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The Arthur-Selberg trace formula for a connected reductive group $G$

over number fields is a very powerful tool in the theory of automorphic
representations. The trace formula was first introduced by Selberg
and then it has been studied extensively in a very impressive series
of papers of Arthur [1, 2, 3]. It has applications in the study of L-
functions associated to certain Shimura varieties and in the study of
transfers between automorphic representations of classical groups. We
refer the reader to the excellent surveys of Arthur [4] and Labesse [12]
or the very well-written book of Gelbart [9] for more details on the
subject.

It is expected by experts that a similar trace formula would hold
for function fields. When the reductive group in question is either the
general linear group GL$(n)$ or some inner forms of GL$(n)$ , several non-
invariant versions of the trace formula over function fields have been
introduced and studied in the works of Drinfeld [7, 8], Laumon [15]
and Lafforgue [13, 14]. However, it seems that the trace formula for
a general connected reductive group over function fields has not been
written in the literature. We will report our progress on the project
aiming to fill this missing part. Details will be appeared elsewhere
[19, 20].

1. NOTATIONS

Let us fix the notations. Throughout this paper, let $F_{q}$ be a finite
field of $q$ elements and $F$ be a function field over $F_{q}$ . We will denote by
$X$ the projective smooth geometrically connected curve over $F_{q}$ with
the function field $F$ . It is well known that the set of closed points $x$

of $X$ is in bijection with the set of places of $F$ . Let $x$ be a place of
$F$ , then it is non-archimedian. Denote by $F_{x}$ the completion of $F$ with
respect to $x,$ $x$ : $F_{x}^{\cross}arrow \mathbb{Z}$ the normalized valuation, $\mathcal{O}_{x}$ the ring of

integers. Denote by $\kappa_{x}$ the residue field of $\mathcal{O}_{x}$ . It is a finite extension
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of $F_{q}$ and the degree of the extension will be denoted by $\deg(x)$ and
called the degree of $x$ .

We will denote by A the ring of ad\‘eles of $F$ . It is defined as the
restricted product $\prod^{J}(F_{x}, \mathcal{O}_{x})$ . An element $a$ of A (resp. of $A^{\cross}$ ) is
given by a collection $a=(a_{x})_{x\in X}$ where for every place $x$ of $F$ , we have
$a_{x}\in F_{x}$ , and for almost except a finite number of places $x$ of $F$ , we have
$a_{x}\in \mathcal{O}_{x}$ (resp. $a_{x}\in \mathcal{O}_{x}^{\cross}$ ). We define the degree map $deg:A^{\cross}arrow \mathbb{Z}$

as follows. Let $a=(a_{x})_{x\in X}\in A^{\cross}$ , then

$\deg(a)=-\sum_{x\in X}x(a_{x})\deg(x)$
.

The group $F$ (resp. $F^{\cross}$ ) can be considered as a discrete subgroup of
A (resp. of $A^{\cross}$ ). Moreover, $F^{\cross}$ sits inside the subgroup $A^{\cross,0}$ of $A^{\cross}$

consisting of elements of degree $0$ and the quotient $F^{\cross}\backslash A^{\cross,0}$ is compact.
Let $G$ be a connected reductive group over $F$ . We choose a maximal

split torus $T$ of $G$ over $F$ and a minimal parabolic subgroup $P_{0}$ of $G$

defined over $F$ and containing $T$ . Denote by $M_{0}$ its Levi subgroup
containing $T$ , it is defined over $F$ . By definition, a parabolic subgroup
(resp. a Levi subgroup) of $G$ is a parabolic subgroup $P$ (resp. a Levi
subgroup $M$) of $G$ defined over $F$ and containing $M_{0}$ and a standard
parabolic subgroup is a parabolic subgroup of $G$ defined over $F$ and
containing $P_{0}$ .

