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ABSTRACT. Let $M$ be a compact (congruence) arithmetic hyperbolic manifold
and $C\subset M$ be a totally geodesic cycle of dimension greater that $\frac{1}{2}\dim M$ .
We compute the explicit growth rate of the $L^{2}$-norm of the lifts of $C$ in the
congruence tower above $M$ . In particular, these lifts end up representing non-
zero homology classes.
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1. INTRODUCTION

This paper is based on my talk at the annual RIMS Symposium on Automorphic
forms, automorphic representations and related topics in January 2010. In the talk I
gave a survey of my joint work with L. Clozel [5]. There we prove conjectures stated
in [2, 6, 4] which relate the cohomology of a (congruence) arithmetic hyperbolic
manifold to the cohomology of its totally geodesic cycles. As a particular case we
prove that if M is a compact (congruence) arithmetic manifold and C $\subset$ M is an
(immersed) totally geodesic cycle of dimension greater that $\frac{1}{2}\dim M$ then there
exists a finite cover $\hat{M}$ of M and a (connected) lift $\hat{C}$ of C such that the class of $\hat{C}$

in $H.(M)$ is non-trivial.
In this note I want to describe a quantified version of this result. The precise

theorem is stated in the next section. As in the work with Clozel the proof relies
on a “Selberg type” spectral gap for the eigenvalues of the Laplace operator on
differential foms. We were able to deduce such a result from recent works of
J. Arthur on the classffication of automorphic representations of classical groups,
see [1, \S 30]. In section 3, I give a survey of (a small part of) Arthur’s theory
with a view toward direct use of it in the classffication of archimedean components
of automorphic representations. In section 4, I deduce from Arthur’s theory the
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“Selberg type” theorem mentioned above. This is joint work with Clozel. Finally
in the last section I sketch a proof of the main theorem along the lines of [3].

I would like to thank Professors T. Oda and M. Tsuzuki for organizing this very
interesting conference this year and make my participation possible.

2. MAIN RESULT

2.1. Geodesic cycles. Let $\mathbb{H}^{n}$ be the n-dimensional hyperbolic space. Here k-
dimensional subspaces of $\mathbb{H}^{n}$ will always be totally geodesic; note that such a sub-
space is isometric to $\mathbb{H}^{k}$ . Let $M=\Gamma\backslash \mathbb{H}^{n}$ be a compact hyperbolic manifold. A
k-dimensional subspace $H\subset \mathbb{H}^{k}$ is a F-subspace if Stab$r(H)\backslash H$ is compact. A
F-subspace thus projects onto a compact immersed totally geodesic submanifold in
$M$ .

Assume that $H$ projects onto an embedded submanifold $C$ in $M$ . It gives a class
$[C]\in H^{n-k}(M, \mathbb{C})$ . Hodge theory provides a natural inner product on $H^{n-k}(M, \mathbb{C})$ .
We denote by $|[C]|_{2}$ the nom of the class $[C]$ . In this paper we study the asymptotic
growth of $|[C]|_{2}$ in congruence cover of $M$ .

2.2. Congruence hyperbolic manifolds. Recall the general definition of a con-
gruence hyperbolic manifold. Let $G$ be a $\mathbb{Q}$-algebraic group such that its group of
real points, $G(\mathbb{R})$ , is the product (with finite intersection) of a compact group by
$G^{nc}=SO(n, 1)$ .

A congruence subgroup $\Gamma$ of $G(\mathbb{Q})$ is the intersection $G(\mathbb{Q})\cap K$, where $K$ is a
compact-open subgroup of $G(A_{f})$ the group of finite ad\‘elic points of G. According
to a classical theorem of Borel and Harish-Chandra, it is a lattice in $G^{nc}=$ SO $(n, 1)$ .
It is a cocompact lattice if and only if $G$ is amisotropic over $\mathbb{Q}$ . For simplicity we
will always assume that it is indeed the case. If $\Gamma$ is sufficiently deep, i.e. $K$ is a
sufficiently small compact-open subgroup of $G(A_{f})$ , then $\Gamma$ is moreover $torsn-hee$.

If $K_{\infty}$ is a maximal compact subgroup of $G(\mathbb{R})$ , then $G(\mathbb{R})/K_{\infty}$ -the associated
symmetric space–is isometric to the n-dimensional hyperbolic space $\mathbb{H}^{n}$ . If $\Gamma\subset$

$G(\mathbb{Q})$ is a torsion-free congruence subgroup, $\Gamma\backslash \mathbb{H}^{n}$ is a n-dimensional congruence
hyperbolic manifold.

