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ABSTRACT
It is recently found in some dynamical systems in fluid dynam-

ics that only a few unstable periodic orbits (UPOs) with low pe-
riods can give good approximations to mean properties of turbu-
lent (chaotic) solutions. By employing the Kuramoto-Sivashinsky
equation we compared time averaged properties of a set of UPOs
embedded in a chaotic attractor and those of a set of segments of
chaotic orbits, and reported that the distribution of a time average
of a dynamical variable along UPOs with lower and higher periods
are similar to each other and the variance of the distribution issmall, in contrast with that along chaotic segments. The result is
similar to those for low dimensional ordinary differential equations
(Lorenz system, R\"ossler system and Economic system) reported in
Saiki and Yamada, 2009, Physical Review $E$ , 79(1) R015201.

1 Introduction

Chaos in dynamical systems has been discussed in relation to UPOs (un-
stable periodic orbits) embedded in a chaotic attractor, as a chaotic orbit is
considered to be approximatable by an ensemble of UPOs which are densely
distributed in the chaotic attractor [3]. Recently, in some turbulence sys-
tems in fluid dynamics, it has been shown that even only a few UPOs with
relatively low periods can capture mean properties of chaotic motions [6].
For the turbulent Couette flow of rather low Reynolds number in the full
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Navier-Stokes system, Kawahara and Kida obtained a remarkable agree-
ment of an averaged velocity profile along a single UPO with that along a
chaotic orbit in phase space of a turbulent Couette flow. Later van Veen
et al. [16] performed a numerical study of an isotropic Navier-Stokes tur-
bulence with high symmetry, and found that among several UPOs there
is an UPO with relatively low period where the energy dissipation rate
appears to converge to a nonzero value as assumed in the Kolmogorov sim-
ilarity theory in the limit of large Reynolds number. This suggests that
the UPO corresponds to the isotropic turbulence of fluid motion, although
the Reynolds number is not large enough to discuss the detailed properties
of the fully developed turbulence because of computational difficulties. As
for the universal statistical properties of fluid turbulence at high Reynolds
numbers, employing the GOY shell model, Kato and Yamada [7] found a
single UPO which gives a fairly good approximation to the scaling expo-
nents of structure functions of velocity, which suggests that the intermit-
tency in the model turbulence can be interpreted as a property of a single
UPO, rather than a statistical contribution of complex orbits.

In the above studies, it seems that only a few UPOs with relatively low
periods are enough to capture some mean properties of a chaotic solution.
However, on the other hand, the chaotic attractor includes an infinite num-
ber of UPOs, and it appears that an UPO with longer period gives a better
approximation to the statistical properties of chaotic solutions, as a set of
long UPOs and a set of chaotic orbits are intuitively taken to have sim-
ilar statistical properties. So we may have a question why in the above
systems even a small number of UPOs with rather low periods can give a
remarkably good approximation to the chaotic mean values. Some stud-
ies have been concerned with this problem [8, 5, 13, 14]. Kawasaki and
Sasa studied a simple model of chaotic dynamical systems with a large
degree of freedom, and found that there is an ensemble of UPOs with the
special property that the expectation values of macroscopic quantities can
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be calculated using one UPO sampled from the ensemble. Hunt and Ott
studied an optimal periodic orbit which yields the optimal (extreme) value
of a time average of a given smooth performance function of dynamical
variables. They obtained an implication that the optimal periodic orbit is
typically a periodic orbit of low period, although they do not consider the
relation of averaged statistical properties along UPOs and chaotic orbits.
On the other hand, Yang et al. reported that the optimal UPO can be a
periodic orbit of high period when the system is near crisis. In a study
on UPOs of low dimensional map systems by Saiki and Yamada [13], it is
reported that UPOs with low periods are not effective to approximate the
time averaged properties of chaotic orbits.

Recently Saiki and Yamada [14] employed chaotic systems described by
low dimensional ODEs and investigate the relation between the average
of a dynamical quantity along an UPO and that along a chaotic orbit,
especially with an attention focused on the dependence of the variance of
averaged values on the periods of the UPOs. At a first glance, it may ap-
pear that if we take all the UPOs with the period around $T$ , for example,
and take the averages of a dynamical quantity along these UPOs, the vari-
ance of the averages would decrease as $T$ increases, because an extremely
long orbit would cover most part of the chaotic attractor, capturing pos-
sible dynamical states on the attractor. The aim was to see whether this
intuitive discussion holds for chaotic systems simple enough to obtain a
large number of UPOs by available numerical computation with double
accuracy. For this purpose we take three chaotic systems; Lorenz system,
R\"ossler model and a business cycle model. A set of UPOs in each model
were obtained numerically, and found that for every chaotic system the
distributions of a time average of a dynamical variable along UPOs with
lower and higher periods are similar to each other and the variance of the
distribution is small, in contrast with that along chaotic segments. Here,
in this paper, we study Kuramoto-Sivashinsky equation as an example of a
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partial differential equation system and examine time averaged properties
along UPOs and segments of chaotic orbits with the corresponding lengths.

