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Abstract

In this paper we make a generalization (called g-automorphism) of the automorphism of cellular
automata (CA for short) introduced by H. Nishio in 2009. At defining g-automorphism, we consider
both permutations of the position and the value of the arguments of the local function with relevant
permutation of the neighborhood. We prove that the g-automorphisms constitutes a group under
a rule of the semi-direct product. The group acts on the local function and naturally induces a
classification of CA. Every CA in a class has the same global property up to permutation. For
explaining the idea we preferably use a computation universal rule 110. We give the g-automorphism
classification of 256local functions of ECA into 11 classes. To be specific we show that48 functions
are g-automorphic with $f_{110}$ and therefore universal up to permutation.

1 Introduction

In the history of the cellular automaton (CA for short), most studies first assume some standard neigh-
borhood (von Neumann, Moore) and then investigate the global behaviors and mathematical properties
or look for a local function that would solve a given problem, say, the self-reproduction, the Game of
Life and so on. One could, however, ask a question: What happens if the neighborhood is changed from
the standard.

Suppose that CA is defined by a 4 tuple $(\mathbb{Z}^{d}, Q, f, \nu)$ , where $\mathbb{Z}^{d}$ is the d-dimensional Euclidean cellular
space, $Q$ is the set of cell states, $f$ is the local function and $\nu$ is the neighborhood, which is a mapping
from $\{$ 1, $\ldots,$

$n\}$ to $\mathbb{Z}^{d}$ . The i-th neighbor $\nu(i),$ $1\leq i\leq n$ is connected to the i-th argument of $f$ . When
the space $\mathbb{Z}^{d}$ and the state set $Q$ are understood, the global behavior of CA is determined by its local
structure $(f, \nu)$ . Two local structures are called equivalent if and only if they induce the same global
functions. As for equivalence we particularly proved a basic theorem: Two $CA$ are equivalent if and
only if their local structures are permutation of each other $|7]$ .

Based on this theory of the permutation equivalence of local structures, we defined the automorphism
for local structures and investigated the automorphism classification of the local functions [4, 5]. We
defined the automorphism: $(f’, \nu’)$ is called automorphic with $(f, \nu)$ if and only if there is a pair of
permutations $\nu$ and $\varphi$ such that $(f’, \nu’)=(\varphi^{-1}f^{\pi}\varphi, \nu^{\pi})$ . For example, if we permute $(f_{110}, (-1,0,1))$

with $\pi^{2}$ and $\varphi=(1,2)$ (transposition of states $0$ and 1) 2, we have $(f_{161}, (0, -1,1))$ . Therefore $f_{161}$ is
also universal up to permutation. In what follows we often omit the suffix up to permutation.

Now we generalize the automorphism of CA in such a way that every argument of $f$ is permuted inde-
pendently. The local function is expressed by a polynomial in $n$ variables $f(x_{n})=f(x_{1}, \ldots, x_{n})$ over
finite field $GF(q)$ and the set of such polynomials is denoted $\varphi_{n,q},$ $1\leq n,$ $2\leq q$ . We are going to
define the g-automorphism for $\varphi_{n,q}$ . For two CA $A$ and $A$‘, $A‘=(f’, \nu’)$ is called g-automorphic with
$A=(f, \nu)$ denoted $A\cong_{g}A’$ , if and only if there is a 3-tuple of permutations $(\pi, \psi, \varphi(n))$ such that
$(f’, \nu’)=(f^{\pi}, \psi f^{\pi}\varphi(n))$ , where $\varphi(n)=(\varphi_{1}, \ldots, \varphi_{n})$ and $\varphi_{i},$ $1\leq i\leq n$ permutes the value of the i-th
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$-\varphi^{-1}f\varphi$ is called conjugation, see Subsection 2.3

数理解析研究所講究録
第 1712巻 2010年 162-169 162



argument.

