WORD PROBLEMS FOR SEMIGROUPS *

KUNITAKA SHOJI DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY MATSUE, SHIMANE, 690-8504 JAPAN

Duncan and Gilman introduced the concept "word problems" for finitly generated semigroups in terms of formal langauges. In this paper, we show that finitly generated semigroups with a regular [resp. context-free] word problem has a has a presentation with regular [resp. context-free] congruence classes.

1. Word problems and semigroups with a presentation with spcial congruence classes

We recall regular, context-fee and one counter languages (see [4]).

Definition 1. Let X be finite alphabets. X^* is the set of all words over X. X^+ is the set of all non-empty words over X. A subset of X^* is called a **language** over X

Definition 2 . An automaton is defined as a 5-tuple:

 $M = (Q, X, \delta, q_0, F)$ where Q is a finite set of states, q_0 is the start state, X is a finite set of the input alphabets, $\delta : Q \times X_{\epsilon} \to Q$ is the transition function, $X_{\epsilon} = X \cup {\epsilon}, F \subset Q$ is the set of accepting states.

For q_0 and $w = x_1 x_2 \cdots x_{n-1} x_n \ (\in X^*)$, let $q = \delta(\cdots \delta(\delta(q_0, x_1), x_2) \cdots), x_n)$. Then we define $\delta(q_0, w) = q$.

The accepted language by the M

$$L(M) = \{ w \in \Sigma \mid \delta((q_0, w) = q \ (q \in F) \}$$

is called a regular language.

^{*}This is an absrtact and the paper will appear elsewhere.

Definition 3. A Pushdown automaton is defined as a 7-tuple:

 $M = (Q, X, \Gamma, \delta, q_0, Z_0, F)$ where Q is a finite set of states, q_0 is the start state, X is a finite set of the input alphabets, Γ is a finite set of the stack alphabets, Z_0 is the initial stack symbol, $\delta : Q \times X_{\epsilon} \times \Gamma_{\epsilon} \to P(Q \times X_{\epsilon})$ is the transition function, where P(S) denotes the power set of S, $X_{\epsilon} = X \cup {\epsilon}, \Gamma_{\epsilon} = \Gamma \cup {\epsilon}$. $F \subset Q$ is the set of accepting states.

For $q \in Q$, $x \in X_{\epsilon}, w \in X^*$) and $Z \in \Gamma_{\epsilon}, \alpha \in \Gamma^*$, we define a relation \Rightarrow_M by $(q, xw, Z\alpha) \Rightarrow_M (p, w, \beta\alpha')$ if $(p, \beta) \in \delta((q, x, Z))$. The transitive closure of the relation \Rightarrow_M is written as a relation \Rightarrow_M^* . The accepted language by M

$$L(M) = \{ w \in \Sigma \mid (q_0, w, Z_0) \Rightarrow^*_M (q, \epsilon, \epsilon) \ (q \in F) \}$$

is called a contex-free language.

Definition 4. A one counter machine is a pushdown automaton with a single stack alphabet. The accepted language by the one counter machine is called a one counter language.

Definition 5. ([7]) A semigroup S has a presentation with regular [resp. context-free] congruence classes if there exists a finite set X and there exists a surjective homomorphism ϕ of X^+ to M such that for each word $w \in X^+$, $\phi^{-1}(\phi(w))$ is a regular [resp. context-free] language.

Let X be finite alphabets. For a word $w = x_1 x_2 \cdots x_{n-1} x_n \in X^*$, $x_n x_{n-1} \cdots x_2 x_1$ is called the *reverse* of w denoted by w^R .

Definition 6. ([2]) Let S be a finitely generated semigroup, there exist finite alphabets X and there exists a surjective homomorphism ϕ of X^+ to S.

Then

(1) for each $w \in X^+$, the set $\{w \sharp v^R \mid \phi(w) = \phi(v)\}$ is called a word problem for the semigroup S.

(2) S has a regular [resp. regular context-free] word problem if the set $\{w \ v^R \mid \phi(w) = \phi(v)\}$ is a regular [resp. context-free] language over $X \cup \{ \ \}$.

Theorem 1 . A finitly generated semigroup with a regular [resp. context-free, one counter] word problem has a presentation with regular [resp. context-free, one counter] congruence classes.

2. Regular word problems and semigroups with a presentation with regular congruence classes

The property of that a semigroup has a regular word problem is very strong. Actually, the following is known.

Result 1 . ([3], Proposition 3.1). A semigroup S has a regular word problem if only if S is finite.

On the other hand, we have

Definition 7. A semigroup S is called residually finite if for each pair of elements $s,t \in S$ there is a homomorphism ϕ of S such that $\phi(S)$ is a finite semigroup and $\phi(s)$ and $\phi(t)$ are not equal.

Result 2. ([7], Theorem 5) If a finitely generated semigroup S has a presentation with regular congruence classes, then S is residually finite.

Result 3 . ([3], Proposition 4.2) If S is a finitely generated semigroup with a one counter word problem, then there exist finitely many elements $a_i, b_i, c_i \in S \cup \{\epsilon\}$ such that every element of S is represented by a word of the form $a_i b_i^n c_i$ for some i and some $n \ge 0$.

3. Context-free word problems and semigroups with a presentation with context-free congruence classes

Definition 8. Let L be a language over A. The syntactic congruence σ_L on A^+ is defined by $w\sigma_L w'$ if and only if

 $\{(x,y)\in A^+\times A^+\mid xwy\in L\}=\{(x,y)\in A^+\times A^+\mid xw'y\in L\}.$

Then the factor semigroup A^+/σ_L is called syntactic semigroup of L denoted by Syn(L).