Let $\Phi$ (resp. $\Phi^{\vee}$ ) be the set of roots of $G$ (resp. that of coroots of $G$)
with respect to the choice of $T$ . It is a root system. Recall that we have
fixed a minimal parabolic subgroup $P_{0}$ of $G$ containing $T$ , therefore we
get a partition of $\Phi$ into two subsets: the set of positive roots $\Phi^{+}$

and that of negative roots $\Phi^{-}$ Denote by $\triangle$ the set of simple roots,
says $\Delta=\{\alpha_{1}, \ldots, \alpha_{n}\}$ . Denote by $\hat{\Delta}$ the set of corresponding simple

coroots and by $\alpha_{i}^{\vee}$ the simple coroot associated to $\alpha_{i}$ . There exists a
bijection between subsets $I$ of $\Delta$ and standard parabolic subgroups $P_{I}$

of $G$ . Under this bijection, the empty set will correspond to $G$ and the
whole set $\Delta$ will correspond to $P_{0}$ .

We consider a Levi subgroup $M$ of $G$ . Let $A_{M}$ be the split maximal
torus of $M$ over $F$ containing $T$ and $A_{M}’$ be the maximal split quotient
torus of $M$ over $F$ . The natural map $A_{M}arrow A_{M}’$ is an isogeny and
we denote by $a_{M}$ (resp. $a_{M}^{*}$ ) the real vector space $X.A_{M}\otimes_{\mathbb{Z}}\mathbb{R}$ (resp.
$X^{*}A_{M}\otimes_{Z}\mathbb{R})$ . For any parabolic subgroup $P$ of $G$ admitting $M$ as a
Levi subgroup, we define $a_{P}$ (resp. $a_{P}^{*}$ ) to be the real vector space $a_{M}$

(resp. $\alpha_{M}^{*}$ ) associated to $M$ .
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Let $P$ and $Q$ be two parabolic subgroups of $G$ such that $P\subset Q$ . The
natural maps $A_{M_{P}}arrow A_{M_{Q}}arrow A_{M_{Q}}’arrow A_{M_{P}}’$ induces an injection
$a_{Q^{c}}arrow a_{P}$ and a surjection $a_{P}arrow\alpha_{Q}$ such that the composition $\alpha_{Q}\mapsto$

$\alpha_{P}arrow\alpha_{Q}$ is identity. Hence we obtain a decomposition $\alpha_{P}=a_{Q}\oplus$

$\alpha_{P}^{Q}$ . Similarly, we have a canonical decomposition $\alpha_{P}^{*}=a_{Q}^{*}\oplus a_{P}^{Q*}$ In
particular, if we take $P=P_{0}$ and $Q=G$, we get vector spaces $a_{P_{0}}^{G*}$ and
$a_{P_{0}}^{G}$ . The set $\triangle$ (resp. $\Delta^{\vee}$ ) forms a basis of $\alpha_{P_{0}}^{G*}$ (resp. $a_{P_{0}}^{G}$ ). The dual
basis of $\triangle^{v}$ will be denoted by $\triangle\wedge$ and contain fundamental weights
of $G$ , says $\{\varpi_{1}, \ldots, \varpi_{n}\}$ . Similarly, we get the basis of fundamental
coweights of $a_{P_{0}}^{G}$ .

Now, we consider a standard parabohc subgroup $P$ of $G$ , then $P_{0}\subset$

$P$ . Denote by $\triangle_{P}$ the subset of $\triangle$ corresponding to $P$ . The previous
discussion gives a canonical decomposition $a_{P_{0}}^{G*}=\alpha_{P}^{G*}\oplus\alpha_{P_{0}}^{P*}$ . The set
of simple roots $\Delta$ forms a basis of the real vector space $\alpha_{P_{0}}^{G*}$ . By abuse
of notations, we still denote by $\triangle_{P}$ the image of $\triangle_{P}$ via the projection
$a_{P_{0}}^{G*}arrow a_{P}^{G*}$ , it forms also a basis of $\alpha_{P}^{G*}$ . Let $\alpha$ be an element in $\triangle_{P}$

which is the image of a simple root $\beta\in\triangle$ under the above projection.
We will denote by $\alpha^{\vee}$ the projection of $\beta^{\vee}$ in $a_{P}^{G}$ and call it the simple
coroot of $\alpha\in\triangle_{P}$ . We will denote by $\triangle_{P}\wedge$ (resp. $\triangle_{P}^{v}$ )