The set of automorphisms $G_{n,q}=\{(\pi, \psi, \varphi(n))|\pi\in S_{n}, \psi\in S_{q}, \varphi(n)\in S_{q}^{n}\}$ is proved a group
under the group operation of semi-direct product. The g-automorphism group acts on $\prime y_{n,q}$ and induces
a classification of CA such that every CA in a class has the same global property up to permutation. For
explaining the idea we preferably use rule 110 a computation universal ECA. To be specific we show
that there are 48 functions which are universal up to permutation. This is compared with 6 ECA which
are automorphic with $f_{110}|4,5]$ .

Finally we show the g-automorphism classification of ELFs in the form of a table, where every g-
automorphism class (GN class for short) is expressed by a union of several NW classes obtained by
H. Nishio and Th. Worsch(2009)[6]. It is seen that 256 ELF are classified into 11 GN classes, which is
compared with 46 NW classes.

This work has been inspired by the past mathematical works about the logical circuits made by C. Shan-
non $[8\rceil,D$ . Slepian $|9|$ and M. Harrison [2] during $1950s$ the dawn of the computer science. Specifically
they formulated and generally solved the problem of counting the number of the equivalent or symmetry
classes of Boolean functions by use of the P\’olya’s counting theory. Mathematically speaking, their the-
ory is exclusively concerned with the Boolean functions $(’y_{n,2})$ and even afterward, as far as I know, has
not been generalized to arbitrary functions $(\varphi_{n,q})$ .

2 Preliminaries

The definitions and previous results are briefly restated, of which details will be found in $|$7, 4, $5|$ .

2.1 CA and local structures

A cellular automaton is defined by a 4-tuple $(\mathbb{Z}^{d}, Q, f, \nu)$ , where $\mathbb{Z}^{d}$ is a d-dimensional Euclidean space,
$Q$ is a finite set of cell states, $f$ : $Q^{n}arrow Q$ is a localfunction and $\nu$ is a neighborhood.. [neighborhood] A neighborhood is a mapping $\nu$ : $\mathbb{N}_{n}arrow \mathbb{Z}^{d}$ , where $N_{n}=\{1, \ldots, n\}$ and $n\in$ N.

This can equivalently be seen as a list $\nu$ with $n$ components $(\nu_{1}, \ldots, \nu_{n})$ , where $\nu_{i}=\nu(i),$ $1\leq$

$i\leq n$ , is called the i-th neighbor. The i-th argument of $f$ is connected to the i-th neighbor.. [local structure] A pair $(f, \nu)$ is called a local structure of CA. We call $n$ the arity of the local
structure. When the space $\mathbb{Z}^{d}$ and the state set $Q$ are understood, CA is often identified with its
local structure.

$\bullet$ [global function] A local structure uniquely induces a global firnction $F$ : $Q^{\mathbb{Z}^{d}}arrow Q^{\mathbb{Z}^{d}}$ , which
is defined by

$F(c)(x)=f(c(x+\nu_{1}), \ldots, c(x+\nu_{n}))$ , (1)

for any global configuration $c\in Q^{\mathbb{Z}^{d}}$ , where $c(x)$ is the state of cell $x\in \mathbb{Z}^{d}$ in $c$ .

Remark 1 In the previous paper [7] the definition of local structures was more general, but in this paper
we assume, without loss of generality, a restricted but most usual case of reduced local structures, see
the following definition and Lemma 1.
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2.2 Previous results on the equivalence of local structures

Here we extract from the previous papers some basic results on the equivalence of local structures, which
entail the present work on the generalized automorphism.

Definition 1 freduced local structureJ A local structure is called reduced, ifand only $\iota f$

$\bullet$ $\nu$ is injective, i.e. $\nu_{i}\neq\nu_{j}$ for $i\neq j$ in the list ofneighborhood $\nu$ and

$\bullet$ $f$ depends on all arguments.

Lemma 1 For each local $str\iota\ell ctl\ell re(f, \nu)$ there is an equlvalent local structure $(f’, \nu‘)$ which is reduced.

Definition 2 [equivalenceJ Two local structures $(f, \nu)$ and $(f’, \nu‘)$ are called equivalent, if and only $\iota f$

they induce the same global function. In that case we write $(f, \nu)\approx(f’, \nu’)$ .

