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On constructions of extractable codes
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Abstract. This paper deals with the construction problem on extractable codes. The base of a
free submonoid of a free monoid is called a code. The code C with the property that z, zzy € C*
implies zy € C* is called an extractable code. For example this kind of code sometimes appears
as a certain type of group code; at other times it appears as Petri net codes of type D. One
of the useful methods for constructing extractable codes is a composition of codes. We examine
under what conditions on codes Y and Z the composition Y o, Z is extractable when Y and Z are

composable through some bijection .
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1. INTRODUCTION

An extractable submonoid is a free submonoid of a free monoid. It was first mentioned in [5] that
the study of extractable submonoids of free monoids was a theme of interest. The extractable code
is the base of extractable submonoid. The notion of the extractable code was formally introduced
in [6] and [7].

Let A be an alphabet. We denote by At and A* the free semigroup and the free monoid
generated by A, respectively. The empty word is denoted by 1. A word v is a factor of a word
u € A" if there exist w, w’ € A* such that u = wvw’. A word v € A* is a right factor (resp. left
factor) of a word u € A* if there is a word w € A* such that u = wv (resp. u = vw). If v is a right
factor of u, we write v <, u. Similarly, we write v <, u if v is a left factor of u. The left factor v
of a word u is said to be proper if v # u.

We denote by wA~! and wA~ the set of all left factors of w and the set of all proper left factors
of w, respectively. Let X C A*, and set XA~ = UyexwA™. Namely, by XA~ we denote the set
of all proper left factors of words in X. The subset XA~! of A* is defined by XA~ ! = XA~ UX.
We set ps(X) = XA " NA-X.

The length |w| of w is the number of letters in w. Alph(w) is the set of all letters occurring at

least once in w.

This is an abstract and the details will be published elsewhere.
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Two words x, y are said to be conjugate if there exists words u, v such that z = wv, y = vu. For
z € A* we set Cl(z) = {y € A*|y and z are conjugate}.
Let Z is a subset of A*. For each x € A*, we define the set of all right contexts of z with respect
to Z by
Cont(zr)(x) ={w e A" |zw € Z}.

The right principal congruence Pg) of Z is defined by (z, y) € Pg) if and only if Contg)(a:) =
C’ontg)(y). Let u € A*, by [u]z we denote the Pg)——cla,ss of u by [u]z or simply by [u]. That is,

[ul]z = {v| Cont(zr) (v) = Cont(Zr) (u),v e A*}.

We denote by [wg] the class of Pg) consisting of all words w € A* such that wA*NZ = ¢. Namely,
[wg) is the class of the nonleft factors of words in Z.
A nonempty subset C of A% is said to be a code if for zy, ..., Zp,y1,-.,Yqg € C, P,g > 1,

Ty Tp =YYy = P=¢, T =YL, .-, Lp=Yp.

A code C C A% is said to be infiz if for all z,y,z € A*,
zyxzy € C = z=y=1

A subset M of A* is a submonoid of A* if M2 C M and 1 € M. Every submonoid M of a free
monoid has a unique minimal set of generators C = (M — {1}) — (M — {1})2. C is called the base
of M. A submonoid M is right unitary in A* if for all u,v € A%,

u, uv € M =>v € M.

M is called left unitary in A* if it satisfies the dual condition. A submonoid M is biunitary if it
is both left and right unitary. Let M be a submonoid of a free monoid A*, and C its base. If
CA*NC =0, (resp. ATCNC = 0), then C is called a prefiz (resp. suffiz) code over A. C is
called a bifix code if it is a prefix and suffix code. It is obvious that an infix code is a bifix code.
A submonoid M of A* is right unitary (resp. biunitary) if and only if its minimal set of generators
is a prefix code (resp. bifix code) (e.g., [1, p.46], [4, p.108]).

Let C be a nonempty subset of A*. If |z| = |y| for all z,y € C, then C is a bifix code. We call
such a code a uniform code. The uniform code A" = {w € A*| |lw| =n}, n > 1, is called a full
uniform code.

A submonoid M of A* is extractable in A* if for all z,y,z € A*,

z,xzy E M = xy € M*.

If a submonoid M is extractable, then u,luv € M implies 1v = v € M. Similarly v,uv € M
implies v € M. Hence M is biunitary. Therefore, its minimal set of generators C is a bifix code.

