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ABSTRACT. I told about my Ph. $D$ thesis [25] in Conference on Quantum
Groups and Quantum Topology at RIMS Kyoto University. In this paper,
I give a summary of my Ph.D. thesis.

1. INTRODUCTION

The purpose of this study is to construct a homology whose Euler characteris-
tic is the quantum link invariant associated to the quantum group $U_{q}(\epsilon \mathfrak{l}_{n})$ and its
fundamental representations $\wedge V_{n}$ using matrix factorizations. That is, we try to
construct a generalization of Khovanov-Rozansky homology[9].
We have a state model of the quantum $(\sigma 1_{n}, \wedge V_{n})$ link invariant using planer dia-
grams (intertwiners between tensor product representations of fundamental repre-
sentations) given by Murakami, Ohtsuki and Yamada[15].

$\langle$ $\rangle_{n}$ $=$ $\rangle_{n}$

$\{$ $=$ $\rangle_{n}$

FIGURE 1. Reduction for $[i, j]$ -crossing of quantum $(s1_{n},\wedge V_{n})$ link invariant

We imitate Khovanov and Rozansky‘s construction to give the homology whose
Euler characteristic is the quantum $(g|_{n}, \wedge V_{n})$ link invariant.
Step 1
Define matrix factorizations for planer diagrams appearing in the state model of
the quantum $(\epsilon 1_{n}, \wedge V_{n})$ link invariant.
Step 2
Define a complex of matrix factorizations for colored crossing in the state model.
Step 2
Check that complexes for colored link diagrams which are transformed into each
other by the colored Reidemeister moves are isomorphic (in homotopy category).

数理解析研究所講究録
第 1714巻 2010年 96-104 96



YASUYOSHI YONEZAWA

It was my dream to make a generalization of Khovanov-Rozansky homology by
this construction when I was a doctor course student...

2. STEP 1: MATRIX FACTORIZATION FOR A COLORED PLANAR DIAGRAM

2.1. Notation. Notation of polynomials in this paper.
Let $t_{1,a},$

$\ldots,$
$t_{m,a}$ be variables with the grading 2, where $a$ is an index.

Let $e_{1,a},$ $\ldots,$ $e_{m,a}$ be elementary symmetric polynomial of $t_{1,a},$
$\ldots,$

$t_{m,a}$ .
Put

$s(m)=\{\begin{array}{ll}1 m\geq 0-1 m<0\end{array}$

We consider indexes $(a_{1}, \ldots, a_{k})$ and integers $(m_{1}, \ldots, m_{k})$ . Let

$X_{(a_{1},a_{k})}^{(m_{1}\ldots,m_{k})}:..,:= \prod_{\alpha=1}^{k}(\sum_{\beta=1}^{m_{\alpha}}e_{\beta,a_{\alpha}})^{s(m_{\alpha})}$

Let $X_{j,(a_{1},\ldots,a_{k})}^{(m_{1},\ldots,m_{k})}$ be homogeneous terms with grading $j$ of $X_{(a_{1},,a_{k})}^{(m_{1}.’.\cdot.\cdot\cdot,m_{k})}$ .
We denote the sequence of homogeneous polynomials $X_{j,(a_{1},\ldots,a_{k})}^{(m_{1},\ldots,m_{k})}(j=1,2,3, \ldots)$

by $X_{(a_{1},,a_{k})}^{(m_{1}.’.\cdot.\cdot\cdot,m_{k})}$ . For instance,
$X_{1,(a)}^{(m)},$

$\ldots,$
$X_{m,(a)}^{(m)}$ are elementary symmetric polynomials of $t_{1,a},$

$\ldots,$
$t_{m,a}$ .

$X_{1,(a)}^{(-m)},$
$\ldots,$

$X_{m,(a)}^{(-m)},$
$\ldots$ are complete symmetric polynomials of $t_{1,a},$

$\ldots,$
$t_{m,a}$ .

