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1 Introduction

The Hopf bifurcation theorem provides an effective criterion for finding
out periodic solutions for ordinary differential equations. Although various
proofs of this classical theorem are known, there seems to be no easy way
to arrive at the goal. Among them, the idea of Ambrosetti and Prodi [1]
is particularly noteworthy.

Maruyama [7] tries to establish the Hopf theorem in the framework of
some Sobolev space instead of $C^{r}$ . This approach seems to enable us to
simplify the technical details in the course of the proof to some extent.
The basic result due to Carleson [2] and Hunt [4] plays a crucial role in our
theory.

Examples of its applications are seen in Flaschel et al. [3], Maruyama [6],
and Mas-Colell [8].

2 Abstract Hopf Bifurcation Theorem

Let ac and $\mathfrak{Y}$ be a couple of real Banach spaces. And $F(\omega, \mu, x)$ is assumed
to be a function of class $C^{2}(\mathbb{R}^{2}\cross\chi, \mathfrak{Y})$ which satisfies

$F(\omega, \mu, 0)=0$ for all $(\omega.\mu)\in \mathbb{R}^{2}$ .

A point $(\omega^{*}, \mu^{*})\in \mathbb{R}^{2}$ is called a bifurcation point of $F$ if $(\omega^{*}, \mu^{*}, 0)$ is in
the closure of the set

$S=\{(\omega, \mu_{\pi},x)\in \mathbb{R}^{2}\cross SC |x\neq 0, F(\omega, \mu, x)=0\}$ . (1)
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We shall use several notations for the sake of simplicity.

$T=D_{x}F(\omega^{*}, \mu^{*}, 0)$ ,

S18 $=KerT$, $\Re=T(X)$ ,
$M=D_{x,\mu}^{2}F(\omega^{*}, \mu^{*}, 0)$ ,

$N=D_{x,\omega}^{2}F(\omega^{*}, \mu^{*}, 0)$ .

$T$ is the derivative of $F$ with respect to $x$ at $(\omega^{*}, \mu^{*}, 0)$ . It is a bounded
linear operator of ec into $\mathfrak{Y}$ . S23 and $\Re$ are the kernel and the image of
$T$ , respectively. $M$ (resp.N) is the second derivative of $F$ with respect
to $(x, \mu)$ (resp. $(x,$ $\omega)$ ) at $(\omega^{*}, \mu^{*}, 0)$ . Since $D_{x,\mu}^{2}F$ is the bounded linear
operator of $\mathbb{R}$ into $L(X, \mathfrak{Y})$ (the Banach space of all the bounded linear
operators of SC into $\mathfrak{Y}$ ), it can be identified with an element of $L(X, \mathfrak{Y})$ .
The same is true for $D_{x,\omega}^{2}F$.

The following theorem is an abstract version of the Hopf bifurcation the-
orem due to Ambrosetti and Prodi [1] (pp.136-139).

THEOREM 1 Let ec and $\mathfrak{Y}$ be real Banach spaces. Assume that
$F(\omega, \mu, x)$ is a function of the class $C^{2}(\mathbb{R}^{2}\cross x, \mathfrak{Y})$ which satisfies the fol-
lowing two conditions.

1. $\dim \mathfrak{B}=2$ . $\Re$ is closed and $co\dim\Re=2$ .
We represent Xand $\mathfrak{Y}$ in the forms of topological direct sums:

$X=\mathfrak{B}\oplus \mathfrak{M}$ , $\mathfrak{Y}=3\oplus\Re$ .

We denote by $P$ the projection of $\mathfrak{Y}$ into 3, and by $Q$ the projection of
2$)$ into $\Re$ .

2. There exists some point $v*\in \mathfrak{B}$ such that $PMv^{*}$ and $PNv^{*}$ are linearly
independent.

Then $(\omega^{*}, \mu^{*})$ is a bifurcation point of $F$ .
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The proof of this theorem is based upon the Ljapunov-Schmidt reduction
method, which is also neatly explained in Ambrosetti and Prodi [1] (pp.89-
91).

3 Classical Hopf Bifurcation for Ordinary Differential Equations

We now turn to the classical bifurcation phenomena of periodic solutions
for some ordinary differential equation. Let $f(\mu, x)$ be a function of the
class $C^{2}(\mathbb{R}\cross \mathbb{R}^{n}, \mathbb{R}^{n})$ . And consider the differential equation

$\frac{dx}{ds}=f(\mu,$ $x)$ . (1 )

Changing the time variable $s$ by the relation

$t=\omega s$ $(\omega\neq 0)$ , (2)

we rewrite the equation (1) as

$\frac{dx}{dt}=\frac{1}{\omega}f(\mu,$ $x)$ , (3)

$i$ . $e$ . $\omega\frac{dx}{dt}=f(\mu, x)$ . (3’)

This is an ordinary differential equation with two real parameters, $\omega$ and
$\mu$ . For the sake of simplicity, we assume that the function $f(\mu, x)$ satisfies

$f(\mu, 0)=0$ for all $\mu\in \mathbb{R}$ . (4)

We denote by $\mathfrak{M}_{2\pi}^{1,2}(\mathbb{R}, \mathbb{R}^{n})$ the set of all the $2\pi$-periodic and absolutely
continuous functions $x$ : $\mathbb{R}arrow \mathbb{R}^{n}$ such that $x|_{[0,2\pi]}\in \mathfrak{M}^{1,2}([0,2\pi], \mathbb{R}^{n})$ ,
where $x|_{[0,2\pi]}$ denotes the restriction of $x$ to the interval $[0,2\pi];i.e$ .