Let $\Gamma\backslash \mathbb{H}^{n}$ be a congruence hyperbolic manifold. We consider a decreasing se-
quence of congruence normal subgroups $\Gamma_{N}\subset\Gamma_{N-1}\subset\ldots\subset\Gamma$ with the property
that $\bigcap_{N}\Gamma_{N}=\{1\}$ .

2.3. Theorem. Let $H$ be a k-dimensional $\Gamma$ -subspace in $\mathbb{H}^{n}$ with $k\geq n/2$ . The
projections $C_{N}$ of $H$ into $\Gamma_{N}\backslash \mathbb{H}^{n}$ become embedded when $N$ is large enough and

as $Narrow+\infty$ .

As a corollary we get–as announced in the introduction-that $[C_{N}]$ is non-zero
for $N$ sufficiently big.

Theorem 2.3 was first conjectured in [3] where the case $k=n-1$ is proved. In [10]
Masao Tsuzuki put these questions in a more representation theoretic framework.
It follows from the “Selberg type” we prove here that Tsuzuki $s$ Theorem 3 is now
unconditional.
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3. $ARTHUR’ S$ CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS OF
ORTHOGONAL GROUPS

3.1. Orthogonal groups. Let $F$ be a totally real numberfield and $G$ be a special
orthogonal group over $F$ . We assume $G$ is classical (not a twisted form 3,6

$D_{4}$ of
$SO(8))$ .

The group $G=G(F\otimes \mathbb{R})$ is the product (with finite intersection) of a compact
group by a semisimple Lie group $G^{nc}$ . We assume that $G^{nc}$ is isomorphic to SO $(p, q)$

$(p\geq q)$ . Set $m=p+q$ and let $\ell$ the integral part of $m/2$ and $N=2\ell$ . The group
$G$ is an interior form of a quasi-split group $G^{*}$ .

If $m=N+1$ is odd, then $G^{*}=$ SO $(m)$ is split and the (complex) dual group
$G^{\vee}=Sp(N, \mathbb{C})$ .

If $m=N$ is even, then $G^{*}$ is a quasi-split form of SO $(N)$ and $G^{\vee}=$ SO $(N, \mathbb{C})$ .

3.2. Automorphic dual. We let $\hat{G}$ be the unitary dual of $G$ endowed with the
Fell topology.

Let $\Gamma\subset G$ be a lattice. Call spectrum of $F\backslash G$ the set $\sigma(\Gamma\backslash G)$ of all $\pi\in\hat{G}$

occuring weakly in the regular representation of $G$ in $L^{2}(\Gamma\backslash G)$ . We recall $hom[7]$

the definition of the automorphic dual $\hat{G}_{Aut}$ :

(3.2.1)
$\hat{G}_{Aut}=\Gamma\bigcup_{cong}\sigma(\Gamma\backslash G)$

.

The union in (3.2.I) is over all congruence subgroup $\Gamma\subset G(F)$ so that $\hat{G}_{Aut}$ really
depends on the rational structure of $G$ ; we write $S\overline{O(p,q})_{Aut}$ if we don’t want to
refer to a particular rational structure. The closure in (3.2.1) is taken with respect
to the Fell topology in $\hat{G}$ .

3.3. Arthur parameters. Recall the Weil group of $\mathbb{R}$ –denoted $W_{\mathbb{R}}$ –is the
nonsplit extension of $\mathbb{C}^{*}$ by $\mathbb{Z}/2\mathbb{Z}$ given by

$W_{\mathbb{R}}=\mathbb{C}^{*}\cup j\mathbb{C}^{*}$ ,

where $j^{2}=-1$ and $jcj^{-1}=\overline{c}$ . The Langlands’ dual group $LG$ is an extension of
$G^{\vee}$ by Gal $(\mathbb{C}/\mathbb{R})\cong \mathbb{Z}/2\mathbb{Z}$ .

A (local) Arthur pammeter for $G$ is a homomorphism

(3.3.1) $\tilde{\psi}$ : $W_{\mathbb{R}}\cross SL_{2}(\mathbb{C})arrow LG$

such that
(1) the diagram

$Ga1(\mathbb{C}/\mathbb{R})$

is commutative;
(2) the homomorphisme $\psi_{|SL_{2}(\mathbb{C})}$ is algebraic;
(3) the image of $\psi_{|W_{R}}$ has compact closure.