2 Time averaged properties

UPOs in the Kuramoto-Sivashinsky equation are already studied in some
ways [2, 17, 4, 9, 10, 11]. Christensen et al. reported that cycle expan-
sion theory works in the system with a periodic boundary condition in
some set of parameter values. Zoldi and Greenside investigated UPOs
of the Kuramoto-Sivashinsky equation with a rigid boundary condition,
which generates spatio temporal chaotic behaviors. In this paper, we study
Kuramoto-Sivashinsky equation with a periodic boundary condition with
the same setting as that studied in the previous studies [2, 11]. That is,
the original system

$u_{t}=(u^{2})_{x}-u_{xx}-\nu u_{xxxx}$ (1)

is written in the Fourier space as

$\dot{b}_{k}=$ $(k^{2}$ 一 $\nu k^{4})b_{k}+ik\sum_{m=-\infty}^{\infty}b_{m}b_{k-m}$ (2)

by

$u(x, t)= \sum_{k=-\infty}^{\infty}b_{k}(t)e^{ikx}$ , (3)

where the coefficients $b_{k}$ are in general complex variables. However, we
simplify the system by assuming that $b_{k}$ are pure imaginary, $b_{k}=ia_{k}$ ,
where $a_{k}$ are real and obtain evolution equations [2]

$\dot{a}_{k}=(k^{2}-\nu k^{4})a_{k}-k^{\text{コ}}\sum_{m=-\infty}^{\infty}a_{m}a_{k-m}$. (4)

We reduce this system to 16 dimensional ODEs and fix $\nu$ as 0.02991. The
system generates two chaotic attractors which are symmetric to each other.

Here we focus our attention to the distribution of time averaged values of
a dynamical variable along UPOs of the Kuramoto-Sivashinsky system. In
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order to detect UPOs we employ in this paper the Newton-Raphson-Mees
method in which the period of the UPO is regarded as a variable to be
found in the numerical calculation [12]. We found more than 650 UPOs
of the periods from 0.87072 through 12.30608, corresponding respectively
from 1 through 14 Poincar\’e map periods (PERIODs). Detected UPOs are
classified into three types. UPOs which are embedded in a chaotic attractor
are classified into the first type. In Fig.1 two examples of the $(a_{1}, a_{2})$

projections of UPOs $((b)T=0.870729, (c)T=6.172071)$ are described in
contrast with that of a chaotic attractor (a). The second type is a UPO
which is outside a chaotic attractor but mediates an attractor merging crisis
at the different parameter value. The stable manifold of the UPO forms
the basin boundary of two chaotic attractors before the merging crisis and
the orbit becomes embedded in a big attractor after the merging crisis [10].
Other existing UPOs which are outside a chaotic attractor are classified
into the third type. Here in this paper we focus our attention to UPOs of
the first type which are embedded in a chaotic attractor.

It should be remarked that the Poincar\’e map is defined by the Poincar\’e

section $a_{1}=0$ with $da_{1}/dt>0$ . In our numerical calculation, we identified
most UPOs with PERIOD less or equal to 12.

One of the most important indices representing the complexity of a dy-
namical system is the topological entropy [1], which is estimated by the ex-
ponential growth rate of the number of periodic orbits; $h_{top}= \lim\sup_{Narrow\infty}$

$\log(\#\{PERIOD-N UPOs\})/N$ , and the topological entropy $h_{top}$ of the
Poincar\’e map in this case is estimated to be log(1.6) from Fig. 2. We
should remark a clear linear dependence of $\log\{\UPO\}$ on $N$ which sug-
gests that the number of UPOs with PERIOD $N$ detected in our computa-
tion is sufficient to study statistical properties of UPOs. We now calculate
the time average of $a_{2}( \langle a_{2}\rangle\equiv\int_{t=0}^{T}a_{2}/Tdt)$ along each UPO with period
T. $\langle a_{2}\rangle s$ along UPOs take similar but different values around the average
value of $\langle a_{2}\rangle s$ along chaotic segments $(-0.06477)$ (Fig. 3). Fig.4 shows the
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Fig. 1: Projections of a chaotic attractor (a) and UPOs $((b)T=0.870729$ ,
$(c)T=6.172071)$ onto $a_{1}-a_{2}$ plane
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Fig. 2: Number of detected UPOs with PERIOD $N$ of the Kuramoto-
Sivashinsky system which are embedded in a chaotic attractor in compar-
ison with 0.4 $\cdot 1.6^{N}$ .
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Fig. 3: Time averages $\langle a_{2}\rangle s(\langle a_{2}\rangle\equiv\int_{t=0}^{T}a_{2}/Tdt)$ along UPOs with period
$T$ .
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Fig. 4: Density distribution of time averages $\langle a_{2}\rangle s(\langle a_{2}\rangle\equiv\int_{t=0}^{T}a_{2}/Tdt)$

