0000000000
0 17120 2010 0 140-147 140

The derivational complexity of string-rewriting
systems

YuJi KOBAYASHI

Department of Information Science
Toho University, Funabashi 274-8510, Japan

1 Derivational complexity

Let ¥ be a (finite) alphabet and let ¥* = U,>oX" be the free monoid generated
by . A (string)-rewriting system R is a nonempty subset of £* x £*. An
element r = (u,v) in R is called a rule of R and written u — v. Suppose that a
word x € ¥* contains u as a subword, that is, x = ziuxy with z1,z9 € £*, then
we can apply the rule r to z and x is rewritten to the word y = zyvzs. In this
situation we write as x —, y. If there is some rule r € R such that x —, y, we
write £ — R y, and we call the relation — g the one-step derivation on * by R.

A rewriting system R is terminating on x € ¥* if there is no infinite sequence
of derivation:

T —=RZ1 2R'"" *RIn —R"""

starting with . R is terminating (or noetherian), if it is terminating on every
x e L.

The maximal length of a derivation sequence starting with z is denoted by
dr(z). For z on which R is not terminating, we set dg(z) = co. The function
dr :N — NU {co} defined by

dr(n) = max{dr(z) |z € ¥"}

for n € N is the derivational complexity of R.

We are interested in what functions can be derivational complexities of ter-
minating finite rewriting systems.

Let Ry = {z € R|z > 0}. For two functions f,g: N — R, U {co}, if there
is a constant C > 0 such that f(n) < C - g(n) for any sufficiently large n € N,
we write as f < O(g). If moreover g < O(f), f and g are called equivalent, and
written as f = O(g).

A function f: N — R U {oo} is super-additive if

f(m+n) > f(m)+ f(n)

holds for any m,n € N. A super-additive function is non-decreasing. It is easy
to see that the derivational complexity of a rewriting system is super-additive.

141

“For an integer £ > 1, a rewriting system R has polynomial (derivational)
complexity of degree k, if dgr(n) = O(n*). Any (nonempty) rewriting system R
has at least linear complexity, that is, dgr(n) > O(n).

Example 1.1. Let k > 2 and let 5 = {a1,a2,...,ak}. For 2< £ <k let
Ce = {a10¢ — agag—1,a2a¢ — apap—1,...,0e-10s — Gpa1}-
Define a system Py on X inductively as follows.
P, = Cy = {a1a3 — aza1},

and
P, = PB,_1UCy

for k > 3. Then, Py has polynomial complexity of degree k.

A rewriting system R has exponential complezity, if there are constants C >
D > 1 such that
D™ <dgr(n) <C™

for sufficiently large n € N. The one-rule system {ab — b%a} has an exponential
derivational complexity.

Due to [4], a derivational complexity exists in each level of the Grzegor-
czyk hierarchy of primitive recursive functions. Even the Ackermann’s function
is attained ([5]). Actually, a derivational complexity can excess any recursive
function (see Section 2). Many studies have been done about the derivational
complexity of term rewriting systems under specific termination techniques (see
[7] and the references cited there). Here we shall discuss the derivational com-
plexity of string rewriting systems under a general situation.

2 (Q-systems and Turing machines
In this article we only consider deterministic Turing machines. Let
M = M(EaQ:quF’a)

be a k-tape Turing machine, where ¥ is a tape alphabet, @Q is a set of states, qo
is an initial state, F' is a set of final states and J is a transition function. We
assume that the tapes are one-way infinite and each head never moves to the
left of the initial position.

Let £, = YU{b}, where b denotes the blank symbol. The transition function
¢ is a mapping from (Q\ F) x =F to Q x (S, U{L, R})*, where L and R are the
symbols for the right and left moves of the heads respectively. If for each ¢ with
1 < i <k, z;y; is a word written on the i-th tape and the machine is looking at
the leftmost letter of y; in state g, then the k-ple

¢ = (T19y1, T2qY2, "+ , TkqYk) (2.1)

142

is a configuration of M. The size |c| of a configuration c in (2.1) is defined by

lc| = |z1y122Y2 - - - TkYk|-

For x € &*, let 7a7(x) be the number of steps taken until M halts when it
runs with input z written in the first tape of M. The time function tpr : N —
NU {co} of M is defined by

tpm(n) =max{Tm(z) |z € X"}

For a configuration ¢, let 7;,(c) be the number of steps taken until M halts
when it starts with c. In particular, 7a(z) = 7),(g0%, go, - -, qo) for x € T*.
Define the total time function function t), : N = NU {oo0} of M by

ths(n) = max {r),(c) | ¢ : configuration of size n }

Clearly,
the(n) = tar(n)

for any n € N.
A @Q-system is a finite rewriting system R over an alphabet

L=QUX,UXU{$} (disjoint union)
consisting of rules only of the form

vgu — v'¢u/, or

vqu$ — V'S,

where ¢,¢' € Q,u, v’ € &7 and v,v’ € 3.
A word z € I* is admissible (resp. weakly admissible), if it is of the form
vqu with ¢ € Q, v € 3 and u € L}$ (resp. u € L] ULTS).
For a Q-system R and for n € N, define
adgr(n) = max { §g(z) | z is admissible and |z| =n+2}
Lemma 2.1. For a Q-system R, we have
adgr(n) < dg(n+2)
for any n € N. If adg is super-additive, then
dr(n+1) < adgr(n)

for any n € N. If adgr is equivalent to a non-zero super-additive function, then

dr(n+1) < O(adr(n)).