The conjugacy class of an Arthur parameter should be thought to be associated
to a formal direct sum of formal tensor products:

$\mu_{1}\otimes R_{1}$ ffl $\ldots$ ffl $\mu_{r}\otimes R_{r}$

3
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where each $\mu_{j}$ is a cuspidal element of the automorphic dual of GL $(m_{i})/\mathbb{Q},$ $R_{j}$ is an
irreducible representation of $SL_{2}(\mathbb{C})$ of dimension $n_{j}$ and $N=n_{1}m_{1}+\ldots+n_{r}m_{f}$ .

Now consider the restriction
$\psi:\mathbb{C}^{*}\cross SL_{2}(\mathbb{C})arrow G^{\vee}$ .

It follows $hom$ the definition (3.3.1) (3) that $\psi$ is semisimple. It may thus be
written:

(3.3.2) $\psi=\varphi_{1}\otimes R_{1}\oplus\ldots\oplus\varphi_{r}\otimes R_{v}$ : $\mathbb{C}$
’ $\cross SL$2 $(\mathbb{C})arrow G^{\vee}$ ,

where each $\varphi_{j}$ is a semisimple representation of $\mathbb{C}^{*}$ of rank $m_{j},$ $R_{j}$ is an irreducible
representation of $SL_{2}(\mathbb{C})$ of dimension $n_{j}$ and $N=n_{1}m_{1}+\ldots+n_{r}m_{r}$ . Here each
$\varphi_{j}$ should be thought as the restriction to $\mathbb{C}$

’ of the L-parameter of $\mu_{j}$ above.
If $\chi=z^{p}\overline{z}^{q}(p-q\in \mathbb{Z})$ is a character, we denote by $\chi^{\sigma}$ the character $z\mapsto$

$\chi(\overline{z})$ . As each $\mu_{j}$ is a real representation we note that if $\chi\otimes R_{j}$ appears in (3.3.2)
then $\chi^{\sigma}\otimes R_{j}$ also appears. Moreover: as $\mu_{j}$ is cuspidal and automorphic, the
generalized Ramanujan conjecture implies that $\chi$ should be unitary, i.e. ${\rm Re}(p+q)=$

$0$ . This motivates (3) above. Instead of appealing to the (still unproved) Ramanujan
conjecture we may use the Luo-Rudnick-Sarnak theorem [9] –as extended in [6,
Chap. 7] –which implies that $|{\rm Re}(p+q)|<1- \frac{2}{m_{j}^{2}+1}$ . We finally note that, the

parameter $\psi$ being self-contragredient, if $\chi\otimes R_{j}$ appears in (3.3.2) then $\chi^{-1}\otimes R_{j}$

also appears.
The last paragraph motivates the following definition. We call $\psi$ as in (3.3.2) a

weak Arthur parameter if for each character $\chi=z^{p}\overline{z}^{q}$ such that $\chi\otimes R_{j}$ appears in
(3.3.2), $\chi^{\sigma}\otimes R_{j}$ and $\chi^{-1}\otimes R_{j}$ also appear and

$p-q\in \mathbb{Z}$ and $|{\rm Re}(p+q)|<1- \frac{2}{m_{j}^{2}+1}$ .

3.4. Infinitesimal characters. To any weak Arthur parameter $\psi$ we associate a
parameter

$\varphi\psi$ : $\mathbb{C}^{x}$ $arrow$ $G^{\vee}\subset GL(N, \mathbb{C})$

$z$ $\mapsto$ $\psi(z,$ $(\begin{array}{ll}(z\overline{z})^{1/2} 00 (z\overline{z})^{-1/2}\end{array}))$ .

