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QUANTUM (sl,,AV;) LINK INVARIANT AND MATRIX
FACTORIZATIONS

YASUYOSHI YONEZAWA

ABSTRACT. I told about my Ph.D thesis [25] in Conference on Quantum
Groups and Quantum Topology at RIMS Kyoto University. In this paper,
I give a summary of my Ph.D. thesis.

1. INTRODUCTION

The purpose of this study is to construct a homology whose Euler characteris-
tic is the quantum link invariant associated to the quantum group U,(sl,) and its
fundamental representations AV, using matrix factorizations. That is, we try to
construct a generalization of Khovanov-Rozansky homology[9].

We have a state model of the quantum (sl,, AV},) link invariant using planer dia-
grams (intertwiners between tensor product representations of fundamental repre-
sentations) given by Murakami, Ohtsuki and Yamada[15].
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FIGURE 1. Reduction for [4, j]-crossing of quantum (sl,,AV;;) link invariant

We imitate Khovanov and Rozansky’s construction to give the homology whose
Euler characteristic is the quantum (sl,;, AV,,) link invariant.

Step 1

Define matrix factorizations for planer diagrams appearing in the state model of
the quantum (sl,, AV,,) link invariant.

Step 2

Define a complex of matrix factorizations for colored crossing in the state model.
Step 2

Check that complexes for colored link diagrams which are transformed into each
other by the colored Reidemeister moves are isomorphic (in homotopy category).
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It was my dream to make a generalization of Khovanov-Rozansky homology by
this construction when I was a doctor course student...

2. STEP 1: MATRIX FACTORIZATION FOR A COLORED PLANAR DIAGRAM

2.1. Notation. Notation of polynomials in this paper.
Let t1,4,...,tm,q be variables with the grading 2, where a is an index.
Let e1,4, ..., €m,q be elementary symmetric polynomial of t1,ay s tm,a-

Put
1 m>0

s(m) = { -1 m<0
We consider indexes (ay, ..., ax) and integers (my,...,my). Let

k Mo s(ma)

(ma,eeemi)
)((111,1...,(11‘,),c T H eﬂ,aa
Let XJ(TJI’Z:)) be homogeneous terms with grading j of X ((::1_’_’."‘(’1:")’").

We denote the sequence of homogeneous polynomials X (ma,...,me) (4 =1,2,3,..)

Faty...,an)
(m1,...,my) . ' *
by X(al,...,ak) . For instance,

X (,m) vy X ,(n",’()a) are elementary symmetric polynomials of ¢1,4, ..., tm q-

xEm o xEm o are complete symmetric polynomials of 1 4, ..., tm,q-

1’(0/) g ooy m’(a),..
Let Ré;’:";’;’)“) be polynomial ring over Q generated by variables X%ZZ‘)), Xg;’:";) ,...,XEZ“)).

A power sum 75! + ¢34 4 4 ¢7+] where n is associated to sly, is a symmetric
polynomial, The power sum has the description by elementary symmetric polyno-

mials, denoted by F, (Xé;’;)).
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FIGURE 2. Specific intertwiners

2.2. Definition of matrix factorization for a colored planar diagram. We
consider the identity of the fundamental representation A'V,, of U, (sl,,) (i = 1, ...,n),
represented by a digram I'y, in Figure 2, a intertwiner from A™V,, ® A™2V,, to
A3V (1 £ my +my = m3 < n), represented by a diagram I's, and a intertwiner
from A™3V,, to A™V,, ® A™2V,,, represented by a diagram I'y.

For these planar diagrams with an additional data which is an index on a bound-
ary of a diagram, we define matrix factorizations as follows.

Definition 2.1. We consider the following diagram with indezes.

o)

>m (1<m<n).

©)
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A matriz factorization for this diagram is defined by

m - (m] | y(m) (m)
(1) C ( ®> ) =R K (Lj,(l;z)’ Xi ~ Xiv(2))ng";;>’
i .
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where

Lg",’(lll:i’)
Fn(X s X s XS e XS) = Fn (X o XS0 XS 1y Ko
) X0~ X550

Definition 2.2. We consider the following diagrams with indezes.
® @ @
msg mi m2
Ao
© @ ®

We define a matriz factorization for the left-hand side diagram to be

®

ms ms
— [m1,m2], yr(m3) _ y-(m1,m2)
(2) C my ma o — jElK(Aj’(3;1’2)’ j,(3) Xj,(1,2) )R?ln; '3")\2',.,,3)1
@© ©)
n
where
[m1,m
Aja(3;1122)]