$\wedge$

the set of
projections of fundamental weights $\varpi_{i}$ (resp. fundamental coweights
$\varpi_{i}^{\vee})$ such that $\alpha_{i}\in\triangle_{P}$ . They form another basis of $a_{P}^{G*}$ and $a_{P}^{G}$ .

Let $P$ and $Q$ be two parabolic subgroups of $G$ such that $P\subset Q$ and
$\triangle_{P},$ $\triangle_{Q}$ the subsets of $\triangle$ corresponding to $P$ and $Q$ . Since $P\subset Q$ , we
have $\triangle_{Q}\subset\triangle_{P}$ . We will denote by $\triangle_{P}^{Q}$ (resp. $\triangle_{P}^{Q}$ )

$\wedge$

the image under the
canonical projection $\alpha_{P_{0}}^{G*}arrow a_{P}^{G*}arrow a_{P}^{Q*}$ of simple roots $\alpha\in\triangle_{P}-\triangle_{Q}$

(resp. of fundamental weights $\varpi_{\alpha}$ with $\alpha\in\Delta_{P}-\triangle_{Q}$). They forms
different basis for the vector space $\alpha_{P}^{Q*}$ Similarly, we can define two
different basis $\triangle_{P}^{Q\vee}$ and $\triangle_{P}^{Q\vee}\wedge$ of $\alpha_{P}^{Q}$ .

Following Langlands and Arthur, we can introduce the acute cham-
ber $\alpha_{P}^{Q+}$ and the obtuse chambe$r^{+}a_{P}^{Q}$ of $\alpha_{P}^{Q}$ as follows:

$\alpha_{P}^{Q+}=\{p\in\alpha_{P}^{Q+}:$ $\langle\alpha,p\rangle\geq 0$ for all $\alpha\in\Delta_{P}^{Q}\}$

$+_{a_{P}^{Q}}=\{p\in\alpha_{P}^{Q+}:$ $\langle\varpi,p\rangle\geq 0$ for all $\varpi\in\triangle_{P}^{Q}\}\wedge$

Remark that we always have the inclusion $a_{P}^{Q+}\in^{+}a_{P}^{Q}$ .

2. HARDER-NARASIMHAN FILTRATION

We choose a maximal compact subgroup $K$ of $G(A)$ as in [3, section
1 $]$ . Let $M$ be a Levi subgroup of $G$ . We define the map $H_{M}$ : $M(A)arrow$

$\alpha_{M}$ as follows. Let $m$ be an element of $M(A)$ . To each character
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$\chi$ : $Marrow G_{m}$ of $M$ defined over $F$ , we get an integer $\deg(\chi(m))$ .
Hence, we obtain an element $H_{M}(m)\in a_{M}$ such that

$\langle H_{M}(m),$ $\chi\rangle=\deg\chi(m)$ .

Remark that the homomorphism $H_{M}$ takes value in a lattice of the real
vector space $\alpha_{M}$ .

Next, let $P$ be a parabolic subgroup of $G$ , with Levi subgroup $M$ and
radical unipotent subgroup $N$ . We extend the previous homomorphism
to get a map $H_{P}$ : $G(A)arrow\alpha_{M}$ . Since $G(A)=P_{0}(A)K$ , we also
have $G(A)=P_{0}(A)K$ . Hence any element $g\in G(A)$ can be written
$g=nmk$ with $m\in M(A),$ $n\in N(A)$ and $k\in K$ , and we define
$H_{P}(g)=H_{M}(m)$ .