Let $R_{(a_{1},,a_{k})}^{(m_{1}.’.\cdot.\cdot\cdot,m_{k})}$ be polynomial ring over $\mathbb{Q}$ generated by variables $X_{(a_{1})}^{(m_{1})},$ $X\{_{a_{2})}^{m_{2})},\ldots,X_{(a_{k})}^{(m_{k})}$ .
A power sum $t_{1,a}^{n+1}+t_{2,a}^{n+1}+\ldots+t_{m,a}^{n+1}$ , where $n$ is associated to $\epsilon \mathfrak{l}_{n}$ , is a symmetric
polynomial, The power sum has the description by elementary symmetric polyno-
mials, denoted by $F_{m}(X_{(a)}^{(m)})$ .

$>m$

$\Gamma_{L}$ $\Gamma_{\Lambda}$ $\Gamma_{V}$

FIGURE 2. Specific intertwiners

2.2. Definition of matrix factorization for a colored planar diagram. We
consider the identity of the fundamental representation $\wedge^{i}V_{n}$ of $U_{q}(z\mathfrak{t}_{n})(i=1, \ldots, n)$ ,
represented by a digram $\Gamma_{L}$ in Figure 2, a intertwiner from $\wedge^{m_{1}}V_{n}\otimes\wedge^{m_{2}}V_{n}$ to
$\wedge^{m_{3}}V_{n}(1\leq m_{1}+m_{2}=m_{3}\leq n)$ , represented by a diagram $\Gamma_{\Lambda}$ , and a intertwiner
from $\wedge^{m_{3}}V_{n}$ to $\wedge^{m_{1}}V_{n}\otimes\wedge^{m_{2}}V_{n}$ , represented by a diagram $\Gamma_{V}$ .

For these planar diagrams with an additional data which is an index on a bound-
ary of a diagram, we define matrix factorizations as follows.

Definition 2.1. We consider the following diagmm with indexes.
$01$

$>m$ $(1\leq m\leq n)$ .
$02$
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A matrix factorization for this diagmm is defined by

(1) $C($

where
$L^{[m]}$

$j,(1;2)$

$= \frac{F_{m}(X_{1,(2)}^{(m)},\ldots,X_{j-1,(2)}^{(m)},X_{j,(1)}^{(m)},\ldots,X_{m,(1)}^{(m)})-F_{m}(X_{1,(2)}^{(m)},\ldots,X_{j,(2)}^{(m)},X_{j+1,(1)}^{(m)},\ldots,X_{m,(1)}^{(m)})}{X_{j,(1)}^{(m)}-X_{j,(2)}^{(m)}}$ .

Definition 2.2. We consider the following diagmms with indexes.
\copyright $O1$ \copyright

$(2\leq m_{3}=m_{1}+m_{2}\leq n)$ .
$o_{1}$ \copyright \copyright

We define a matrix factorization for the left-hand side diagmm to be

(2)

where
$\Lambda^{[m_{1},m_{2}]}$

$j,(3;1,2)$

$=\underline{F_{m_{3}}}(..., X_{j-1,(1,2)}^{(m_{1},m_{2})}, X_{j,(3)}^{(m_{3})}, X_{j+1,(3)}^{(m_{S})},\ldots)-F_{m_{3}}(.,\cdot\cdot,X_{j-1,(1,2)}^{(m_{1},m_{2})}, X_{j,(1,2)}^{(m_{1},m_{2})}, X_{j+1,(3)}^{(m_{3})}, \ldots)X_{j,(3)}^{(m_{3})}-X_{j,(1,2)}^{(m_{1}m_{2})}$ .

We define a matrix factorization for the right-hand side diagram to be

$)_{n}1\cdot 2\cdot 3$ ,

where
$V_{j,(1,2;3)}^{[m_{1},m_{2}]}$

$=\underline{F_{ms}}(..., X_{j}^{(ms)}-X^{(m_{1}’ m_{2})}, X_{j1,(1,2)}^{(m_{1},m_{2})},’\ldots)-F_{m_{3}},(\ldots, X_{j-1,(3)}^{(m_{3})}, X_{j,(3)}^{(ms)}, X_{j+1,(1,2)}^{(m_{1},m_{2})}, \ldots)$.

We have matrix factorizations for colored planar diagrams which appear in the
state model in Figure 1,$if$ we define gluing of matrix factorizations.
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2.3. Glued diagram and matrix factorization.

