The derivational complexity of string-rewriting systems

Yuji Kobayashi

Department of Information Science Toho University, Funabashi 274–8510, Japan

1 Derivational complexity

Let Σ be a (finite) alphabet and let $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ be the free monoid generated by Σ . A (string)-rewriting system R is a nonempty subset of $\Sigma^* \times \Sigma^*$. An element r = (u, v) in R is called a rule of R and written $u \to v$. Suppose that a word $x \in \Sigma^*$ contains u as a subword, that is, $x = x_1 u x_2$ with $x_1, x_2 \in \Sigma^*$, then we can apply the rule r to x and x is rewritten to the word $y = x_1 v x_2$. In this situation we write as $x \to_r y$. If there is some rule $r \in R$ such that $x \to_r y$, we write $x \to_R y$, and we call the relation \to_R the one-step derivation on Σ^* by R.

A rewriting system R is *terminating* on $x \in \Sigma^*$ if there is no infinite sequence of derivation:

$$x \to_R x_1 \to_R \cdots \to_R x_n \to_R \cdots$$

starting with x. R is terminating (or noetherian), if it is terminating on every $x \in \Sigma^*$.

The maximal length of a derivation sequence starting with x is denoted by $\delta_R(x)$. For x on which R is not terminating, we set $\delta_R(x) = \infty$. The function $d_R : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ defined by

$$d_R(n) = \max\{\,\delta_R(x) \,|\, x \in \Sigma^n\}\,$$

for $n \in \mathbb{N}$ is the *derivational complexity* of R.

We are interested in what functions can be derivational complexities of terminating finite rewriting systems.

Let $\mathbb{R}_+ = \{x \in \mathbb{R} \mid x \ge 0\}$. For two functions $f, g: \mathbb{N} \to \mathbb{R}_+ \cup \{\infty\}$, if there is a constant C > 0 such that $f(n) \le C \cdot g(n)$ for any sufficiently large $n \in \mathbb{N}$, we write as $f \le O(g)$. If moreover $g \le O(f)$, f and g are called *equivalent*, and written as f = O(g).

A function $f : \mathbb{N} \to \mathbb{R}_+ \cup \{\infty\}$ is super-additive if

$$f(m+n) \ge f(m) + f(n)$$

holds for any $m, n \in \mathbb{N}$. A super-additive function is non-decreasing. It is easy to see that the derivational complexity of a rewriting system is super-additive.

For an integer $k \ge 1$, a rewriting system R has polynomial (derivational) complexity of degree k, if $d_R(n) = O(n^k)$. Any (nonempty) rewriting system R has at least linear complexity, that is, $d_R(n) \ge O(n)$.

Example 1.1. Let $k \ge 2$ and let $\Sigma_k = \{a_1, a_2, \ldots, a_k\}$. For $2 \le \ell \le k$ let

$$C_{\ell} = \{a_1 a_{\ell} \to a_{\ell} a_{\ell-1}, a_2 a_{\ell} \to a_{\ell} a_{\ell-1}, \dots, a_{\ell-1} a_{\ell} \to a_{\ell} a_1\}$$

Define a system P_k on Σ_k inductively as follows.

$$P_2 = C_2 = \{a_1 a_2 \to a_2 a_1\},\$$

and

$$P_k = P_{k-1} \cup C_k$$

for $k \geq 3$. Then, P_k has polynomial complexity of degree k.

A rewriting system R has exponential complexity, if there are constants $C \ge D > 1$ such that

 $D^n \le d_R(n) \le C^n$

for sufficiently large $n \in \mathbb{N}$. The one-rule system $\{ab \to b^2a\}$ has an exponential derivational complexity.

Due to [4], a derivational complexity exists in each level of the Grzegorczyk hierarchy of primitive recursive functions. Even the Ackermann's function is attained ([5]). Actually, a derivational complexity can excess any recursive function (see Section 2). Many studies have been done about the derivational complexity of *term* rewriting systems under specific termination techniques (see [7] and the references cited there). Here we shall discuss the derivational complexity of *string* rewriting systems under a general situation.

2 Q-systems and Turing machines

In this article we only consider deterministic Turing machines. Let

$$M = M(\Sigma, Q, q_0, F, \delta)$$

be a k-tape Turing machine, where Σ is a tape alphabet, Q is a set of states, q_0 is an initial state, F is a set of final states and δ is a transition function. We assume that the tapes are one-way infinite and each head never moves to the left of the initial position.