Lemma 1. ([7]). Let S be a finitely generated semigroup and ϕ a surjective homomorphism of A^+ to S.

For an element s of S, let $L = \phi^{-1}(s)$.

Define a congruence $\sigma_s = \{(a, b) \in S \times S \mid xay = s \text{ if and if } xby = s (x, y \in S^1)\}$ which is called a syntactic congruence on S.

Then the syntactic semigroup A^+/σ_L of L is isomorphic to the factor semigroup S/σ_s of S. $(S/\sigma_s \text{ is called the syntactic semigroup of } S \text{ at } s.)$

Theorem 2 . A semigroup S has a presentation with context-free [resp. one counter] congruence classes if and only if for each $s \in S$, the syntactic semigroup S/σ_s has context-free [resp. one counter] congruence classes.

Example 1 . Let $A = \{a, b\}$ and a context-free language $L = \{a^n b^n, b^n a^n | n \in \mathbb{N}\}$. Then all of σ_L -classes are $\overline{ab} = \{a^p b^p | p \in \mathbb{N}\}$, $\overline{a^n} = \{a^n\}$, $\overline{b^n} = \{b^n\}$, $\overline{a^{n+1}b} = \{a^{p+n}b^p | p \in \mathbb{N}\}$, $\overline{ab^{n+1}} = \{a^q b^{q+n} | q \in \mathbb{N}\}$, $\overline{ba} = \{b^p a^p | p \in \mathbb{N}\}$, $\overline{ba^{n+1}} = \{b^p a^{p+n} | p \in \mathbb{N}\}$, $\overline{b^{n+1}a} = \{b^{q+n}a^q | q \in \mathbb{N}\}$. $0 = A^*bA^*aA^*bA^* \cup A^*aA^*bA^*aA^*$. Then

(1) L is a one counter language.

(2) Syn(L) has a linear growth function. Actually, $(|\overline{A^n}| \leq 6n)$.

(3) Syn(L) have a context-free word problem but does not have a one counter word problem.

(4) Syn(L) has a presentation with one counter congruence classes.

Example 2 . Let $A = \{a, b\}$ and $L = \{a^n b^m a^m b^n | m, n \in \mathbb{N}\}$. Then all of σ_L -classes are $\overline{a^i} = \{a^i\} \ (i \in \mathbb{N}), \ \overline{b^i} = \{a^i\} \ (i \in \mathbb{N}), \ \overline{a^i b^j} = \{a^i b^j\} \ (i, j \in \mathbb{N}), \ \overline{b^i a^j} = \{b^i a^j\} \ (i, j \in \mathbb{N}), \ \overline{a^i b^j a^k} = \{a^i b^j a^k\} \ (i, j, k \in \mathbb{N}), \ \overline{b^i a^j b^k} = \{b^i a^j b^k\} \ (i, j, k \in \mathbb{N}), \ \overline{a^i b^j a^j b} = \{a^i b^j a^j b\} \ (i, j \in \mathbb{N}), \ \overline{a^i b^j a^j b^i} = \{a b^j a^j b^i\} \ (i, j \in \mathbb{N}). \ 0 = \cup_{i \neq j} A^* a b^i a^j b A^*.$

Then

(1) L is a context-free language.

(2) Syn(L) does not have a presentation with context-free congruence classes.

Example 3 . Let $A = \{a, b, c\}$ and $L = \{a^n b^n c^n | n \in N\}$. Then all of σ_L -classes are $\{1\}, \overline{a^q b^r} = \{a^q b^r\}, (q, r \in \mathbb{N}), \overline{b^q c^r} = \{b^q c^r\}, (q, r \in \mathbb{N}), \overline{ab^q c^r} = \{a^i b^{q+i} c^{r+i} | q, r, i \in \mathbb{N}, 2 \leq r \leq q\}, \overline{a^p b^q c} = \{a^{p+i} b^{q+i} c^i | p, q, i \in \mathbb{N}, 2 \leq p \leq q\}, \overline{abc} = \{a^n b^n c^n | n \in \mathbb{N}\}, 0 = X^* ba X^* \cup X^* cb X^* \cup X^* ca X^* \cup X^* ac X^* \cup \{a^p b^q c^r | p, q, r \in \mathbb{N}, \text{either } q \leq p \text{ or } q \leq r\}.$ Then

(1) Syn(L) has a polynomial growth function. Actually, $\left(|\overline{A^n}| = \frac{n(n+1)}{2}\right)$.

Therefore,

- (2) Syn(L) does not have a onecunter word problem.
- (3) Syn(L) has a presentation with one counter congruence classes.

Finally we pose the following two open problems.

Problem 1 . Characterize a finitely generated semigroup S with a one counter word problem.

Problem 2. Characterize a finitely generated semigroup S which has a presentation with one counter congruence classes.

References

- M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 26(1985), 449-457.
- [2] Duncan and Gilman, Word hyperbolic semigroups, Math. Proc. Cambridge Philos. Soc. 136(2004), 513-524.
- [3] Holt, Owens and Thomas, Groups and semigroups with a one-counter word problem,
 J. Aust. Math. Soc. 85(2008), 197-209.
- [4] J. E. Hopcroft and J. D. Ullman, Introduction to Automata theory, Languages, and Computation, Addison-Wesley Publishing, 1979.

- [6] Muller and Schupp, Groups, the theory of ends, and context-free languages, J. Comput. System Sci. 26(1983), 295-310.
- [7] K. Shoji, Finitely generated semigroups which have such a presentation that all the congruence classes are regular languages, Math. Japonicae **69**(2008), 73-78.