Definition 1. Let C C A* be a code. If C* is extractable in A*, then C is called an extractable
code.
For the terms used but not explained in this paper, readers refer to [1] or [4].
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Remark 1. Let C C A* be a code. The following conditions are equivalent:
(a) z,uzv € C* = wv e C*.
(b) z € C, uzv € C* = uv € C*.

Remark 2. Let C C A* be an infix code. The following conditions are equivalent:
(a) z,uzv € C* = wv e C*.
(b) 2 € C, uzv € C? = wv € C.

2. COMPOSITION OF CODES RELATED TO EXTRACTABLE CODES

We bigin with the constructions of extractable codes by using the concatenation of codes.
Let Z C A* a code and S C A a nonempty subset. We set

H = Z N (Ugesad®).

It is obvious that wv € H, wv’ € Z implies uv’ € H. First we present the following proposition.

Proposition 1. Let Z C A* be an infix extractable code and S; C A4, 1 < i < n, be nonempty
subsets. Let H; = Z N (Uges, ad*), 1 <i < n. Then X = H1H,--- H, is an extractable code. In

particular, Z™ is an extractable code for any n > 1.

Example 1. (1). Let Z = {a3, ab, ba} and H = Z NaA* = {a3,ab}, then X = ZH =
{a®,a*b, abad, (ab)?, ba?, ba?b} is extractable.
(2). Let Z = {a®, ba}. Then both Z and Z2 = {a8, a%ba, ba?, (ba)?} are extractable.

Proposition 2. Let Z C A* be an infix code such that for fixed m > 1 and forallu € ZA~, v €
A*and ¢y, -, Cm,d1, - ,dm € Z the equality

udids - dm = C1C3 - - - Cp¥ implies U= .

Let K., 1 <r < mn, n > 1, be nonempty subsets of Z. Then X = K1K3 -+ Kpmn is extractable.

In particular, Z™" is an extractable code.

Example 2. (1) The code Z={aba, bab} is not extractable. For m = 2, Z satisfies the condition
in Proposition 2. Hence Z2" is extractable for any n > 2. Note, however, that Z3 is not extractable,

since

ab - (aba)(bab)(aba) - b(bab)(bab)=(aba)(bab)(aba)(bab)3cZ8, ab?(bab)?¢Z3.
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Let Z ¢ A* and Y C B* be two codes with B = Alph(Y). Then the codes Y and Z are
composable through =, if there is a bijection 7 from B onto Z. The set X = 7(Y’) is denoted by

X=Yo,Z or X=YoZ,

when no confusion arises. If both Y and Z are prefix (suffix) codes, then X =Y o Z is a prefix
(suffix) code ([1, p.73, Prop.6.3]). Therefore, if both Y and Z are bifix codes, then X is a bifix
code. We note that we can regard Z™ in Proposition 1 and Proposition 2 as the composition
X = B"o, Z of B™ and Z through some bijection 7 : B — Z. The composition of codes depends
essentially on the bijection 7. For example, let Y = {aab,aba,baa} and Z = {a,ba}, and let
m:a — a, b — ba, T3 :a — ba, b — a. Then Y o, Z is extractable, but Y o,, Z is not
extractable. Even though both Y and Z are extractable, in general the composition of Y and Z are
not necessarily extractable. In the study of extractable codes it is convenient to have a composition
of codes Y and Z such that Y o, Z is extractable for any bijection m : B — Z. Therefore, we
examine under what conditions on Y and Z the composition Y o, Z can be extractable for an

arbitrary bijection .

Proposition 3. Let Z C A* and Y C B* be two composable codes. If X = Yo, Z is extractable,
then Y is extractable.

Let Z be a bifix code. We define the internal multiplicity u(Z) of Z as follows: u(Z) =0if Z is
infix, u(Z) =nif ZNATZ"A* #0 and ZNAYZ"*™A* = for all m > 1, u(Z) = oo if for any
n > 1 there exists m > 1 such that Z N AT Z"t™m AT #£ (.

Let Y be a code. Then we set m(Y) = min{|y||y € Y}. That is, m(Y’) is the shortest length of

elements in Y.

Proposition 4. Let Z C A* be a bifix code such that ps(Z) = {1}, and let Y C A* be an
extractable code such that m(Y) > u(Z). If Y and Z are composable, then X = Y o Z is an
extractable code.

A submonoid M of A* is said to be pure if for all x € A* and n > 1 the condition ™ € M
implies z € M. A submonoid N of A* is very pure if for all u, v € A* the condition uv,vu € N
implies u,v € N.