Let $\Sigma_b = \Sigma \cup \{b\}$, where b denotes the blank symbol. The transition function δ is a mapping from $(Q \setminus F) \times \Sigma_b^k$ to $Q \times (\Sigma_b \cup \{L, R\})^k$, where L and R are the symbols for the right and left moves of the heads respectively. If for each i with $1 \leq i \leq k, x_i y_i$ is a word written on the *i*-th tape and the machine is looking at the leftmost letter of y_i in state q, then the k-ple

$$c = (x_1 q y_1, x_2 q y_2, \cdots, x_k q y_k)$$
(2.1)

is a configuration of M. The size |c| of a configuration c in (2.1) is defined by

$$|c| = |x_1y_1x_2y_2\cdots x_ky_k|.$$

For $x \in \Sigma^*$, let $\tau_M(x)$ be the number of steps taken until M halts when it runs with input x written in the first tape of M. The *time function* $t_M : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ of M is defined by

$$t_M(n) = \max \{ \tau_M(x) \, | \, x \in \Sigma^n \}.$$

For a configuration c, let $\tau'_M(c)$ be the number of steps taken until M halts when it starts with c. In particular, $\tau_M(x) = \tau'_M(q_0x, q_0, \ldots, q_0)$ for $x \in \Sigma^*$. Define the *total time function* function $t'_M : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ of M by

$$t'_M(n) = \max \{ \tau'_M(c) \, | \, c : \text{configuration of size } n \}$$

Clearly,

$$t'_M(n) \ge t_M(n)$$

for any $n \in \mathbb{N}$.

A Q-system is a finite rewriting system R over an alphabet

 $\Sigma = Q \cup \Sigma_1 \cup \Sigma_2 \cup \{\$\} \quad (\text{disjoint union})$

consisting of rules only of the form

$$vqu \rightarrow v'q'u', \text{ or}$$

 $vqu\$ \rightarrow v'q'u'\$,$

where $q, q' \in Q, u, u' \in \Sigma_1^*$ and $v, v' \in \Sigma_2^*$.

A word $x \in \Sigma^*$ is admissible (resp. weakly admissible), if it is of the form vqu with $q \in Q$, $v \in \Sigma_2^*$ and $u \in \Sigma_1^*$ (resp. $u \in \Sigma_1^* \cup \Sigma_1^*$).

For a Q-system R and for $n \in \mathbb{N}$, define

 $ad_R(n) = \max \{ \delta_R(x) | x \text{ is admissible and } |x| = n+2 \}$

Lemma 2.1. For a Q-system R, we have

$$ad_R(n) \le d_R(n+2)$$

for any $n \in \mathbb{N}$. If ad_R is super-additive, then

$$d_R(n+1) \le a d_R(n)$$

for any $n \in \mathbb{N}$. If ad_R is equivalent to a non-zero super-additive function, then

$$d_R(n+1) \le O(ad_R(n)).$$

There is a natural way to simulate one-tape Turing machines by string-rewriting systems ([3]).

Let $M = M(\Sigma, Q, q_0, F, \delta)$ be a one-tape Turing machine. Here, δ is a mapping from $(Q \setminus F) \times \Sigma_b$ to $Q \times (\Sigma_b \cup \{L, R\})$. We define a Q-system R_M associated with M as follows. R_M is a rewriting system on the alphabet

 $\Omega = Q \cup \Sigma_b \cup \overline{\Sigma}_b \cup \{\$\} \text{ (disjoint union)},$

where $\overline{\Sigma}_b = \{\overline{a} | a \in \Sigma_b\}$ is a copy of Σ_b , and consists of the rules:

 $\begin{array}{ll} qa \rightarrow \bar{a}q' & \text{for} \quad \delta(q,a) = (q',R), \\ \bar{a}'qa \rightarrow q'a'a & \text{for} \quad \delta(q,a) = (q',L), \\ qa \rightarrow q'a' & \text{for} \quad \delta(q,a) = (q',L), \\ q\$ \rightarrow \bar{b}q'\$ & \text{for} \quad \delta(q,b) = (q',R), \\ \bar{a}q\$ \rightarrow qa\$ & \text{for} \quad \delta(q,b) = (q',L), \\ q\$ \rightarrow q'a\$ & \text{for} \quad \delta(q,b) = (q',a). \end{array}$

for $a, a' \in \Sigma_b, q \in Q \setminus F$ and $q' \in Q$.

For a word $x \in \Sigma_b^*$, \bar{x} denotes the word obtained from x by replacing every letter a in x by \bar{a} . Since one step of the Turing machine M just corresponds to one rewriting by R_M we have

Lemma 2.2. It holds that

$$\delta_{R_M}(q_0x\$) = \tau_M(x), \ \delta_{R_M}(\bar{x}qy\$) = \tau'_M(xqy)$$

for $x, y \in \Sigma_b^*$ and $q \in Q$.

Corollary 2.3. We have

$$d_{R_M}(n+2) \ge a d_{R_M}(n) = t'_M(n) \ge t_M(n)$$

for $n \geq 0$.