Definition 3 [permutation of local structuref For $\pi\in S_{n}$ we define the permutation of the localfunc-
tion and neighborhood by

$f^{\pi}(x_{1}, \ldots, x_{n})=f(x_{\pi(1)}, \ldots, x_{\pi(n)})$ (2)

and
$\nu^{\pi}=(\nu_{1}^{\pi}, \ldots, \nu_{n}^{\pi})$ , where $\nu_{\pi(i)}^{\pi}=\nu_{i},$ $1\leq i\leq n$ . (3)

Then we have the basic properties of the permutation of local structures.

Lemma 2 $(f_{)}\nu)$ and $(f^{\pi}, \nu^{\pi})$ are equivalentfor any permutation $\pi$ .

Theorem 1 $[permuta\hslash on$-equivalence of local structuresJ
If $(f, \nu)$ and $(f’, \nu‘)$ are two reduced local structures which are equivalent, then there is a permutation
$\pi$ such that $(f^{\pi}, \nu^{\pi})=(f’, \nu’)$ .

2.3 Polynomial expression of local functions and $S_{3}$

The local function is expressed by a polynomial in $n$ variables $f(x_{n})=f(x_{1}, \ldots, x_{n})$ over finite field
$GF(q)$ and the set of such polynomials will be denoted $\varphi_{n,q},$ $n\geq 1,$ $q\geq 2$ . $\prime y_{n,q}$ is a polynomial ring
over $GF(q)mod (x_{1}^{q}-x_{1})\cdots(x_{n}^{q}-x_{n})$ . Obviously $|\varphi_{n,q}|=q^{q^{?t}}$ . For small $n$ and $q,$ $f$ is written as
follows.

The local function of an ECA is called the elementary local function denoted ELF, which is generally
expressed by a polynomial $f(x_{1}, x_{2}, x_{3})$ over $GF(2)$ as shown below.

$f(x_{1}, x_{2}, x_{3})=u0+u_{1^{X}1}+u_{2}x_{2}+u_{3^{X}3}$

$+u_{4}x_{1}x_{2}+u_{5}x_{1}x_{3}+u_{6}x_{2}x_{3}+u_{7}x_{1}x_{2}x_{3}$ ,

where $u_{i}\in GF(2)=\{0,1\},$ $0\leq i\leq 7$ . (4)

Note that for $f\in\varphi_{3,2}$ , the polynomial expression is equivalently transformed to the Boolean expres-
sion by $a+b+ab$ (polynomial) $=a\vee b$ (Boolean), ab (polynomial) $=a\wedge b$ (Boolean) and
$a+1$ (polynomial) $=\overline{a}$ (Boolean). Conjugation $f’=\varphi_{1}^{-1}f\varphi_{1}=f(x_{1}+1, x_{2}+1, x_{3}+1)+1$ .

In the sequel, every ELF is numbered by a so called Wolfram number such as $f_{110}=x_{1}x_{2}x_{3}+x_{2}x_{3}+$

$x_{2}+x_{3}$ . The Java program catest $106d$ made by C.Lode $|3|$ contains a useful tool for conversion between
the Boolean, the polynomial and the Wolfram number.
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Permutations of 3 objects are usually expressed by a symmetric group $S_{3}=\{\pi_{i}, 0\leq i\leq 5\}$ as is shown
below.

$\pi_{0}=1=(\begin{array}{lll}1 2 31 2 3\end{array}),$ $\pi_{1}=(23)=(\begin{array}{lll}1 2 31 3 2\end{array})$ $\pi_{2}=(12)=(\begin{array}{lll}1 2 32 1 3\end{array})$ ,

$\pi_{3}=(123)=(\begin{array}{lll}1 2 32 3 1\end{array})$ $\pi_{4}=(132)=(\begin{array}{lll}1 2 33 1 2\end{array})$ $\pi_{5}=(13)=(\begin{array}{lll}1 2 33 2 l\end{array})$

Note that $S_{3}$ is not commutative: $\pi_{2}\pi_{1}=(12)(23)=(123)=\pi_{3}$ but $\pi_{1}\pi_{2}=(23)(12)=(132)=\pi_{4}$ .
The neighborhood $(-1,0,1)$ of ECA is called the elementary neighborhood (ENB for short). Then
$ENB^{\pi_{1}}=(-1,1,0),$ $ENB^{\pi 2}=(0, -1,1)$ and so on.