Being semisimple, the image of $\varphi\psi$ is conjugate into the maximal torus
$T^{\vee}=\{diag(x_{1}, \ldots,x_{l}, x_{\ell}^{-1}, \ldots, x_{1}^{-1})\}$

of $G^{\vee}$ . We may thus write
$\varphi\psi=(\eta_{1}, \ldots,\eta_{\ell}, \eta_{\ell}^{-1}, \ldots, \eta_{1}^{-1})$

where $\eta_{i}$ is a character $z^{P_{{}^{t}\overline{Z}}Q_{i}}$ . The vector
$\nu_{\psi}=(P_{1}, \ldots, P_{\ell})\in \mathbb{C}^{\ell}$ ,

where $\mathbb{C}^{\ell}$ is seen as a torus in $G^{*}$ , is uniquely defined modulo the Weyl group $W$

of $G^{*}$ .
The following proposition is a (very) weak form of the classffication theorem of

representations of classical groups announced by Arthur in his Clay lectures, see
in particular theorem 30.2 in [1, \S 30]. The proof should appear soon. Note that it
will depend on the recent proofs by Ng\^o, Waldspurger, Laumon and Chaudouard
of the “fundamental lemma” and its avatara (twisted and weighted). It also uses
[6, Lemma 6.3.1 & 6.4.1].

4
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3.5. Proposition. The automorphic dual of $G^{*}$ decomposes as a union of finite
packets of representations $\Pi(\psi)\subset\hat{G}$ indexed by weak Arthur pammeters. Members
of a same packet all share the same infinitesimal chamcter $\nu_{\psi}\in \mathbb{C}^{\ell}/W$ .

Arthur’s stable trace formula allows to compare the automorphic spectrum of
$G$ with that of his endoscopic subgroups. These consist of $G^{*}$ and products of
smaller quasi-split special orthogonal groups to which proposition 3.5 applies. This
is described in [5] and theorem 6.1 in loc. cit. implies:

3.6. Proposition. If $\pi$ belongs to the automorphic dual $\hat{G}_{Aut_{f}}$ then there exists a
weak Arthur pammeter $\psi$ such that the infinitesimal character of $\pi$ is $\nu_{\psi}\in \mathbb{C}^{p}/W$ .

4. SPECTRA OF CONGRUENCE HYPERBOLIC MANIFOLDS

4.1. Proposition 3.6 has interesting consequences on the spectrum of hyperbolic
manifolds: We now assume that $p=n$ and $q=1$ . Let $M=S(O(n-1)\cross$
$O(1,1))\subset G^{nc}=$ SO $(n, 1)$ . It is the Levi subgroup of a minimal parabolic subgroup.
The connected component of the identity $0M\cong$ SO$(n-1)$ is compact. And it
follows from Langlands classffication that any irreducible admissible representation
of SO $(n, 1)$ is either a member of the discrete series (this can only occurs if $n$

is even) or an irreducible subquotient $J(\tau, s)$ of an induced representation $I(\tau, s)$

where $\tau\in\overline{0M}$ and ${\rm Re}(s)\geq 0$ . See $[6, \S 6.3\ 6.4]$ for more details.

4.2. Spectrum of the Laplace operator and unitary representations. Let
$g$ be the complexified Lie algebra of SO$(n, 1)$ . Let $\{x_{i}\}$ be a basis of $\mathfrak{g}$ and $\{x_{i}^{*}\}$ be
the dual basis with respect to the invariant bilinear form $\langle,$ $\rangle$ on $g$ which induces the
Riemannian metric of constant curvature-l on $\mathbb{H}^{n}$ . Define the Casimir element $C$

by

$C= \sum_{j}x_{j}x_{j}^{*}$
.

Then $C$ belongs to the center of the universal enveloping algebra of $\mathfrak{g}$ . It acts on the
space of smooth functions on SO $(n, 1)$ . A differential form on $\mathbb{H}^{n}$ lifts as a function
on SO $(n, I)$ and the Laplace operator (on forms) is induced by the restriction of
$-C$ .

Let $\Gamma\subset$ SO$(n, 1)$ be a (cocompact) congruence lattice. The right regular rep-
resentation of SO $(n, 1)$ on $L^{2}(\Gamma\backslash SO(n, 1))$ decomposes into a discrete sum of irre-
ducible unitary representations of SO $(n, 1)$ . This gives rise to a spectral decompo-
sition for the action of $C$ on $L^{2}$ $(\Gamma\backslash SO(n, 1))$ . Matsushima’s formula (see e.g. [6])
then implies that $\lambda$ belongs to the spectrum of the Laplace operator on k-forms if
and only if there exists a representation $J(\tau, s)$ in the support of $L^{2}(F\backslash SO(n, 1))$

such that $J(\tau, s)(C)$ acts as the $scalar-\lambda$ and $\tau$ occurs as an irreducible summand
in the restriction to $0M$ of the standard SO(n)-representation: $\wedge^{k}\mathbb{C}^{n}$ .