Definition 2.3. For a colored planar diagmm $\Gamma$ composed of the disjoint union of
diagmms $\Gamma_{1}$ and $\Gamma_{2}$ , we define a matrix factorization $C(\Gamma)$ for $\Gamma$ to be the tensor
pmduct of the factorizations for $\Gamma_{1}$ and $\Gamma_{2}$ ;

$C(\Gamma_{1})_{n}\otimes C(\Gamma_{2})_{n}$ .

We consider two colored planar diagrams which have an m-colored edge and
is match with keeping the orientation on the edge, see the left and the middle
diagrams in Figure 3. These diagrams $\Gamma_{L}$ and $\Gamma_{R}$ are glued at the markings $O1$

and \copyright and, then, we obtain the diagram $\Gamma_{G}$ in Figure 3.

\copyright $\oplus i$

$\copyright_{\backslash }i..,\cdot\iota_{\Lambda_{\sim O1}^{m}}^{m_{1}}’.\backslash h_{1_{k}}$

’

$\copyright-\mathcal{V}\backslash .\cdot\backslash m\backslash m_{1!_{r}}’\acute{m}_{l}^{\wedge’}\backslash \cdot’$ .

$\oplus i$ $\oplus i$

$\Gamma_{L}$
$\Gamma_{R}$ $\Gamma_{G}$

FIGURE 3. Gluing planar diagrams

Definition 2.4. We assume that we have a matrix factorization for $\Gamma_{L}$ , denoted
by $C(\Gamma_{L})_{n}$ , and a matrix factorization for $\Gamma_{R}$ , denoted by $C(\Gamma_{R})_{n}.$ A matrix fac-
torization $C(\Gamma_{G})$ for the glued diagmm $\Gamma_{G}$ is defined by

$C(\Gamma_{L})_{n}\otimes C(\Gamma_{R})_{n}|_{x_{(2)}^{(m)}=x_{(1)}^{(m)}}$ .

\copyright $m$

$\copyright_{\backslash ,.\cdot\backslash }i.C^{m_{1}}\infty 1$

\copyright
$\Gamma_{T}$

$\Gamma_{C}$

FIGURE 4. Diagram $\Gamma_{T}$ and glued diagram $\Gamma_{C}$

We consider a colored diagram $\Gamma_{T}$ and a diagram $\Gamma_{C}$ obtained by joining ends
of edges with the same coloring, see Figure 4.

Definition 2.5. We assume that we have a matrix factorization $C(\Gamma_{T})_{n}.$ A matrix
factorization $C(\Gamma_{C})$ for the diagmm $\Gamma_{C}$ is defined by

$C(\Gamma_{T})_{n}|_{x_{(2)}^{(m)}=x_{(1)}^{(m)}}$ .

By this gluing of matrix factorizations, we have matrix factorizations for colored
planar diagrams which appear in the state model in Figure 1.
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3. PART OF STEP 2: COMPLEX FOR $[k,$ $1]$ -CROSSING AND $[$ 1, $k]$ -CROSSING

3.1. Complex for $[k, 1]$-crossing and $[$1, $k]$-crossing. We sketch a construction
of complexes of factorizations for $[k, 1]$-crossing and $[$1, $k]$ -crossing. See Section 5 in
[25] for the construction in detail.

In the case of a $[k, 1]$-crossing, the state model of the quantum $(\epsilon 1_{n}, \wedge V_{n})$ link
invariant takes the following forms

$\langle\lambda\nearrow\backslash \rangle_{n}$ $=$ $(-1)^{1-k}q^{kn-1}\langle\Gamma_{1}^{[k,1]}\rangle_{n}+(-1)^{-k}q^{kn}\langle\Gamma_{2}^{[k,1]}\rangle_{n}$ ,

$\langle\nwarrow_{/}^{f}\rangle_{n}$ $=$ $(-1)^{k-1}q^{-kn+1}\langle\Gamma_{1}^{[k,1]}\rangle_{n}+(-1)^{k}q^{-kn}\langle\Gamma_{2}^{[k,1]}\rangle_{n}$ ,

where $\Gamma_{1}^{[k,1]}$ and $\Gamma_{2}^{[k,1]}$ are colored planar diagrams in Figure 5. In the case of a
$[$ 1, $k]$ -crossing, replace $\Gamma_{1}^{[k,1]}$ and $\Gamma_{2}^{[k,1]}$ with these symmetry diagrams.