3 $(n, q)$ -permutation of local functions

We define two kinds of permutations called n-permutation and q-permutation of the local function and
then unify them as $(n,q)$-permutation of $f$ .

1. Definition 4 $[n$-permutation of $fJ$ The permutation of $f$ defined in Definition 3 is essentially
related to a permutation of the neighborhood and called hereafter the n-permutation of $f$ .

$f^{\pi}(x_{1}, \ldots, x_{n})=f(x_{\pi(1)}, \ldots, x_{\pi(n)})$

Example 1 The n-permutations of $f_{110}=x_{1}x_{2}x_{3}+x_{2}x_{3}+x_{2}+x_{3}$ are
$f_{110}^{\pi 0}=f_{110}^{\pi_{1}}=x_{1}x_{2}x_{3}+x_{2}x_{3}+x_{2}+x_{3}$ .
$f_{110}^{\pi}=f_{110}^{\pi}=x_{1}x_{2}x_{3}+x_{1}x_{3}+x_{1}+x_{3}=f_{122}$.
$f_{110}^{\pi}3=f_{110}^{\pi_{5}}=x_{1}x_{2}x_{3}+x_{1}x_{2}+x_{1}+x_{2}=f_{124}$ .

2. Definition 5 [$q$-permutation of $f$] For an argument $x$ of $f$ which takes a value from $Q$ , define a
permutation $\varphi\in S_{q}$ as a bijection $x^{\varphi}$ : $Qarrow Q$ . Then consider a list ofpermutations $\varphi(n)=$

$(\varphi_{1}, \ldots, \varphi_{n})$ where $\varphi_{i}\in S_{q},$ $1\leq i\leq n$ or $\varphi(n)\in S_{q}^{n}=S_{q}\cross\cdots\cross S_{q}$ (direct product of $n$ copies
of $S_{q})$ . Now we define the q-permutation of $f$ by

$f\varphi(n)(x_{n})=f(x_{1}^{\varphi}‘, ..., x_{n}^{\varphi_{n}})$ . (5)

ExampIe 2 For the binary case $Q=\{0,1\}$ the permutations $\varphi(n)$ is expressed by a binary word
$\varphi(a_{1}\cdots a_{n})$ which operates on $x_{n}$ such that $x_{i}^{a_{\mathfrak{i}}}=\backslash x_{i}$ if$a_{i}=0$ and $x_{i}^{a_{i}}=x_{i}+1$ if$a_{i}=1$ (Boolean
negation). For example $f_{110}\varphi(100)=(x_{1}+1)x_{2}x_{3}+x_{2}x_{3}+x_{2}+x_{3}=x_{1}x_{2}x_{3}+x_{2}+x_{3}=f_{230}$,
$f_{110\varphi}(110)=f_{185}$ and so on. In general for a prime number of states $Q=\{0,1, \ldots,p-1\}=$

$GF(p)$ , the permutation of $Q$ is expressed by an addition modulo $p$ such that $x+a,$ $a\in Q$ .

3. Definition 6 $[(n, q)$ -permutation of $fJ$ Combining n-permutation and q-permutation with an ad-
ditional permutation $\psi$ : $Qarrow Q$ of the function value, wefinally define $a$ unified permutation of
$f$ called $(n, q)$ -permutation of $f$ which is expressed by a 3-tuple ofpermutations $(\pi, \psi, \varphi(n))$ .

$(\pi, \psi, \varphi(n))f(x_{n})=\psi f^{\pi}\varphi(n)(x_{n})=\psi f(x_{\pi(1)}^{\varphi_{1}}, \ldots, x_{\pi(n)}^{\varphi_{n}})$ . (6)

Example 3
$(\pi_{2}, (1,2), \varphi(100))f_{110}$ $=$ $f_{110}(x_{2}^{1}, x_{1}^{0}, x_{3}^{0})+1$

$=$ $(x_{2}+1)x_{1}x_{3}+x_{1}x_{3}+x_{1}+x_{3}+1$

$=$ $x_{1}x_{2}x_{3}+x_{1}+x_{3}+1$

$=$ $f_{37}$ .

