(j=1,2)$ except the points of $\tilde{E}$ , the formula

(3.3) $\int_{0}^{1}\phi(s_{1}, a+x, \lambda)\phi(s_{2}, a+x, -\lambda)dx$

$=- \frac{a^{1-s_{1}-s_{2}}}{1-s_{1}-s_{2}}+R(s_{1}, s_{2};\lambda)+R(s_{2}, s_{1};-\lambda)$

$-S_{N}(s_{1}, s_{2};a, \lambda)-S_{N}(s_{2}, s_{1};a, -\lambda)$

$-T_{N}(s_{1}, s_{2};a, \lambda)-T_{N}(s_{2}, s_{1};a, -\lambda)$

holds, where $R,$ $S_{N}$ and $T_{N}$ are given in $(2.3)-(2.5)$ . Furthermore, for any integer $K\geq 0$

the expression

(3.4) $T_{N}(s_{1}, s_{2};a, \lambda)=\sum_{k=1}^{K}U_{N,k}(s_{1}, s_{2};a, \lambda)+V_{N,K}(s_{1}, s_{2};a, \lambda)$,

together with that of $T_{N}(s_{2}, s_{1};a, -\lambda)$ , follows in the same region of $(s_{1}, s_{2})$ above, where
$U_{N,k}$ and $V_{N,K}$ are given by (2.7) and (2.8) respectively.

Remark. The particular case $a=1$ of (3.3) was first established by the author [Kal],
and it has recently been rederived by Balasubramanian-Kanemitsu-Tsukada [BKT] in a
different manner.

REFERENCES
[An] J. Andersson, Mean value properties of the Hurwitz zeta-function, Math. Scand. 71 (1992), 295-

300.
[At] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81 (1949), 353-376.
[Ba] R. Balasubramanian, A note on Hurwitz’s zeta-function, Ann. Acad. Sci. Fenn. Ser. A I Math.

4 (1979), 41-44.
[BKT] R. Balasubramanian, S. Kanemitsu and H. Tsukada, Contributions to the theory of Lerch zeta-

functiOn, The Riemann zcta function and related themes: papers in honour of Professor K.
Ramachandra, pp. 29-38, Ramanujan Math. Soc. Lect. Notes Ser., 2, Ramanujan Math. Soc.,
Mysore, 2006.

[EM] S. Egami and K. Matsumoto, Asymptotic expansions of multiple zeta functions and power mean
values of Hurwitz zeta functions, J. London Math. Soc. (2) 66 (2002), 41-60.

163



HIGHER DERIVATIVES OF LERCH ZETA-FUNCTIONS

[Er] A. Erd\’elyi (ed.), W. Magnus, F. Oberhettinger and F. G. bicomi, Higher Transcendental Func-
tions, Vol. I (1953), McGraw-Hill, New York

[EMl] 0. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function: Part 1,
Ramanujan J. 6 (2002), 159-188.

[EM2] –, On some integmls involving the Hurwitz zeta hnction: Part 2, Ramanujan J. 6 (2002),
449-468.

[Gl] Guo Jinbao, On the mean value formula of the derivative of Hurwitz zeta-function (in Chinese),
J. Yanan Univ. 13 (1994), 45-51, 65.

[G2] –, A class of new mean value formulas for the derevative of the Hurwitz zeta-function (in
Chinese), J. Math. Res. Expos. 16 (1996), 549-553.

[Iv] A. Ivi\v{c}, The Riemann Zeta-Function, 1985, John Wiley & Sons, New York
[Kal] M. Katsurada, Asymptotic expansions of the mean values of Dimchlet L-functions III,

Manuscripta Math. 83 (1994), 425-442.
[Ka2] –, An application of Mellin-Bames’ type integrals to the mean square of Lerch zeta-

functions, Collect. Math. 48 (1997), 137-153.
[Ka3] –) On Mellin-Bames type of integrals and sums associated with the Riemann zeta-function,

Publ. Inst. Math. (Beograd) (N.S.) 62(76) (1997), 13-25.
[Ka4] –, An application of Mellin-Bames type of integrals to the mean square of L-functions,

Liet. Mat. Rink. 38 (1998), 98-112.
[Ka5] –, Power serees and asymptotic series associated with the Lerch zeta-function,

Proc. Japan Acad. Ser. A 74 (1998), 167-170.
[Ka6] –, Rapidly convergent series representations for $\zeta(2n+1)$ and their $\chi$-analogue, Acta Arith.