The infinitesimal character of $J(\tau, s)$ is equal to $(\lambda_{\tau}, s)\in \mathbb{C}^{\ell}/W$ so that $J(\tau, s)(C)$

acts as the scalar
$\langle\lambda_{\tau}+s,$ $\lambda_{\tau}+s\rangle-\langle\rho,$ $\rho\rangle$ .

Here $\lambda_{\tau}$ –the infinitesimal character of $\tau$ –is a strictly increasing sequence of
elements in $\frac{n-1}{2}+\mathbb{Z}$ and $\rho=((n-I)/2, (n-3)/2, \ldots)$ .

Now proposition 3.6 and a simple combinatorial game yield:

$4.3. sit\frac{1}{2}-\frac{Pro_{1}po}{(n+1)^{2}+1}$

.
ion. Assume $J(\tau, s)\in S\overline{O(n,}1)_{Aut}$ . Then: either $s \in\frac{1}{2}\mathbb{Z}or|{\rm Re}(s)|<$
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Proof. Indeed according to proposition 4.3, the infinitesimal character $(\lambda_{\tau}, s)$ is
associated to a weak Arthur parameter $\psi=\oplus_{j}\varphi_{j}\otimes R_{j}$ . Suppose $s \not\in\frac{1}{2}\mathbb{Z}$ . As
$\nu_{\psi}=(\lambda_{\tau}, s)$ there exists some index $j$ , an integer $k\in[1, n_{j}]$ and a character
$\chi=z^{p}\overline{z}^{q}$ appearing in $\varphi_{j}$ such that

$s=p+ \frac{n_{j}+1-2k}{2}$ .

In particular $p \not\in\frac{1}{2}\mathbb{Z}$ . Moreover: as $\chi\otimes R_{j}$ appears in $\psi,$ $\chi^{-1}\otimes R_{j}$ also appears
$($and $\chi\neq\chi^{-1}$ as $p\neq 0)$ . As $\nu_{\psi}$ has only one coordinate $\not\in\frac{1}{2}\mathbb{Z}$ , we conclude that
$n_{j}=1$ and $s=p$.

Similarly we conclude that $\chi^{\sigma}=\chi$ or $\chi^{-1}$ . In otherwords: $\chi=(z\overline{z})^{p}$ or $(z/\overline{z})^{p}$ .
The second case cannot occur as $p=s \not\in\frac{1}{2}\mathbb{Z}$ . The only remaining possibility is
that $s=p=q$ so that

$|{\rm Re}(s)|= \frac{1}{2}|{\rm Re}(p+q)|<\frac{1}{2}(1-\frac{2}{m_{j}^{2}+1})\leq\frac{1}{2}-\frac{1}{(n+1)^{2}+1}$ .

$\square$

One can be a little more precise; see [5, Prop. 6.2]. Anyway, we easily conclude
$hom$ \S 4.2 that proposition 4.3 already implies the following proposition that was
conjectured in [2] and proved in our joint work with Clozel [5].

4.4. Proposition. Let $\mathbb{H}^{n}$ be the real hyperbolic n-space and let $k$ be a non-negative
integer strictly less that the “middle dimension” $(i.e. k<[n/2])$ . There exists
a positive real constant $\epsilon=\epsilon(n, k)$ such that if $F\subset$ SO$(n, 1)$ is a congruence
arithmetic subgroup, the non-zero eigenvalues $\lambda$ of the Laplace opemtor acting on
the space $\Omega^{k}(\Gamma\backslash \mathbb{H}^{n})$ of differential forms of degree $k$ satisfy:

$\lambda\geq\epsilon$ .

5. PROOF OF THEOREM 2.3

It follows $hom$ [$6$ , Prop. 15.2.2] that there exists an algebraic Qsubgroup $H\subset G$

such that if $K^{H}=K\cap H(A_{f})$ and $\Lambda=K^{H}\cap H(\mathbb{Q})$ then $C$ coincides with the
image of the map

(5.0.1) $\Lambda\backslash H(\mathbb{R})/K_{\infty}^{H}arrow\Gamma\backslash G(\mathbb{R})/K_{\infty}$ .

Moreover: choosing $K$ sufficiently small we may assume the map (5.0.1) to be
injective. Let $\Lambda_{N}=\Lambda\cap F_{N}$ (so that $C_{N}=\Lambda_{N}\backslash H$) and $M_{N}=F_{N}\backslash \mathbb{H}^{n}$ .