There is a natural way to simulate one-tape Turing machines by string-
rewriting systems ([3]).

Let M = M(%,Q,qo, F,6) be a one-tape Turing machine. Here, § is a
mapping from (Q \ F) x Ly to Q x (£p U {L, R}). We define a Q-system Ry
associated with M as follows. Ry is a rewriting system on the alphabet

Q=QUX,UZ, U {$} (disjoint union),

where ¥, = {@|a € £;} is a copy of Iy, and consists of the rules:

ga — aq’ for 6(¢q,a) = (¢, R),
a'qa — q'a’a for 6(q,a) = (¢', L),
qa — q'a,’ for 5((], a) = (q’, a,),
¢$ —bg'$ for 6(q,b) = (¢, R),
aq$ — qa$ for 4(q,b) = (¢, L),
q$ — ¢'a$ for &(q,b) = (¢',a).

fora,a’ € ¥, g€ Q\ F and ¢’ € Q.

For a word x € X}, Z denotes the word obtained from z by replacing every
letter a in x by G. Since one step of the Turing machine M just corresponds to
one rewriting by Rj; we have

Lemma 2.2. It holds that
Srr (2028) = Ti (@), ORy (Zqy8) = Tas(2qY)
forz,y € i andq € Q.
Corollary 2.3. We have
dr,, (n+2) > adg,, (n) = thy(n) > tp(n)
forn > 0.

If R is finite and terminating, then we can compute dg by tracing all the
derivation sequences (see Section 4), and it is a recursive function. Actually it
can exceed any recursive function.

Corollary 2.4. For any recursive function f, there exists a finite terminating
rewriting system R such that

dr(n) > f(n)

for any positive n € N.

3 Time functions and derivational complexity

As we have seen in the last section, derivational complexity is related to the
time functions of Turing machines.

143

144

Lemma 3.1. (cf. [2], [6]) For any k-tape Turing machine M with time function
f(n) > O(n), there exists a one-tape Turing machine M’ such that ty(n) =
Oty (n)) = O(f(n)?).

Suppose that f is the time function of a k-tape Turing machine M such that
f > O(n) and f? is equivalent to a super-additive function g. Let M’ be the
one-tape Turing machine Lemma 3.1. We have

thym) = O(f(n)?) = O(g(n)).

Let R be the Q-system associated with M’, then by Lemma 2.1 and Corollary

2.3, we see
dr(n+2) >), (n) = adr(n) > O(dr(n +1)).
It follows that
O(f(n—2)*) < dr(n) < O(f(n—1)?).
Thus, we have

Theorem 3.2. Let f(n) be a time function of a Turing machine such that
f > O(n) and f(n)? is equivalent to a super-additive function. Then there
exists a finite rewriting system R such that

O(f(n—2)%) < dr(n) < O(f(n—1)%).

We say that a function f : N — N is computable in time O(g(n)), if there
exists a (deterministic) algorithm computing f(n) within time O(g(n)), more
precisely, if there exists a multi-tape Turing machine which computes binary
f(n) for given binary n with time function ts(n) < O(g(n)).

Lemma 3.3. If f : N — N is a function such that f(n) > O(n?) and the
binary f(n) is computable in time O(+y/f(n)) for binary n € N, then |\/f(n)]

18 equivalent to a time function of a Turing machine.
Combining this lemma with Theorem 3.1 we have

Theorem 3.4. Suppose that a function f(n) > O(n?) is computable in time
O(y/ f(n)) in binary and equivalent to a super-additive function. Then, there
exists a finite rewriting system R such that

O(f(n—2)) < dr(n) < O(f(n —1)).

4 Computing the derivational complexity

Let R be a rewriting system on ¥. Consider a derivation sequence of length 2:
T = x/ux// —R x/vx// — y — ylulyl/ _)R y/v/y// — Z,
where u — v,u’ — v/ € R. This sequence is left canonical, if
|| <y’
A sequence is left canonical, if every subsequence of length 2 of it is left canonical.
In particular, a sequence of length <1 is left canonical.

145

Lemma 4.1. For a derivation sequence of length n from x € ¥* to y € ¥¥,
there is a left canonical sequence from x to y of the same length n.