All $(n, q)$ -permutations of $f_{110}$ are given in Example 5.
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4 Generalized automorphism of CA

In this section, using the $(n, q)$ -permutation of $f$ , we define a generalized automorphism called g-
automorphism of CA and prove that the set of the g-automorphisms constitutes a group under a rule of
the semi-direct product.

Definition 7 For two $CAA=(f, \nu)$ and $A’=(f’, \nu’),$ $A$ is called g-automorphic with $A^{f}$ denoted
$A\cong_{g}A^{f}$ , if and only if there is an $(n, q)$ -permutation $(\pi, \psi, \varphi(n))$ such that the following equation
holds.

$(f^{f}, \nu’)=(\psi f^{\pi}\varphi(n), \nu^{\pi})$ . (7)

Remarks 1 Iffor any $\varphi\in S_{q},$ $\varphi_{i}=\varphi,$ $1\leq i\leq n$ . then by taking $\psi=\varphi^{-1}$ , g-automorphism becomes
the original automorphism [4, 5].

We show here that the set of the 3-tuples of permutations

$G_{n,q}=\{(\pi, \psi, \varphi(n))|\pi\in S_{n}, \psi\in S_{q}, \varphi(n)\in S_{q}^{n}\}$

is a group. The order of $G_{n,q}$ is $n!q^{n+1}$ .

Theorem 2 Let $g=(\pi, \psi, \varphi(n))\in G_{n,q}$ and $g^{f}=(\pi^{f}, \psi’, \varphi’(n))\in G_{n,q}$ . Then $G_{n,q}$ is a group under
the rule of semi-direct product;

$g’g=(\pi’, \psi’, \varphi’(n))(\pi, \psi, \varphi(n))=(\pi’\pi, \psi’\psi, \varphi’(n)^{\pi}\varphi(n))$, (8)

where $\varphi’(n)^{\pi}\varphi(n)=(\varphi_{\pi(1)}’\varphi_{1}, \ldots, \varphi_{\pi(n)}’\varphi_{n})$ is the componentwise group operation ofthe direct product
$S_{q}^{n}$ .

Proof 1 The proof is done in the same way as the proofgiven by M. Harrison for Boolean functions, see
page 822 of [$2J$ . He utilizes Theorem 6.5.1, page 88, Section 65 of the text book by M. Hall $[1J$ , where
the semi-direct product $K\lambda {}_{\varphi}H$ of $K$ by $H$ is defined by the rule

$[h_{1}, k_{1}]\cdot[h_{2}, k_{2}]=[h_{1}h_{2}, k_{1}^{h_{2}}k_{2}]$ , (9)

where $h_{1},$ $h_{2}\in H,$ $k_{1},$ $k_{2}\in K$ and the $automor\rho hism\varphi^{3}$ of $K$ is defined by for any $h\in H,$ $k$ $\vec{-}$

$k^{h}$ for all $k\in K.$ The product rule (9) is shown well defined: (1) associatlve, (2) the identity is [1, 1]
and (3) a lefi inverse $[h, k]^{-1}$ of $[h, k]$ is $[h^{-1}, (k^{-1})^{h^{-1}}]$ .

At applying this standard rule of the semi-direct product to the 3-tuples in Equation (8), first consider
the semi-direct product $S_{n}\rangle t_{\varphi}S_{q}^{n}$ and then combine $\psi\in S_{q}$ as a direct product.

The following example will help understanding the semi-direct product of $G_{n,q}$ .

Example 4 Suppose that two group elements $g_{1}=(\pi_{1}, \psi_{0}, \varphi(100))$ and $g_{2}=(\pi_{2}, \psi_{0}, \varphi(001))$ in $G_{3,2}$

$act^{4}$ on $f_{110}\in\varphi_{3,2}$ in this order where $\psi_{0}=1$ . That is

$g_{1}\circ f_{110}$ $=$ $x_{1}x_{2}x_{3}+x_{2}+x_{3}=f_{230}$

$g_{2}o(g_{1}\circ f_{110})$ $=$ $g_{2}\circ f_{230}=x_{1}x_{2}x_{3}+x_{1}x_{2}+x_{1}+x_{3}+1=f_{229}$ .