The finite group $\Lambda/\Lambda_{N}$ acts freely on $M_{N}$ . Let $\overline{M}_{N}$ denote the quotient manifold.
We note that $\overline{M}_{N}$ is a finite cover of $\overline{\Gamma}_{N}\backslash \mathbb{H}^{n}$ where $\overline{F}_{N}=K_{N}K^{H}\cap G(\mathbb{Q})$ . Here $K_{N}$

is a compact-open subgroup of $G(A_{f})$ such that $\Gamma_{N}=K_{N}\cap G(\mathbb{Q})$ . In particular:
$\bigcap_{N}\overline{\Gamma}_{N}=\Lambda$ . Set $\overline{M}_{\infty}=\Lambda\backslash \mathbb{H}^{n}$ . The tower of finite coverings

.. . $arrow\overline{M}_{N}arrow\ldotsarrow M$

converges (on compact subsets) toward $\overline{M}_{\infty}$ .

5.1. The dual form. Kudla and Millson [8] give an explicit construction of the
harmonic form dual to $C$ in $\overline{M}_{N}$ . We briefly recall their construction: Note that
$C=\Lambda\backslash H$ naturally embeds into $\overline{M}_{\infty}=\Lambda\backslash \mathbb{H}^{n}$ . We thus get normal coordinates:

6
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$(x, r, \sigma)\in C\cross]0,$ $+$oo $[\cross S^{n-k+1}$ . Define a holomorphic family of forms $\psi_{s}$ on $\overline{M}_{\infty}$

for $s\in \mathbb{C}$ by the formula

$\phi_{s}=\frac{(\sinh r)^{n-(k+1)}}{(\cosh r)^{k+2s}}dvo1_{S}^{n-(k+1)}\wedge dr$.

We may then average $\phi_{s}$ and define a meromorphic family of forms on $\overline{M}_{N}$ by the
following series, convergent for ${\rm Re}(s)> \frac{n-1-k}{2}$ :

(5.1.1) $\omega_{s}^{N}=\frac{2}{vol(S^{n-(k+1)})}\frac{\Gamma(\frac{2s+k+1}{2})}{\Gamma(\frac{n-k}{2})\Gamma(\frac{2s+2k+1-n}{2})}\sum_{\gamma\in\Lambda\backslash \tau_{N}}\gamma^{*}\phi_{8}$ .

Kudla and Millson then prove that $\omega_{S}^{N}$ has a meromorphic extension to all of $\mathbb{C}$

and satisfies a differential functional equation. Moreover: $s=0$ is a regular value
and $\omega_{0}$ is the harmonic form dual to $C$ in $\overline{M}_{N}$ .

5.2. Asymptotic growth of $(|\omega_{0}^{N}|_{L^{2}(\overline{M}_{N})})_{N\geq 0}$. Note that for fixed $s$ in the half-
plane of absolute convergence, the sequence of sums (5.1.1) converges toward

$\frac{2}{vol(S^{n-(k+1)})}\frac{\Gamma(\frac{2s+k+1}{2})}{\Gamma(\frac{n-k}{2})\Gamma(\frac{2s+2k+1-n}{2})}\phi_{s}$ .

In [3] we prove that under the hypothesis-named (H) in [3]-that the first positive
eigenvalue of the Laplace operator on closed $(n-k)$-forms is bigger that a positive
uniform (in $N$) constant, the sequence $(|\omega_{0}^{N}|_{L^{2}(\overline{M}_{N})})_{N\geq 0}$ converges toward

This should not be a surprise: only eigenvalues approaching $0$ can contribute to
harmonic forms at infinity.

5.3. Conclusion of the proof. Proposition 4.4 implies that hypothesis (H) is
satisfied in our case. Finally note that the harmonic form representing $[C_{N}]\in$

$H^{n-k}(M_{N})$ is invariant under the action of $\Lambda/\Lambda_{N}$ on $M_{N}$ . It thus coincides with
$\omega_{0}^{N}$ . And we conclude that

$|[C_{N}]|_{2}=| \omega_{0}^{N}|_{L^{2}(M_{N})}=\frac{|\omega_{0}^{N}|_{L^{2}(\overline{M}_{N})}}{\sqrt{[\Lambda:\Lambda_{N}]}}$ .

This finishes the proof.
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