If R is finite and terminating, then we can compute d_R by tracing all the derivation sequences (see Section 4), and it is a recursive function. Actually it can exceed any recursive function.

Corollary 2.4. For any recursive function f, there exists a finite terminating rewriting system R such that

$$d_R(n) \ge f(n)$$

for any positive $n \in \mathbb{N}$.

3 Time functions and derivational complexity

As we have seen in the last section, derivational complexity is related to the time functions of Turing machines.

Lemma 3.1. (cf. [2], [6]) For any k-tape Turing machine M with time function $f(n) \ge O(n)$, there exists a one-tape Turing machine M' such that $t_{M'}(n) = O(t'_{M'}(n)) = O(f(n)^2)$.

Suppose that f is the time function of a k-tape Turing machine M such that $f \ge O(n)$ and f^2 is equivalent to a super-additive function g. Let M' be the one-tape Turing machine Lemma 3.1. We have

$$t'_{M'(n)} = O(f(n)^2) = O(g(n)).$$

Let R be the Q-system associated with M', then by Lemma 2.1 and Corollary 2.3, we see

$$d_R(n+2) \ge t'_{M'}(n) = ad_R(n) \ge O(d_R(n+1)).$$

It follows that

$$O(f(n-2)^2) \le d_R(n) \le O(f(n-1)^2).$$

Thus, we have

Theorem 3.2. Let f(n) be a time function of a Turing machine such that $f \ge O(n)$ and $f(n)^2$ is equivalent to a super-additive function. Then there exists a finite rewriting system R such that

$$O(f(n-2)^2) \le d_R(n) \le O(f(n-1)^2).$$

We say that a function $f : \mathbb{N} \to \mathbb{N}$ is computable in time O(g(n)), if there exists a (deterministic) algorithm computing f(n) within time O(g(n)), more precisely, if there exists a multi-tape Turing machine which computes binary f(n) for given binary n with time function $t_M(n) \leq O(g(n))$.

Lemma 3.3. If $f : \mathbb{N} \to \mathbb{N}$ is a function such that $f(n) \geq O(n^2)$ and the binary f(n) is computable in time $O(\sqrt{f(n)})$ for binary $n \in \mathbb{N}$, then $\lfloor \sqrt{f(n)} \rfloor$ is equivalent to a time function of a Turing machine.

Combining this lemma with Theorem 3.1 we have

Theorem 3.4. Suppose that a function $f(n) \ge O(n^2)$ is computable in time $O(\sqrt{f(n)})$ in binary and equivalent to a super-additive function. Then, there exists a finite rewriting system R such that

$$O(f(n-2)) \le d_R(n) \le O(f(n-1)).$$

4 Computing the derivational complexity

Let R be a rewriting system on Σ . Consider a derivation sequence of length 2:

$$x = x'ux'' \to_R x'vx'' = y = y'u'y'' \to_R y'v'y'' = z,$$

where $u \to v, u' \to v' \in R$. This sequence is *left canonical*, if

$$|x'| < |y'u'|.$$

A sequence is *left canonical*, if every subsequence of length 2 of it is left canonical. In particular, a sequence of length ≤ 1 is left canonical. **Lemma 4.1.** For a derivation sequence of length n from $x \in \Sigma^*$ to $y \in \Sigma^*$, there is a left canonical sequence from x to y of the same length n.

For a derivational sequence

$$p: x_0 \to_R x_1 \to_R x_1 \to_R \cdots \to_R x_n,$$

we define a number L(p) by induction on n as follows. When n = 1 and $p: x_0 = x'_0 u x''_0 \to_r x'_0 v x''_0$ with $r = (u \to v) \in R$, define

$$L(p) = |x'_0 u| = |x_0| - |x''_0|.$$

Suppose that $n \geq 2$ and

 $\begin{aligned} x_{n-2} &= x'_{n-2}u'x''_{n-2} \to_{r'} x'_{n-2}v'x''_{n-2} = x_{n-1} = x'_{n-1}ux''_{n-1} \to_{r} x'_{n-1}vx''_{n-1} = x_n \\ \text{with } r &= (u \to v), r' = (u' \to v') \in R. \text{ Then, define} \end{aligned}$

$$L(p) = L(p') + |x'_{n-1}| - |x'_{n-2}| + |u| + K - 1,$$

where p' is the subsequence

$$x_0 \to_R x_1 \to_R \cdots \to_R x_{n-1}$$

of p and

$$K = \max\{ |u|, |v| \mid u \to v \in R \}.$$

Lemma 4.2. For any derivation sequence p of length $n (\geq 1)$ starting with $x \in \Sigma^*$ we have

$$L(p) \le (2K - 1)(n - 1) + |x|.$$

Lemma 4.3. A left canonical derivation sequence p can be found by tracing at most L(p) letters in the words appearing in p.