We review the notion of orthogonal family appeared in the work of
Arthur. Let $M$ be a Levi subgroup of $G$ . We consider the real vector
space $\alpha_{M}^{G}$ defined in the first section. The roots $\Phi_{M}$ of $M$ defines
different hyperplanes in $a_{M}^{G}$ and divides $a_{M}^{G}$ into chambers. The open
chambers are called Weyl chambers. We will denote by $\mathcal{F}(M)$ the
set of parabolic subgroups of $G$ admitting $M$ as a Levi subgroup. It
is known that $\mathcal{F}(M)$ is in bijection with the set of Weyl chambers,
therefore we say that two elements $P$ and $P’$ in $\mathcal{F}(M)$ are adjacent if
the corresponding Weyl chambers are adjacent. Furthermore, there is
a unique root $\alpha\in\Phi_{M}$ such that $\alpha$ is a simple root for $Pand-\alpha$ is a
simple root for $P’$ .

Let $\lambda=\{\lambda_{P}\}_{P\in F(M)}$ be a family of points in $a_{M}^{G}$ . We say that this
family is $(G, M)$ -orthogonal if the following condition is satisfied: for
every pair of adjacent parabolic subgroups $P$ and $P’$ , we denote by
$\alpha$ the unique simple root of $P$ such that $-\alpha$ is a simple root of $P’$ ,
then we require that $\lambda_{P}-\lambda_{P’}=m_{P}\alpha^{\vee}$ for some real number $m_{P}\in \mathbb{R}$ .
If we require further that $m_{P}\geq 0$ , then the family $\underline{\lambda}$ is said positive
$(G, M)$ -orthogonal.

We provide some examples to illustrate the previous definition. In
the first example, let $\lambda$ be a point in $a_{M}^{G}$ (resp. in the Weyl chamber
$a_{M}^{G+})$ . We take $\underline{\lambda}$ the family of Weyl orbit of $\lambda$ . Then it is $(G, M)-$

orthogonal (resp. positive $(G,$ $M)$-orthogonal). In the second example,
we consider an element $g\in G(A)$ . Then the family $\underline{\lambda}=\{H_{P}(g)\}_{P\in F(M)}$

is positive $(G, M)$-orthogonal.
We will recall now a result of Behrend on positive $(G, M_{0})$-orthogonal

families. Let $\underline{\lambda}=\{\lambda_{P}\}_{P\in \mathcal{F}(M_{0})}$ be a positive $(G, M_{0})$-orthogonal family.
Let $P$ be a parabolic subgroup of $G$ , not necessarily in $\mathcal{F}(M_{0})$ . We
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define
$R(P)=\{\beta\in\Phi$ :

$[ \beta]_{P}=\sum_{\alpha\in\Delta_{P}}m_{\alpha}\alpha$
with $m_{\alpha}\geq 0\}$

and

$\deg_{P}(\underline{\lambda})=\sum_{\beta\in R(P)}\langle\beta,$

$\lambda_{P}\rangle$ .

With these notations, Behrend proved [5]:

Theorem 2.1 (Behrend). There exists a unique pambolic subgroup $P$

of $G$ verifying the following conditions:
a$)$ For every pambolic subgroup $QofG$ such that $Q\in P$ and $\triangle_{Q}-\triangle_{P}$

contains a unique simple root, says $\alpha$ , then we require

$\langle\alpha,$ $\lambda_{P}\rangle\leq 0$ .

b$)$ The element $\lambda_{P}$ lies in the Weyl chamber $a_{P}^{G+}$ .
Further, it is chamcterized by the following property: we consider

the set of pambolic subgroups $P$ of $G$ such that

$\deg_{P}(\underline{\lambda})=\max\{\deg_{Q}(\underline{\lambda})\}Q$

where we consider all pambolic subgroups $Q$ of $G$ , then $P$ is the unique
maximal element of this set.