$\Gamma_{1}^{[k,1]}$ : $\Gamma_{2}^{[k,1]}$ :

FIGURE 5. Colored planar diagrams in reduction of $[k, 1]$ -crossing

By Step 1, we have matrix factorizations $C(\Gamma_{1}^{[k,1]})$ and $C(\Gamma_{2}^{[k,1]})$ for $\Gamma_{1}^{[k,1]}$ and
$\Gamma_{2}^{[k,1]}$ . We concretely construct $\mathbb{Z}$-grading-preserving morphisms between the fac-
torizations $C(\Gamma_{1}^{[k,1]})_{n}$ and $C(\Gamma_{2}^{[k,1]})_{n}$ ,

$\chi_{+}^{[k,1]}:C(\Gamma_{2}^{[k,1]})_{n}arrow C(\Gamma_{1}^{[k,1]})_{n}$ ,

$\chi_{-}^{[k,1]}:C(\Gamma_{1}^{[k,1]})_{n}arrow C(\Gamma_{2}^{[k,1]})_{n}$

Using these morphisms, a complex for a single $[k, 1]$-crossing is defined as follows.

(4) $C(\searrow\nearrow\backslash )_{n}=(0arrow C^{-k}(\Gamma_{2}^{[k,1]})_{n}arrow x_{+}^{[k.1]}C^{1-k}(\Gamma_{1}^{[k,1]})_{n}arrow 0)$ ,

(5) $C(\nwarrow_{/}^{l})_{n}=(0arrow C^{k-1}(\Gamma_{1}^{[k,1]})_{n}arrow x_{-}^{[k.1]}C^{k}(\Gamma_{2}^{[k,1]})_{n}arrow 0)$ .

A complex for a $[$ 1, $k]$ -crossing is defined by a similar way.

Remark 3.1. This construction is a genemlization of a complex for a [1, 2]-crossing
given by Rozansky [18].

3.2. Step 3 in the case of $[k, 1]$-crossing and $[$1, $k]$ -crossing. To an oriented
link diagram $D$ with $[k, 1]$-crossings and $[$ 1, $k]$ -crossings only, we define a complex
of matrix factorizations by decomposing $D$ into single $[k, 1]$-crossings and $[$ 1, $k]-$

crossings and, then, taking the tensor product of complexes for all $[k, 1]$-crossings
and $[$1, $k]$ -crossings in the decomposition.

First theorem in my thesis is that this complex has invariance under the Rei-
demeister moves composed of $\cdot$ $[k, 1]$ -crossings and $[$ 1, $k]$ -crossings up to homotopy
equivalence.
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Theorem 3.2 (Theorem 5.6[25] (In the case $k=1,$ $Khovanov-Rozansky[9]$)). We
consider tangle diagmms with $[k, 1]$ -cmssings and $[$ 1, $k]$ -crossings which are tmns-
formed into each other by colored Reidemeister moves composed of $[k, 1]$ -crossings
and $[$ 1, $k]$ -crossings. Complexes of factorizations for these tangle diagmms are iso-
morphic in $\mathcal{K}^{b}(HMF^{gr})$ :

$I^{k})_{n}$ ,

Remark 3.3. For an oriented link diagmm $D$ with $[k, 1]$ -crossings and $[$ 1, $k]-$

crossings, we explicitly describe the complex $C(D)_{n}$ and, then, calculate the $\mathbb{Z}\oplus$

$\mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z}$ -graded link homology $H^{i,j,k}(D)$ since the boundary maps $\chi_{+}^{[k,1]}$ and $\chi_{+}^{[k,1]}$

are concretely described.

4. THE REST OF STEP 2: COMPLEX FOR $[i,$ $j]$ -CROSSING

4.1. Complex for approximate $[i, j]$-crossing. We consider the case of general
$[i, j]$ -crossings. In the case of $[i, j]$ -crossings, it is difficult both to define concrete
boundary maps of a complex of matrix factorizations for the $[i, j]$-crossing and
to show that there are isomorphisms between complexes for the colored tangle
diagrams that are transformed into each other by colored Reidemeister moves in
$\mathcal{K}^{b}(HMF^{gr})$ if we define the complexl.