For a derivational sequence
P:Zo 2RT1 PRZ1 R """ 7R Tn,
we define a number L(p) by induction on n as follows. When n = 1 and
P To = Toury —r ToUTy wWith r = (u — v) € R, define
L(p) = lzgul = |zo| —| z{].
Suppose that n > 2 and

! ’ / o / " / " _
Ln-2 = Lo oUW Ty _g 7 Tp oUTy_ o0 =Tn-1 =Ty _1UTy_1 r LTy 1VTp 1 = Tn

with r = (v — v),7 = (v — v') € R. Then, define
L(p) = L) + |2n-1| = zpo| + [ul + K 1,
where p’ is the subsequence
Lo R L1 —R"'" ™R Tn-1
of p and
K = max{|u|,|v]|u = veER}.

Lemma 4.2. For any derivation sequence p of length n (> 1) starting with

T € * we have
L(p) < 2K - 1)(n —1) + |z|.

Lemma 4.3. A left canonical derivation sequence p can be found by tracing at
most L(p) letters in the words appearing in p.

Theorem 4.4. Let R be a finite rewriting system on ¥ with derivational com-
plexity f. Then, given n € N, f(n) can be computed deterministically in time
Cf™) for some constant C > 1.

5 Complexities of the forms n® and o”

In this section we give the results that there are finite rewriting systems with
derivational complexities equivalent to n®* (and a™), if the computational com-
plexity of the real number « is relatively low, but there are no such systems if
the complexity of « is high. The author has been inspired by the discussions in
[8].

A real number a > 0 is computable in time f(n), if a binary rational approx-

imation a/b (a,b € N) of a such that b < O(2") and
’ a 1

can be computed in time f(n) (refer to [9] for computable real numbers). We
denotes this rational a/b by a[n].

Lemma 5.1. Let a > 0 be a real number computable in time O(f(n)). Then
for an integer v, the function ga,(n) = 2lelllog2n1=vInl is equivalent to 2°m
and can be computed in time O(f([logy n] — v) + n).

Theorem 5.2. Let o > 2 be a real number computable in time (O(C?")) for
some constant C > 1. Then, there is a finite rewriting system R with deriva-
tional complezity equivalent to n®.

Next, we consider the exponential function a™. Because it is not super-
additive, we need the following

Lemma 5.3. Let o > 1 be a real number, then the function f, defined by

fuln) = a™ if n>1/loga
o) = (eloga) n if 0<n<1l/loga

s super-additive.
The computational complexities of a and log, a are closely related.

Lemma 5.4. Let a (> 1) be a real number computable in time O(f(n)). Then,
log, a is computable in time O(f(n + 2) + 4"n?), and 2% is computable in time
O(f(n+ [a] +2) + 8™n?).

If we use a faster algorithm to compute the product of two integers, for
example, Schonhag-Strassen’s algorithm (see [1]), we can improve Lemma 5.4,
but this is enough for our purpose.

Theorem 5.5. If a real number o > 1 is computable in time O(C?") for some
constant C > 1, then there is a finite rewriting system R with derivational
complexity equivalent to o™.

By our results we see that, for example, the functions n*(a > 2), a™(a > 1)
and 2%"(a. > 0) for a rational (or more generally an algebraic) number a are
equivalent to the derivational complexities of finite rewriting systems. For a
transcendental number a with low complexity such as 7 and e, they are also
equivalent to the derivational complexities.

Using Theorem 4.4, we can give the other direction as follows.

Theorem 5.6. Let a > 1 be a real number.

(1) If there is a finite rewriting system with derivational complezxity equiva-
lent to n®, then a is computable in time cc” for some constant C > 1.

(2) If there is a finite rewriting system with derivational complexity equiva-
lent to o™, then o is computable in time C?" for some constant C > 1.

146

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, MA, 1974.

[2] J.-C. Birget, Infinite rewriting systems and complexity, J. Symbolic Comp.
25 (1998), 759 — 793.

[3] R. V. Book and F. Otto, String-Rewriting Systems, Springer, New York,
1993.

[4] D. Hofbauer, Termination proofs by multiset path orderings imply primitive
recursive derivation lengths, Theoretical Computer Science 105 (1992), 129
- 140.

[5] D. Hofbauer and C. Lautermann, Termination proofs and the length of
derivations, RTA1989, LNCS 355 (1989), 167-177.

[6] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Lan-
guages and Computation, Addison-Wesley, MA, 1979.

[7] G. Moser, Proof Theory at Work: Complexity Analysis of Term Rewrite
Systems, Habilitation thesis, Univ. Innsbruck, 2009.

[8] M. V. Sapir, J. -C. Birget and E. Rips, Isoperimetric and isodiametric func-
tions of groups, Annals Math. 156 (2002), 345-466.

[9] K. Weihrauch, Computable Analysis, Springer, Berlin Heidelberg, 2000.

147