Theorem 4.4. Let R be a finite rewriting system on Σ with derivational complexity f. Then, given $n \in \mathbb{N}$, f(n) can be computed deterministically in time $C^{f(n)}$ for some constant C > 1.

5 Complexities of the forms n^{α} and α^{n}

In this section we give the results that there are finite rewriting systems with derivational complexities equivalent to n^{α} (and α^{n}), if the computational complexity of the real number α is relatively low, but there are no such systems if the complexity of α is high. The author has been inspired by the discussions in [8].

A real number $\alpha > 0$ is computable in time f(n), if a binary rational approximation a/b $(a, b \in \mathbb{N})$ of α such that $b \leq O(2^n)$ and

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{2^n}$$

can be computed in time f(n) (refer to [9] for computable real numbers). We denotes this rational a/b by $\alpha[n]$.

Lemma 5.1. Let $\alpha > 0$ be a real number computable in time O(f(n)). Then for an integer ν , the function $g_{\alpha,\nu}(n) = 2^{\lfloor \alpha \lfloor \lceil \log_2 n \rceil - \nu \rfloor \cdot n \rfloor}$ is equivalent to $2^{\alpha n}$ and can be computed in time $O(f(\lceil \log_2 n \rceil - \nu) + n)$.

Theorem 5.2. Let $\alpha \geq 2$ be a real number computable in time $(O(C^{2^n}))$ for some constant C > 1. Then, there is a finite rewriting system R with derivational complexity equivalent to n^{α} .

Next, we consider the exponential function α^n . Because it is not superadditive, we need the following

Lemma 5.3. Let $\alpha > 1$ be a real number, then the function f_{α} defined by

$$f_{\alpha}(n) = \begin{cases} \alpha^n & \text{if } n \ge 1/\log \alpha \\ (e \log \alpha) \cdot n & \text{if } 0 \le n < 1/\log \alpha \end{cases}$$

is super-additive.

The computational complexities of α and $\log_2 \alpha$ are closely related.

Lemma 5.4. Let $\alpha (> 1)$ be a real number computable in time O(f(n)). Then, $\log_2 \alpha$ is computable in time $O(f(n+2)+4^nn^2)$, and 2^{α} is computable in time $O(f(n+\lceil \alpha \rceil+2)+8^nn^2)$.

If we use a faster algorithm to compute the product of two integers, for example, Schönhag-Strassen's algorithm (see [1]), we can improve Lemma 5.4, but this is enough for our purpose.

Theorem 5.5. If a real number $\alpha > 1$ is computable in time $O(C^{2^n})$ for some constant C > 1, then there is a finite rewriting system R with derivational complexity equivalent to α^n .

By our results we see that, for example, the functions $n^{\alpha} (\alpha \ge 2)$, $\alpha^{n} (\alpha > 1)$ and $2^{\alpha n} (\alpha > 0)$ for a rational (or more generally an algebraic) number α are equivalent to the derivational complexities of finite rewriting systems. For a transcendental number α with low complexity such as π and e, they are also equivalent to the derivational complexities.

Using Theorem 4.4, we can give the other direction as follows.

Theorem 5.6. Let $\alpha > 1$ be a real number.

(1) If there is a finite rewriting system with derivational complexity equivalent to n^{α} , then α is computable in time $C^{C^{2^n}}$ for some constant C > 1.

(2) If there is a finite rewriting system with derivational complexity equivalent to α^n , then α is computable in time C^{2^n} for some constant C > 1.

References

- [1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, *The Design and Analysis of Computer Algorithms*, Addison-Wesley, MA, 1974.
- [2] J.-C. Birget, Infinite rewriting systems and complexity, J. Symbolic Comp. 25 (1998), 759 - 793.
- [3] R. V. Book and F. Otto, *String-Rewriting Systems*, Springer, New York, 1993.
- [4] D. Hofbauer, Termination proofs by multiset path orderings imply primitive recursive derivation lengths, Theoretical Computer Science 105 (1992), 129 - 140.
- [5] D. Hofbauer and C. Lautermann, Termination proofs and the length of derivations, RTA1989, LNCS 355 (1989), 167-177.
- [6] J.E. Hopcroft and J.D. Ullman, *Introduction to Automata Theory*, Languages and Computation, Addison-Wesley, MA, 1979.
- [7] G. Moser, Proof Theory at Work: Complexity Analysis of Term Rewrite Systems, Habilitation thesis, Univ. Innsbruck, 2009.
- [8] M. V. Sapir, J. -C. Birget and E. Rips, Isoperimetric and isodiametric functions of groups, Annals Math. 156 (2002), 345-466.
- [9] K. Weihrauch, Computable Analysis, Springer, Berlin Heidelberg, 2000.