90 (1999), 79-89.
[Ka7] –, On an asymptotic formula of Ramanujan for a certain theta-type series, Acta Arith. 97

(2001), 157-172.
[Ka8] –, Asymptotic expansions of certain q-series nd a formula of Ramanujan for specific values

of the Riemann zeta-function, Acta Arith. 107 (2003), 269-298.
[Ka9] –, An application of Mellin-Bames type integrals to the mean square of Lerch zeta-function

II, Collect. Math. 56 (2005), 57-83.
[Ka10] –, Complete asymptotic expansions associated with Epstein zeta-functions, Ramanujan J.

14 (2007), 249-275.
[Kall] –, An application of Mellin-Bames type integrals to the mean square of Lerch zeta-functions

III, (preprint).
[KL] J. F. Koksma and C. G. Lekkerkerker, A mean value theorem for $\zeta(s,$ w), Indag. Math. 14 (1952),

446-452.
[Kll] D. Klusch, Asymptotic equalities for the Lipschitz-Lerch zeta-function, Arch. Math. (Basel) 49

(1987), 38-43.
[K12] –, A hybrid version of a theorem of Atkinson, Rev. Roumaine Math. Pures Appl. 34 (1989),

721-728.
[KMl] M. Katsurada and K. Matsumoto, Discrete mean values of Hurwitz zeta-functions, Proc. Japan

Acad. Ser. A 69 (1993), 164-169.
[KM2] –, Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-

functions, Proc. Japan Acad. Ser. A 69 (1993), 303-307.
[KM3] –, Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-

functions I, Math. Scand. 78 (1996), 161-177.
[KM4] –, Explicit fomulas and asymptotic expansions for certain mean square of Hurwitz

zeta-functions II, in “New Trends in Probability and Statistics, Vol. 4“ A. Laurin\v{c}ikas, E.
Manstavi\v{c}ius and V. Stakenas (Eds.) VSP(Utrccht)/TEV(Vilnius), 1997, pp. 119-134.

[KM5] –, Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-
functions III, Compositio Math. 131 (2002), 239-266.

[KN] M. Katsurada and T. Noda, Differential actions on the asymptotic expansions of non-
holomorphic Eisenstein series, Int. J. Number Theory 5 (2009), 1061-1088.

[L] M. Lerch, Note sur la fonction $K(w,$ x, s) $= \sum_{n\geq 0}\exp\{2\pi inx\}(n+w)^{-s}$ , Acta Math. 11 (1887),
19-24.

[Mil] M. $Mikol\mathfrak{X}$ , Mellinsche Tmnsformation und Orthogonalitat bei $\zeta(s,$ u). Vemllgemeinerung der
Riemannschen Functionalgleichung von $\zeta(s)$ , Acta Sci. Math. Szeged 17 (1956), 143-164.

164



KATSURADA

[Mi2] –, Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz,
Publ. Math. Debrecen 5 (1957), 44-53.

[Mol] Y. Motohashi, Spectral mean values of Maass waveform of L-functions, J. Number Theory 42
(1992), 258-284.

[Mo2] –, An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math.
170 (1993), 181-220.

[Mo3] –, Spectral Theory of the Riemann-Zeta Function, Cambridge University Press, Cambridge,
1997.

[R] V. V. Rane, On Hurwitz zeta-function, Math. Ann. 264, (1983), 147-151.
[WW] [WW]E. T. Whittakcr and G. N. Watson, A course of Modem Analysis, 4th ed., Cambridge

University Press, Cambridge, 1927.
[Zl] W. Zhang, The Hurwitz zeta-function (in Chinese), Acta Math. Sinica 33 (1990), 160-171.
[Z2] –, On the mean square value formula of Lerch zeta-function, Adv. Math. (China) 22 (1993),

367-369.
[Z3] –, On the mean square value of Hurwitz zeta-function, Illinois J. Math. 38 (1994), 71-78.

DEPARTMENT OF MATHEMATICS, HIYOSHI CAMPUS, KEIO UNIVERSITY, 4-1-1 HIYOSHI,
KOUHOKU-KU, YOKOHAMA 223-8521, JAPAN

E-mail address: kat surad@hc. cc. keio. ac. jp; kat surad@z3.keio.j $p$

165