3Note that this symbol $\varphi$ is independent from our permutation $\varphi$ .
4The symbol of group action $0$ is usually omitted like group operation.
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On the other hand, by applying the rule of the semi-direct product (8), we see

$g_{2}g_{1}$ $=$ $(\pi_{2}, \psi_{0}, \varphi(001))(\pi_{1}, \psi_{0}, \varphi(100))$

$=$ $(\pi_{2}\pi_{1}, \psi_{0}, \varphi(001)^{\pi_{1}}\varphi(100))$

$=$ $(\pi_{2}\pi_{1}, \psi_{0}, \varphi(010)\varphi(100))$

$=$ $(\pi_{3}, \psi_{0}, \varphi(110))$

$=$ $g_{3}$

But
$g_{3}\circ f_{i10}=x_{1}x_{2}x_{3}+x_{1}x_{2}+x_{1}+x_{3}+1=f_{229}$

Lemma 3 Any g-automorphic $CA$ are equivalent (have the same globalfunction) up to permutation.

Proof 2 $lt$ is obvious from Equation (7). Permute the localfunction $f$ with the inverses of $\varphi(n)$ and $\psi$ .

ExampIe 5 [g-automorphism class of $f_{110}J$ As a typical example ofg-automorphisrn classification, $we$

consider $f_{110}$ again. Table 1 below lists up the $(n, q)$ -permutations of $f_{110}$ only for the case of $\psi_{0}=1$ .
The permutation $\psi_{1}f^{\pi}\varphi$ where $\psi_{1}=(12)$ is obtained by addlng 1 to the polynomial of each entry.
For example for $\psi_{0}f^{\pi}2\varphi(010)=f_{167}=x_{1}x_{2}x_{3}+x_{1}x_{3}+x_{2}x_{3}+x_{1}+1$ , we have
$\psi_{1}f^{\pi_{2}}\varphi(010)=x_{1}x_{2}x_{3}+x_{1}x_{3}+x_{2}x_{3}+x_{1}=f_{88}$.

Table 1: g-automorphism class of $f_{110}$

For $f\neq f’\in\varphi_{3,2}$ , it is seen that $\psi_{1}f\neq f$ and $\psi_{1}f\neq\psi_{1}f’$ . Since Table 1 contains 24 different
functions among the $3!2^{3}=48$ entries, it is seen that the number of the functions that are g-automorphic
with $f_{110}$ is $24\cross 2=48$ . Then by Lemma 3, we see

Lemma 4 There are 48 localfunctions which are computation universal up to permutation.

This is compared with 6 functions which are automorphic with $f_{110}|4,5]$ .

5 Generalized automorphism classification of CA

$g-automorphism\cong_{g}$ is an equivalence relation in $!y_{n,q}$ and naturally induces a generalized classification
of CA called g-automorphism classifcation. Every local function in a class has the same global property
up to permutation by Lemma 3.
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5.1 g-automorphism classification of ELF
The classification of 256 ELFs into 11 g-automorphism classes (denoted GN class) is shown in Table
2, where every g-automophism classes a union of NW classes. The NW classification will be found in
[6, $4|$ . $6$ functions in $GN6^{**}$ are reversible and 32 functions in $GN9^{*}$ , GN $10^{*}$ and GNII* are surjective
but not injective. The rests are not surjective nor injective. GN8 consists of 48 universal functions.

Table 2: g-automorphism classification of 2-state 3-neighbor CA

6 Concluding remarks

We have generalized the automorphism (classification) of CA by considering two kinds of permutations
of the local structures; n-permutation of the neighborhood and q-permutation of the cell states. For
explaining the idea, we inserted several examples using rule $f_{110}$ and gave the table of g-automorphisms
of $f_{110}$ . As a byproduct we see that 48 local rules are universal up to permutation. We also gave the
g-automorphism classification of 256 ELF into 11 g-automorphism classes. The counting problem of the
number of the g-automorphism classes has been left for future research.
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