Fms(---,Xan’mg) X(-mS) X(ma) )_Fms(."’X(mlymz) Xgmlymz) X(ms)

J—1,(1,2)>%35,(3) * T j+1,(3)0 " J—1,(1,2)* “*4,(1,2)

(2 < m3g=m; +my <n).

i+1,(3)° )

- (ms) (m1,ma)
Xis) — Xi1.2)

We define a matriz factorization for the right-hand side diagram to be

{—muma},

+1,0,2) ")

3) @ ®
my ma mg
c | = BEVRESXET X)) s pam
¥ | £
where
Vit
- Fma(...,XJ(Tf’)(s)vXJ('Tll,’sz), ;r;(r;?)’) - Fms(--wX}Tf,)(s)’xagzs))’xﬂ('mhm)
- Xiam? X

We have matrix factorizations for colored planar diagrams which appear in the

state model in Figure 1,if we define gluing of matrix factorizations.



99

YASUYOSHI YONEZAWA

2.3. Glued diagram and matrix factorization.

Definition 2.3. For a colored planar diagram T' composed of the disjoint union of
diagrams 'y and Ty, we define a matriz factorization C(I') for T to be the tensor
product of the factorizations for Ty and I's;

C(T1 )a®C( T2 )n.

We consider two colored planar diagrams which have an m-colored edge and
is match with keeping the orientation on the edge, see the left and the middle
diagrams in Figure 3. These diagrams I';, and I'p are glued at the markings D
and (2 and, then, we obtain the diagram I'¢ in Figure 3.

@ @ @
@\ m ™ N D ™
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FIGURE 3. Gluing planar diagrams

Definition 2.4. We assume that we have a matriz factorization for Ty, denoted
by C(T'L)n, and a matriz factorization for 'y, denoted by C(Cr)n. A matriz fac-
torization C(I'g) for the glued diagram T'g is defined by

C(FL)n X C(FR)n’X(m):x(m)'

(2) 1)

@\@n/{@ @\@71 a

"é‘g’r\r@ g
m
FT I‘C'
FIGURE 4. Diagram I'r and glued diagram I'c

We consider a colored diagram I'7 and a diagram I'c obtained by joining ends
of edges with the same coloring, see Figure 4.

Definition 2.5. We assume that we have a matriz factorization C('r),. A matriz
factorization C(I'c) for the diagram T is defined by

COT)nly iy -

By this gluing of matrix factorizations, we have matrix factorizations for colored
planar diagrams which appear in the state model in Figure 1.
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3. PART OF STEP 2: COMPLEX FOR [k, 1}-CROSSING AND [1, k]-CROSSING

3.1. Complex for [k, 1]-crossing and [1, k]-crossing. We sketch a construction
of complexes of factorizations for [k, 1)-crossing and [1, k]-crossing. See Section 5 in
[25] for the construction in detail.

In the case of a [k, 1]-crossing, the state model of the quantum (sl,,AV,,) link
invariant takes the following forms

< E<Z>n = (—U“*¢”“<FW”>n+(—D”W“<F9”>M
< }\{ >n = (c1)ighnt < F[lk,l] >n + (=1)kg*n < F[2k,1] >n,

where I“[lk'll and I‘[zk’ll are colored planar diagrams in Figure 5. In the case of a
(1, k]-crossing, replace I‘[lk’ll and I‘[Zk’l] with these symmetry diagrams.

k K

k1] k+1
et
1 k 1

k,
Tt

FI1GURE 5. Colored planar diagrams in reduction of [k, 1]-crossing

By Step 1, we have matrix factorizations C(I‘[lk’ll) and C(I‘[zk’”) for ng,u and
ry!l. We concretely construct Z-grading-preserving morphisms between the fac-
torizations C (I‘[l"’ll)n and C(FQ"”)",

XE’_"I] :C ( I‘E,k’ll ) —C ( P[lk’ll )n,
e () —e (i)

Using these morphisms, a complex for a single [k, 1]-crossing is defined as follows.

@ e (3A), zorer (i), Fre (), —o),

G) € ( N) = (0 —C*-1 (I‘[{"”)n LS (rg”’”)n —0).

A complex for a [1, k]-crossing is defined by a similar way.

n

n n

Remark 3.1. This construction is a generalization of a complez for a[1,2]-crossing
given by Rozansky [18].

3.2. Step 3 in the case of [k, 1]-crossing and [1, k]-crossing. To an oriented
link diagram D with [k, 1]-crossings and [1, k]-crossings only, we define a complex
of matrix factorizations by decomposing D into single [k, 1]-crossings and [1, k]-
crossings and, then, taking the tensor product of complexes for all [k, 1]-crossings
and [1, k]-crossings in the decomposition.