Instead of constructing Step 2 in the case of $[i, j]$-crossing, we introduce an
approximate $[i, j]$ -crossing and define a complex for the approximate $[i, j]$-crossing
in Figure 6.

FIGURE 6. Approximate diagram of $[i, j]$ -crossing

The wide edge of the approximate $[i, j]$ -crossing represents a bundle of one-
colored edges in Figure 7. We arrange an $[i, j]$ -crossing in the orientation from
bottom to up and change a colored edge from the left-bottom to the right-top into
a wide edge at an over crossing or an under crossing (see Figure 6). Therefore, we
obtain a complex for the approximate crossing using the definition of the complex
for an $[i, 1]$ -crossing since every crossing of the approximate crossing is an $[i, 1]-$

crossing.

Second theorem in this paper is that we have the following isomorphisms in
$\mathcal{K}^{b}(HMF^{gr})$ .

lB. Webster-G. Williamson and H. Wu claim that such a homology exists [21][23].

101



QUANTUM $(\mathcal{B}(, \wedge V_{n})$ LINK INVARIANT AND MATRIX FACTORIZATIONS

$k$

$k$

FIGURE 7. Wide edge and bundle of one-colored edges

Theorem 4.1 (Theorem 6.6[25]). For approximate tangle diagmms which are
transfomed into each other by the Reidemeister moves composed of the approx-
imate crossings, complexes of matrix factorizations for these approximate tangle
diagmms are isomorphic in $\mathcal{K}^{b}(HMF^{gr})$ :

$|)_{n}$ ,

We find that a matrix factorization for a wide edge consists of $i!$ copies of a
matrix factorization for an original i-colored edge up to $\mathbb{Z}$-grading shift,

$C$ $(i$ $)_{n} \sim\bigoplus_{k=1}^{\dot{\iota}!}C(it$ $)_{n}$

We have not got defined a complex for an $[i, j]$ -crossing to give a homology whose
Euler characteristic is the quantum $(\epsilon 1_{n},\wedge V_{n})$ link invariant, but we hope to return
to this question in a future paper.

However, the information of Theorem 4.1 gives us a new link invariant for a
colored oriented link diagram $D$ . We consider a $\mathbb{Z}\oplus \mathbb{Z}\oplus \mathbb{Z}/2\mathbb{Z}$ -graded homology
$H^{i,j,k}(D)$ through the complex for the approximate diagram of $D$ . Then, we take
the Poincar\’e polynomial of the homology $H^{i,j,k}(D)$ , denoted by $\overline{P}(D)$ ,

$\sum_{i,j,k}t^{i}q^{j}s^{k}\dim_{Q}H^{i,j,k}(D)\in \mathbb{Q}[t^{\pm 1}, q^{\pm 1}, s]/(s^{2}-1\rangle$
.

A link invariant is obtained by normalizing the Poincar\’e polynomial $\overline{P}(D)$ as fol-
lows. For a colored oriented link diagram $D$ , a function $Cr_{k}(D)(k=1, \ldots, n-1)$ is
defined by

$Cr_{k}(D)$ $:=$ the number of $[*, k]$-crossing of $D$ .
We define a rational function $P(D)$ to be

$\overline{P}(D)\prod_{k=1}^{n-1}\frac{1}{([k]_{q}!)^{Cr_{k}(D)}}$ .
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By the construction and Theorem 4.1, we have third theorem in this paper.

Theorem 4.2 (Corollary 6.8[25]). Two colored oriented link diagmms $D$ and $D’$

which are transformed into each other by colored Reidemeister moves have the same
evaluation by $P$ ,

$P(D)=P(D^{f})$ .

$P(D)$ is a refined link invariant of the quantum $(\mathfrak{s}\mathfrak{l}_{n}, \wedge V_{n})$ link invariant. We find
that $P(D)$ specializing $t$ to $-1$ and $s$ to 1 is the quantum $(z\mathfrak{l}_{n}, \wedge V_{n})$ link invariant
by construction.
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