Corollary 5. Let Y and Z be composable bifix codes such that m(Y) > p(Z) and ps(Z) = {1}
If Y* is an extractable pure (resp. extractable very pure) monoid, then X = Y oZ is an extractable

pure (resp. extractable very pure) monoid.

Definition 1 ([8],[9]). Let n > 1 be an integer. A non-empty subset Z of A* is called an
intercode of index n if Z"*T1 N AYZ"AT = 0.
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By the definition any nonempty subset of an intercode is also an intercode. An intercode of
index n for some n > 1 is a bifix code. Let Z C A* be an intercode of index n, n > 1. Then for

every m, m > n, Z is an intercode of index m ([9]).

Proposition 6. Let Z C A* be an intercode of index n and let Y C B* be an extractable code
such that m(Y) > n. If Y and Z are composable, then X =Y o Z is extractable.

Example 3 . Let B = {a;, ... an} be an alphabet and m an integer. For arbitrary pi, ...pn 2 m,
the code Y = {al’, ...,aB"} is extractable. Let Z = {ws, ..., w,} is an intercode of index m.

T :a;—w;, i = 1, ...7n, is a bijection. Thus X=Y o, Z = {w]*, ..., w8} is an extractable code.

A code Z C A* is comma-free if for all z € Z%, u, v € A*, uzv € Z* implies u, v € Z* ([1,
p-336]). It is shown that a code Z is comma-free if and only if Z is an intercode of index 1 ([9]).

It is obvious that a comma-free code is extractable.

Corollary 7. Let Z C A* be a comma-free code, and let Y be an extractable code. If Y and Z

are composable, then X =Y o Z is extractable.

Therefore, in particular, if both Y and Z are comma-free, then Y o Z is extractable. In fact, it

is known that Y o Z is comma-free ({1, p.337]).

Definition 3. Let n be an integer. A code Z C A* is a Jn-code if for all ¢;, d; € 2,1 <@ < m,
and u € ZA~, v € A*, the equality

udy - -dp, =c1---cpv implies u=v=1.
Remark 3. An infix Jn-code is an intercode of index n.

Definition 3. Let n be an integer. A code Z C A* is an Jng-code if forall¢;, d; € 2,1 <1 < m,
and u € ZA~, v € A*, the equality ud;---d, = c1-+-c,v implies one of the following conditions:

(1) u=v=1,
2w veAt, di= - =dy=cr=-=cn.,
B u,veAt, veZ(ZA™), ci#co,dy = =dy=cCo =" = Cp.

Let Z be a code. If Z is not a prefix code, then there exist some ¢,d € Z and w € A" such that
c=dwe ZNZA*. Sincel-(¢c---¢) = (c---d)w,1 ¢ AT, w € AT. Hence the code Z is not a
Jng-code. If Z is not a suffix code, then Z is not a J2,-code. Hence Jn,-code is a bifix code.

Proposition 8. Let Z C A* be an infix Jng-code . Let Y C B* be an extractable code such
that m(Y) > n. If Y and Z are composable, then X =Y o Z is extractable.
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Let C C A" be a bifix code such that ATC"A* N C™ = 0 for some 7 > 1. Then u(C) <n-—1
and A*C"A* N C™ = for any m < n. However, in general, A*C"A* N C™ = () does not imply
A+C'nA+ N Cn+1 — 0

Proposition 9. Let Z C A* be an J2,-code such that A*Z"A* N Z" = @ for some n > 2,
and let Y C B* be an extractable code such that m(Y) > n. f Y and Z are composable, then
X =Y o Z is extractable.

Example 4. The code Y = {abc, bca,cab} over {a,b,c} is an extractable code such that
m(Y) = 3. Z = {(ab)?, ba?b, a*(ab)?b?} ia an J2,-code such taht Z2 N A+Z2A+ = 0. Since
(ab)?, a®(ab)?b? € Z and a2b® ¢ Z*, Z is not extractable. By Proposition 9

X =Y ox Z = {(ab)’ba’ba®(ab)?b?, ba’ba®(ab)b?(ab)?, a?(ab)?b?(ab)?ba®b}

is an extractable code, where 7 : a — (ab)?, b — ba?b, c — a2(ab)2b?.

Definition 4. Let n be an integer. A code Z C A* is an In—code if for all ¢,di€2Z,1<i<n,
and u € ZA™, v € A*, the equality udidy---d, = c1¢2- - - cpv implies the one of the following
Nu=v=1,

(2)u,ve At ,v¢ Z*(ZA™).