First theorem in my thesis is that this complex has invariance under the Rei-
demeister moves composed of: [k, 1]-crossings and [1, k]-crossings up to homotopy
equivalence.

100
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Theorem 3.2 (Theorem 5.6[25] (In the case k = 1, Khovanov-Rozansky[9])). We
consider tangle diagrams with [k, 1]-crossings and [1, k]-crossings which are trans-
formed into each other by colored Reidemeister moves composed of [k, 1]-crossings

and [1, k]-crossings. Complezes of factorizations for these tangle diagrams are iso-
morphic in KP(HMF?"):

A h % P
>ﬁ) ~C ~C ) ,C :(> ~C T l :
\y n n
(A 4 1‘\
C b ~C l K ~C :
\ " ) \ n

Remark 3.3. For an oriented link diagram D with [k,1]-crossings and [1,k]-
crossings, we explicitly describe the complex C (D), and then, calculate the Z &

Z ® 7 [2Z-graded link homology H“3*(D) since the boundary maps XEI:’ I and x[k 1
are concretely described.

4. THE REST OF STEP 2: COMPLEX FOR [i, j]-CROSSING

4.1. Complex for approximate [z, j]-crossing. We consider the case of general
[¢, j]-crossings. In the case of [i, j]-crossings, it is difficult both to define concrete
boundary maps of a complex of matrix factorizations for the [z, j}-crossing and
to show that there are isomorphisms between complexes for the colored tangle
diagrams that are transformed into each other by colored Reidemeister moves in
K(HMF?") if we define the complex!.

Instead of constructing Step 2 in the case of [i, j]-crossing, we introduce an
approximate [i, j]-crossing and define a complex for the approximate [z, j]-crossing
in Figure 6.

FIGURE 6. Approximate diagram of [z, j]-crossing

The wide edge of the approximate [i,j]-crossing represents a bundle of one-
colored edges in Figure 7. We arrange an [i, j]-crossing in the orientation from
bottom to up and change a colored edge from the left-bottom to the right-top into
a wide edge at an over crossing or an under crossing (see Figure 6). Therefore, we
obtain a complex for the approximate crossing using the definition of the complex
for an [i, 1]-crossing since every crossing of the approximate crossing is an [z, 1]-
crossing.

Second theorem in this paper is that we have the following isomorphisms in

KO (HMF™).

1B, Webster-G. Williamson and H. Wu claim that such a homology exists [21][23].
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<]

FIGURE 7. Wide edge and bundle of one-colored edges

Theorem 4.1 (Theorem 6.6[25]). For approzimate tangle diagrams which are
transformed into each other by the Reidemeister moves composed of the approz-
imate crossings, complezes of matriz factorizations for these approzimate tangle
diagrams are isomorphic in K®(HMF9"):

B0 (1)),
2 DA 0,
=04 140

We find that a matrix factorization for a wide edge consists of i! copies of a
matrix factorization for an original i-colored edge up to Z-grading shift,

(7)-81):

We have not got defined a complex for an [z, j]-crossing to give a homology whose
Euler characteristic is the quantum (s!,,AV;,) link invariant, but we hope to return
to this question in a future paper.

However, the information of Theorem 4.1 gives us a new link invariant for a
colored oriented link diagram D. We consider a Z & Z & Z /2Z-graded homology
H%3¥(D) through the complex for the approximate diagram of D. Then, we take
the Poincaré polynomial of the homology H%*J*(D), denoted by P(D),

3 tigis*dimoH " * (D) € Qit*!, ¢*, 5]/(s? - 1).
i,3,k

A link invariant is obtained by normalizing the Poincaré polynomial P(D) as fol-
lows. For a colored oriented link diagram D, a function Crg(D) (k =1,...,n—1) is
defined by

Cri (D) := the number of [*, k]-crossing of D.
We define a rational function P(D) to be

) H k] |)Cr;,(D)
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By the construction and Theorem 4.1, we have third theorem in this paper.

Theorem 4.2 (Corollary 6.8[25]). Two colored oriented link diagrams D and D'
which are transformed into each other by colored Reidemeister moves have the same
evaluation by P,

P(D) = P(D").

P(D) is a refined link invariant of the quantum (sl,, AV, ) link invariant. We find
that P(D) specializing ¢t to —1 and s to 1 is the quantum (sl,,AV},) link invariant
by construction.
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