$\mathfrak{M}_{2\pi}^{1,2}=\{x:\mathbb{R}arrow \mathbb{R}^{n}|x$ is $2\pi$-periodic, absolutely continuous and

dr $(\cdot)|_{[0,2\pi]}\in L^{2}([0,2\pi], \mathbb{R}^{n})\}$ . $(5)$
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$\mathfrak{M}_{2\pi}^{1,2}$ is a Banach space under the norm

$\Vert x\Vert_{\mathfrak{M}_{2\pi}^{1,2}}=(\int_{0}^{2\pi}\Vert x(t)\Vert^{2}dt)^{1/2}+(\int_{0}^{2\pi}\Vert\dot{x}(t)\Vert^{2}dt)^{1/2}$ (6)

We also denote by $L_{2\pi}^{2}(\mathbb{R}, \mathbb{R}^{n})$ the set of all the $2\pi$-periodic measurable
functions $y:\mathbb{R}arrow \mathbb{R}^{n}$ such that $y|_{[0,2\pi|}\in L^{2}([0,2\pi], \mathbb{R}^{2});i.e$ .

$L_{2\pi}^{2}=$ { $y:\mathbb{R}arrow \mathbb{R}^{n}|y$ is $2\pi$-periodic and $y|_{[0,2\pi]}\in L^{2}([0,2\pi],$ $\mathbb{R}^{n})$ }. (7)

$L_{2\pi}^{2}$ is a Banach space under the norm

$\Vert y\Vert_{L_{2\pi}^{2}}=(\int_{0}^{2\pi}\Vert y(t)\Vert^{2}dt)^{1/2}$ (8)

In this section, we adopt $\mathfrak{M}_{2\pi}^{1,2}$ as SC and $L_{2\pi}^{2}$ as $\mathfrak{Y}$ , respectively; $i.e$ .

$ac$ $=\mathfrak{M}_{2\pi}^{1,2}$ , $\mathfrak{Y}=L_{2\pi}^{2}$ . (9)

Define the function $F:\mathbb{R}^{2}\cross Xarrow$ Ep by (cf. (9))

$F(\omega,$ $\mu,$
$x)= \omega\frac{dx}{dt}-f(\mu,$ $x)$ . (10)

Then we can prove that $F$ is a function of the class $C^{2}(\mathbb{R}^{2}\cross X, \mathfrak{Y})$ provided

.that the following assumptions are satisfied.

ASSUMPTION 1 (i) There exists some constants $\alpha$ and $\beta\in \mathbb{R}$ such
that

$\Vert f(\mu,$ $x)\Vert\leqq\alpha+\beta\Vert x\Vert$ , $x\in \mathbb{R}^{n}$

(ii) There exists some constant $\rho$ such that

$\Vert D_{x}f(\mu, x)\Vert$ , $\Vert D^{2}f(\mu, x)\Vert\leqq\rho$ for all $x\in \mathbb{R}^{2}$

It is ovbious that

$F(\omega, \mu, 0)=0$ for all $(\omega, \mu)\in \mathbb{R}^{2}$ (11)
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Recall that $(\omega^{*}, \mu^{*})\in \mathbb{R}^{2}$ is a bifurcation point of $F$ if there exists a
sequence $(\omega_{n}, \mu_{n}, x_{n})$ in $\mathbb{R}^{2}\cross$ ec such that

$\{\begin{array}{l}F(\omega_{n}, \mu_{n}, x_{n})=0,(\omega_{n}, \mu_{n})arrow(\omega^{*}, \mu^{*}) as narrow\infty,x_{n}\neq 0, x_{n}arrow 0 as narrow\infty.\end{array}$ and

Each $x_{n}$ is a non-trivial (not identically zero) periodic solution with period
$2\pi$ of the equation

$\omega_{n}\frac{dx}{dt}-f(\mu_{n}, x)=0$ .

Hence, changing the time-variable to $s$ again, we obtain a periodic solution

$X_{n}(s)=x_{n}(\omega_{n}s)$

with period $\tau_{n}=2\pi/\omega_{n}$ for the original equation (1). Here

$\tau_{n}arrow\tau^{*}=\frac{2\pi}{\omega}*$ , $\Vert X_{n}\Vert_{\mathfrak{M}_{2\pi/\omega_{n}}^{1,2}}arrow 0$ as $narrow\infty$ .