along UPOs with PERIOD $N(=7, \cdots, 12)$ .
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Fig. 5: Standard deviation of density distribution of $\langle a_{2}\rangle s$ along UPOs with
PERIOD $N(+)$ and that along $10^{5}$ chaotic segments with the corresponding
time lengths $T(=0.8774\cdot N)(\cross)$ and $0.02N^{-1.05}(1ine)$ .
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Fig. 6: Density distribution of $\langle a_{2}\rangle s$ along UPOs with PERIOD 10
$(\langle a_{2}\rangle=-0.06442)$ (average period$=8.7625$) in comparison with that along
$10^{5}$ chaotic segments with the corresponding time-length $T(=0.8774\cdot 10)$

$(\langle a_{2}\rangle=-0.06477)$ .
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density distribution of $\langle a_{2}\rangle s$ along UPOs for $N(=7,8, \cdots, 12)$ . We can see
that the distribution stays similar shape though $N$ varies, indicating that
even longer UPO is not necessarily suitable for evaluation of $a_{2}$ averaged
along a long chaotic orbit. This may be contrary to our expectation that
an UPO with longer period would give better approximations to statistical
properties of chaotic orbits. Actually in Fig. 5 the standard deviations of
the density distribution of $\langle a_{2}\rangle s$ along UPOs with PERIOD $N$ are seen to
be nearly constant as $N$ increases. The figure also shows that the stan-
dard deviations of $\langle z\rangle s$ along segments of chaotic orbits with time length
$T=N\cdot 0.8774$ , where 0.8774 stands for the corresponding recurrent time to
the Poincar\’e section. We can see that as $N$ increases, the latter standard
deviation decreases nearly as $N^{-1.05}$ . The difference between the density
distribution of time averages along UPOs is clearly observed in Fig. 6 in
the case of the distribution of $\langle z\rangle s$ along a set of UPOs of PERIOD 10 and
chaotic segments with the corresponding lengths.

-0.075 $-0.07$ -0.065 $-0.06$ -0.055 -0.075 $-0.07$ $-0.065$ $-0.06$ -0.055
く

$a_{2^{>}}$ $<a_{2^{>}}$

Fig. 7: Relations between time averaged values of $a_{2}(\langle a_{2}\rangle)$ and $a_{6}(\langle a_{6}\rangle)$

along chaotic segments $($ length $T=8\cdot 0.8774)$ (left), UPOs $(+$ $)$ and chaotic
mean value $(\square )$ (right)
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In Fig.7 we investigate relations between time averaged values of $a_{2}(\langle a_{2}\rangle)$

and $a_{6}(\langle a_{6}\rangle)$ along chaotic segments $($ length $T=8\cdot 0.8774)$ (left), and those

along UPOs $(+$ $)$ and chaotic mean value $(\square )$ (right). Surprisingly there are
linear correlations between two time averaged values along UPOs, whereas
time averaged values along chaotic segments (length $T=8$ . 0.8774) are
spreading on $(\langle a_{2}\rangle, \langle a_{6}\rangle)$ plane. It can also be confirmed that chaotic mean
value is on the constraint formed by a set of time averaged values along

UPOs.

3 Summary

We have discussed time averages of dynamical variables along UPOs in
the Kuramoto-Sivashinsky equation. We have calculated more than 650
UPOs, and found that time averaged properties along a set of UPOs and
a set of chaotic orbits with finite lengths are totally different from each
other. From our numerical result a longer UPO is not necessarily advanta-
geous than shorter UPO to estimate mean properties of the chaotic state
in the model. The result is similar to those obtained for the case of ODEs
(the Lorenz system, the R\"ossler system and a 6-dimensional business cycle
model). It is implied that we can employ a short UPO for the estimation
of the mean properties of the chaotic state without significant reduction
of plausibility. In some fluid dynamical systems, it has been found that
only a few UPO with low periods give fairly good approximations to some
statistical properties. Our result about the Kuramoto-Sivashinsky equa-
tion suggests that the estimation by using a short UPO is as reliable (or
unreliable) as that by using a long UPO. It would be interesting to study
chaotic macro-economic models from the point of view of unstable periodic
orbits [15].
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