Note that any nonempty subset of an In-code is also an In-code. Let Z be an In—code.
Suppose that z, zy€Z*, y € Z*. Then 1- (zz---zy) = (zz---xz) -y and 1 ¢ A*+. However, this
contradicts our hypothesis that Z is an In— code. Therefore Z must be prefix. Now, suppose that
T,y € Z,y € A*. Theny - (zz---z) = ((yz)r---z)-1and 1 ¢ A*. This is a contradiction.
Hence Z is suffix. Thus Z is a bifix code. Therefore, an In-code Z is a bifix code.

Proposition 10. Let Z C A* be an I2-code such that A*Z"A*+ N Z" = @ for some n > 2. Let
Y C B* be an extractable code with m(Y) > n. If Y and Z are composable, then X =Y o Z is

extractable.

Definition 5. Let n be an integer with n > 2. A code Z C A* is an Ing-code if for all
u€ZA ,ve€ A* and ¢;, d;, € Z,1 < i< n, the equality udids---d, = ci1ca---cpv implies one
of the following conditions:

(1) u=v=1,
(2 u,ve A*, v Z*(ZA™),
(3)u,v€A+’ dl="':d'n.=c1="'=cn-

Note that any nonempty subset of an Ins-code is also an In,-code. Let Z be an I ng~code.
Ifd=cwe ZNZA*,d,ce Z,w e A*, 1(c---c)d = (c---c)wand 1 € ZA~, w # 1. This
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contradicts the fact that Z is an Ing-code. If d = we € ZNA+Z,d,c € Z, w € A*. This also
yields a contradiction. Thus an I2,-code is a bifix code.

Proposition 11. Let Z C A* be an infix In,-code, and let Y C B* be an extractable code such
that m(Y) > n. If Y and Z are composable, then X =Y o Z is extractable.

Corollary 12. Let A={a;,as,*,am} and Z = {a}*,a5?, -, aPr}, where p;, 1 < i < m, are
arbitrary positive integers. Let Y be an extractable code such that m(Y) > 2. If Y and Z are
composable, then X =Y o Z is extractable.

Example 5. Y={a®,ab,ba} is an extractable code. Z={a, b%} is an infix I2,-code. Define the
bijections 7 : @ — a, b — b2, and m : @ — b2, b — a. Then we obtain two extractable codes

X1 =Yon Z=1{a3ab%b%} and X, =Y o, Z = {ab?,b%a,b°}.

Proposition 13. Let Z C A* be an I2,-code such that A*Z"A* N Z™ = { for some n > 2,
and let Y C B* be an extractable code such that m(Y) > n. If Y and Z are composable, then
X =Y o Z is extractable.

Definition 6. Let n be an integer with n > 2. A code Z C A* is an Inp-code if for all
u€ ZA ,veE A* and ¢;, d; € Z,1 < i < n the equality udidy---dn = ¢1--cpv implies one of
the following conditions:

DHu=v=1,
(2) u,ve AT, v ¢ Z*(ZA™),
BYu,ve AT, ve Z*(ZA7),di=dy = = d,.

It is easily shown that an Iny-code is a bifix code.

Proposition 14. Let Z C A* be an infix Iny-code, and let Y C B* be an extractable code such
that m(Y) > nand b* ¢ Y forallb€ Bandt > 2. If Y and Z are composable, then X =Y 0 Z is
extractable.

Lemma 15. Let Y C B* and Z C A* be composable codes, and X =Y o, Z.
(1) If both Y and Z are pure, then X is pure.
(2) If both Y* and Z* are very pure, then X* is very pure. ([1, p.328, Proposition1.9])

Corollary 16. Let Z C A* be an infix Ins-code, and let Y C B* be an extractable code such
that m(Y) >nand b* ¢ Y forall b€ B and t > 2.
(1) If Y and Z is composable, and if both Y and Z are pure, then Y o Z is an extractable pure
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code.
(2) f Y and Z is composable, and if both Y* and Z* are very pure, then (Y o Z)* is an extractable

very pure submonoid of A*.

Example 6. Let A = {a,b}. Y = a?(aba)*b C A* is an extractable pure code such that
m(Y)=3and ¢ ¢ Y for all c € A and p > 1. {ab,ba} is a pure I2;-code. Thus, for 7 : a —

ab, b — ba,
X =Y o, Z = (ab)?(ab®a?b)"ba

is an extractable pure code.

Proposition 17. Let A be an alphabet, and let K;, 1 < ¢ < n, be nonempty subsets of A. Then
X =K 1Ky--- K, is an extractable code.