The target of our investigations is to find out a bifurcation point of $F$ ac-
cording to the principle of Theorem 1. We have to note that the derivative

$D_{x}F(\omega, \mu, 0):x\mapsto\omega\dot{x}-D_{x}f(\mu, 0)x$ (12)

is to play the most important role in the course of our discussions. $(\dot{x}$

means $dx/dt.$ ) Of course, $D_{x}F(\omega, \mu, 0)$ is a bounded linear operator of SC
into $\mathfrak{Y}$ . If we denote

$A_{\mu}=D_{x}f(\mu, 0)$ ,

$A_{\mu}$ is $(n\cross n)$ -matrix and (7) can be rewritten in the form

$D_{x}F(\omega, \mu, 0)x=\omega\dot{x}-A_{\mu}x$ . (12’)

Here we need a couple of assumptions to be imposed upon $A_{\mu}$ at some
$(\omega^{*}, \mu^{*})$ .
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ASSUMPTION 2
values of $A_{\mu}*$ .

$A_{\mu^{*}}$ is regular, $and\pm i\omega^{*}(\omega^{*}>0)$ are simple eigen-

ASSUMPTION 3 None $of\pm ik\omega^{*}(k\neq\pm 1)$ is an eigenvalue of $A_{\mu^{*}}$ .

4 $\dim \mathfrak{B},$ $co\dim\Re$ , and All That

Denoting $T=D_{x}F(\omega^{*}, \mu^{*}, 0)$ , we have

$Tx=0$ if and only if $\omega^{*}\dot{x}-A_{\mu}*x=0$ . (1)

In order to apply Theorem 1 to our classical problem in section 3, we
have to start with confirming that (a) the dimension of the kernel of $T$ is
2, and (b) the codimension of the image of $T$ is also 2. Henceforth, we
denote $KerT$ by SU and $T(X)$ by $\Re$ , repectively.

In fact, we can prove the desined results thanks to Assumption 2, i.e.

$\dim \mathfrak{B}=2$ , $co\dim\Re=2$ .

It is here that the Carleson-Hunt theory plays an indispensable perfor-
mance.

According to the Assumption 2, $\pm i\omega^{*}$ are simple eigenvalues of $A_{\mu}*$ .
Hence $\mathbb{C}^{n}$ can be expressed as a direct sum as

$\mathbb{C}^{n}=Ker[\pm i\omega^{*}I-A_{\mu^{*}}]\oplus[\pm i\omega^{*}I-A_{\mu^{*}}](\mathbb{C}^{n})$ . (2)

We shall now concentrate on the case $+i\omega^{*}$ (The case $-i\omega^{*}$ can be
discussed similarly.)

Let $\eta\in \mathbb{C}^{n}(\eta\neq 0)$ be any vector which is orthogonal to $[i\omega^{*}I-A_{\mu^{*}}](\mathbb{C}^{n})$ .
We define a function $g:\mathbb{R}\cross \mathbb{C}\cross \mathbb{C}^{n}arrow \mathbb{C}^{n}\cross \mathbb{C}$ by

$g(\mu,$ $\lambda,$ $\theta)=(\begin{array}{l}(\lambda I-A_{\mu})(\xi+\theta)\langle\eta,\theta\rangle\end{array})$ (3)
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( $\langle\cdot,$ $\cdot\rangle$ denotes the inner product.) Then the function $g$ is of the class $C^{1}$

and satisfies
$g(\mu^{*},$ $i\omega^{*},$ $0)=0$ . (4)

Applying the Implicit Function Theorem, we can prove the following
lemma.

LEMMA There exist a couple of functions, $\lambda(\mu)$ and $\theta(\mu)$ of the $C^{1}-$

class which are defined in some neighborhood of $\mu^{*}$ and satisfy

$(\begin{array}{l}(\lambda(\mu)I-A_{\mu})(\xi+\theta(\mu))\langle\eta,\theta(\mu)\rangle\end{array})=(\begin{array}{l}00\end{array})$ , (5)

and
$\lambda(\mu^{*})=i\omega^{*}$ , $\theta(\mu^{*})=0$ . (6)

Dividing $\lambda(\mu)$ (obtained by the above lemma) into real and imaginary
parts, we write

$\lambda(\mu)=\alpha(\mu)+i\beta(\mu)$ .

We also write
$\lambda’(\mu)=\alpha’(\mu)+i\beta’(\mu)$ .

Then we get a simple fact that $PNv^{*}$ and $PMv^{*}$ are linearly independent
if and only if $\alpha’(\mu^{*})\neq 0$ .

All the requirements in Theorem 1 are fulfilled if we make an additional
assumption that $\alpha’(\mu^{*})\neq 0$ .

THEOREM 2 Let $f(\mu, x)$ : $\mathbb{R}\cross \mathbb{R}^{n}arrow \mathbb{R}^{n}$ be a function of the class
$C^{2}(\mathbb{R}\cross \mathbb{R}^{n}, \mathbb{R}^{n})$ which satisfies $f(\mu, 0)=0$ for all $\mu\in \mathbb{R}$ . Suppose that
Assumptions 1-3 as well as the condition $\alpha’(\mu^{*})\neq 0$ are satisfied. Then
$(\omega^{*}, \mu^{*})$ is a bifurcation point of $F(\omega, \mu, x)=\omega dx/dt-f(\mu, x)$ .
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