Proposition 18. Let Z be a code, and let H;, 1 < i < m, be nonempty subsets of Z. Further-
more, let H = HiHy--- Hy,.
(1) If Z is an intercode of index n, and if m > n, then H is an extractable code. In particular, the
code Z™ is extractable.
(2) If Z is a J2,-code such that Z" N At Z"A* = (), and if m > n, then H is an extractable code.
(3) If Z is an infix Jn,-code such that m > n, then H is an extractable code.
(4) If Z is an I2-code such that Z"N AT Z"A* =, and if m > n, then H is an extractable code.
(5) If Z is an infix In,-code uch that m > n, then H is an extractable code.
(6) If Z is an I2,-code such that Z*NATZ"A* =0, and if m > n, then H is an extractable code.
(7) If Z is an infix Inp-code such that m > n, and if N_; H; = 0, then H is an extractable code.

Now, we examine the initial literal shuffles of codes related to extractable codes.

Definition 7 ([2]). Let x,y€A*. Then the initial literal shuffle x @ y of z and y is defined as
follows:
(1) Ifeitherz =1ory=1, then z e y = zy.
(2) Let z = ai1az---am and let y = b1ba -+ - by, a;, b; € A. Then

a1b1a2bs - - Anbnans1Gni2- - am if m > n,
Tey= .
arbyazby - - ambmbm+1bm+2 <o by if m <n.

For two subsets C; and C; we set C; ¢ Co = {c; e ca|c1 € C1, ¢ € Ca}.
For fundamental properties of initial literal shuffles of codes, refer to 3] and [6].
Proposition 19 ([6]). Let C C A™. Then C is extractable if and only if C e C is extractable.

Definition 8. Let Z be a code and z, y € Z*. Then the word z ez y is defined as follows:
(1) Ifeitherz =1ory =1, then z 0z y = zy.
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(2) Let z = ajas - - am, and let y = b1bsy - - - by, a;, bjeZ (1<i<m, 1<j<n). Then

a1b102bs - - apbpOni1Gny2 - Am if m > n,
rezy= .
aibiaghy - -- Ambmbmt1bmia - bn ifm<n.

For two subsets C; C Z* and Cy C Z* we set C1 07 Co = {c1 0z 2|1 € C1, ¢z € Ca}.

Proposition 20. Let YCB™, m > 2, be an extractable uniform code, and let Z be a code.
Assume that Y and Z are composable, and put X =Y o Z. Then
(1) If Z is an intercode of index n, and if m > n, then X ez X is extractable.
(2) If Z is a J2,-code such that Z" N AT Z" AT = 0, and if m > n, then X ez X is extractable.
(3) If Z is an infix Jn,-code such that m > n, then X ez X is extractable.
(4) If Z is an I2-code such that Z" N AT Z"A* = (), and if m > n, then X ez X is extractable.
(5) If Z is an infix In,-code such that m > n, then X ez X is extractable.
(6) If Z is an I2,-code such that Z" N AT Z"A* = 0, and if m > n, then X ez X is extractable.
(7) If Z is an infix Inp-code such that m > n and b™ ¢ Y for all b € B, then X ez X is extractable.

3 SOME RELATED REMARKS

There are not a few examples in which for a bifix code Z and some suitable integer n the code
Z™ becomes an extractable code. However there exists a code Z such that Z™ is not extractable

for any n > 1.

Example 7. A reflective code Z is extractable if and only if the following condition holds:
For any [z, [y] € A*/P)

Contgz (z) N Cont%?(y) #¢ = [z]=[y]

That fact has already been shown in [5, Proposition 8]. Let Z = Cl((ab)?a), and n be an arbitrary
integer. Then ab € Contg)(aba) N Cont(Zr)(aab) and ba € Contg)((aba) - Cont?((aab).

Therefore Z™ is not extractable for n = 1. For n > 2, we have
(ababa)™ € Z", aab(ababa)™ba(ababa) " = (aabab)(abaab)™ ' (ababa)™ € (Z™)%.
However, aabba(ababa)™~! ¢ (Z™)*. Therefore Z™ is not an extractable code for any n > 1.

Let C C A* be a code, and let u,v € CA~. We write [u] | [v] if Contgz(v) is not contained

in C’ontg2 (w). If [v]er = [wp]es, then Contgz(v) = (. In this case, C’ontgz(v) is contained in
Cont%? (u) for any u € A*. Therefore, if [u] | [v] for some u € A*, the set Contgz (v) is not the

emptyset.
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Proposition 21. Let Z be an infix code. If there exist z € Z and [u], [v] € A* /Pg.) such that
[uz] = [v], [u] | [v], and [wzz] = [wz] for any w € A*, then Z™ is not extractable for any n 2> 1.

For a prefix code C we defined the automaton A(C*) = (A* /P A, 6,[1), {[1]}), where § is the
transition function such that é§([w],z) = [wz] for [w] € A*/ P{) and z € A*. This automaton is
[0]—transitive (for deﬁnition see [4, p.213]). For each z € A* the transformation ¢(z) on the state
set A*/Pg) is defined by t(z) : [w] — [wa), [w] € A*/PY). The monoid T(C*) = {t(z)|z € A*}
is called the transition monozd of the automaton A(C*). T(C*) is isomorphic to the syntactic
monoid of C* (e.g., see [1] or [4]). Let Sy = {t(w) {w € C*}. Then Syy) is the stablizer of a state
[1] in the automaton A(C*). If t(w) € Sy, and if t(w)([u]) = [wp] for all [u] € A*/PS) — {1},
then t(w) is called the zero-element of Spy). By 01 we denote the zero element of Syy;.

Let T(Z*) be the transition monoid of the automaton .A(Z*), and let z € Z. The condition that
[wzz] = [wz] for all w € A* means that the transformation ¢(z) is an idempotent. Therefore, if
there exists an idempotent t(z), z € Z, such that t(z)([u]) = [v] for some u,v € ZA~ with [u] | [v],
then, by Proposition 19, Z" is not extractable for all n > 1.

Example 8. Let C = {a®, a®b, aba, b*}. Then A*/Pg.) ={1,2,3,4,5,0}, where1 =[1], 2 =
[a], 3 = [a?], 4 = [ab], 5 = [b], O = [ba]. The following figure is the tree of C.

Fig. 5.

The transformation t(a3) is an idempotent, and 4 | 3 since Cont(r) = {a, b} and Cont( )(ab)
{a}. Thus C" is not extractable for any n > 1.

Remark 4. T(C*) is generated by the set {t(a)|a € A}. For z=a1a2---an € C,a; € A, 1 <
i < n, we normally gain t(z) by computing the products ¢(a;)t(az)- - -t(as) of transformations.
Without such computation, however, we can obtain t(z) directly by using the tree of C. For
instance, in Example 8, from the tree of C (Fig. 5) we have

191 g g9 2,3 5,9 %9 32,7 b5 9,0 4-%51-55-%0,

123450
t(aba)=<1 2 oooo)'

52,0 22 0. Therefore,
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Lastly we present a characterization of an intercode Z by using transformations in T'(Z*).

Proposition 22. A code Z C A* is an intercode of index 7 if and only if ¢(w) = 0; holds for
all w e Z™.

Corollary 23. Let Z C A* be a code, and let T'(Z*) be the transition monoid of the automaton
A(Z*). If the subset ¢(Z) of T(Z*) contains an idempotent which is neither the identity of T'(Z*)
nor the element 0; of T'(Z*), then Z is not an intercode.

Corollary 24. Let Z C A* be an infix code. The following conditions are equivalent:
(1) Z is an In-code.
(2) Z is an intercode of index n.
(3) t(w) = 07 holds for all w € Z™.

As an elementary consequence of Proposition 22 we have the following assertion:

Example 9. The code Z is comma-free if and only if t(Z) = {0:}.

Example 10. We show that Z = {a%babc, acbabc?, bab, cac} is an intercode of index 4:

The tree of Z

Fig. 6.
t(a%babc) = t(acbabc?) = 0;.

1 2 3 456 7 89 10 11 12 13 0
106 00O071000O0UO0 0 0 0 0]}/

x = t(badb) = (
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1 2 3 456 7 8 9 10 11 12 13 0
1 000O0O7O0O0DO0UO0O 0O O0 o0 0}

y = t(cac) = (

.’E—123456789101112130
Y“\1070000000 0 0 0 0)

L_(1 23456 78910 11 12130
“=l10000100000 0 0 0 0]

Thus ¢(Z%) = {04, zy, yz}. Since

(123456789101112130
T-Yyxr =

and -t(Z2) = {04},
101000000000000) v 825 =0}

we have t(Z%) = {zyz,0;}. Since t(w)(10) = 0 for all w € Z, we have t(Z*) = t(Z3)t(Z) = {01}
Thus Z is an intercode of index 4.
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