We will apply Behrend $s$ theorem to our situation. Our goal is to de-
fine the notion of Harder-Narasimhan polygon associated to an element
$g\in G(A)$ . It could be considered as a generalization of the classical
Harder-Narasimhan polygon associated to vector bundles over curves.

We have to introduce some more notations. Recall that for every
element $s$ of the relative Weyl group $W$ of $G$ , we have fixed a repre-
sentative $w_{s}\in G(F)$ of $s$ . By the choice of the maximal open compact
subgroup $K$ , Arthur proved [3, Lemma I.I] that there exists a unique
point $T_{0}\in\alpha_{M_{0}}^{G}$ considered as a point in $\alpha_{M_{0}}$ such that, for every element
$s\in W$ , we have

$H_{\Lambda l_{0}}(w_{s}^{-1})=T_{0}-s^{-1}T_{0}$ .

We remark that if $G$ is split over $F_{q}$ , then we can choose $K=$
$\prod_{x}G(\mathcal{O}_{x})$ . It implies that the elements $w_{s}$ can be chosen in $K$ and
hence $H_{M_{0}}(w_{S}^{-1})=0$ . Consequently, $T_{0}=0$ . However, for general
connected reductive group $G$ over $F,$ $T_{0}\neq 0$ .

Now, let $g$ be an element in $G(A)$ and $Q$ be a parabolic subgroup
of $G$ defined over $F$ but not necessarily containing $M_{0}$ . There exists
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$\delta\in G(F)$ and $P\in \mathcal{P}(M_{0})$ such that $P\subseteq Q’$ $:=\delta Q\delta^{-1}$ . We define:

$\deg_{Q}(g):=(\sum_{\alpha\in R(Q’)} or, [H_{P}(\delta g)]_{P}^{G}-T_{0})$
.

The previous choice of $T_{0}$ implies that the degree $\deg_{Q}(g)$ does not
depend on our choice $(\delta, P)$ .

We introduce the set $\mathcal{A}$ consisting of parabolic subgroups $P$ de $G$

defined over $F$ , but not necessarily in $\mathcal{P}(M_{0})$ such that $\deg_{P}(g)=$

$\max_{Q}\deg_{Q}(g)$ . It follows from Behrend $s$ previous result that this set
contains a unique maximal element. Remark that the set of parabolic
subgroups of $G$ defined over $F$ is in bijection with the set of pairs $(P, \delta)$

where $P$ is a standard parabolic subgroup of $G$ and $\delta$ is a class in the
quotient $P(F)\backslash G(F)$ . Under this identffication, we can reformulate
our previous result as follows. Let $(P, \delta)$ be a pair as before. We define
the polygon

$p_{P}^{\delta g}=[H_{P}(\delta g)]_{P}^{G}-[T_{0}]_{P}^{G}$ .

It is a point in $a_{P}^{G}$ . We have proved:

Theorem 2.2. We keep the previous notations. There exists a unique
pair $(P, \delta)$ called the canonical Harder-Narasimhan filtmtion associated
to $g\in G(A)$ which satisfies the following conditions:

a$)$ For every standard pambolic subgroup $Q$ such that $Q\subseteq P$ and
$\Delta_{Q}-\triangle_{P}$ contains a unique simple mot $\alpha_{f}$ and for every $\delta_{Q}\in Q(F)\backslash P(F)$ ,
we have the inequality

$\langle\alpha,p_{P}^{\delta_{Q}\delta g}\rangle\leq 0$ .

b$)$ The element $p_{P}^{\delta g}$ lies in the Weyl chamber $a_{P}^{G+}$ .
The element $p_{P}^{\delta g}\in a_{P}^{G}$ considered as a point in $a_{M_{0}}^{G}$ is called the

Harder-Namsimhan polygon of $g\in G(A)$ .

3. $HARDER’ S$ REDUCTION THEORY AND TRUNCATION PARAMETERS

Let $p$ be a point in the acute chamber $a_{M_{0}}^{G+}$ . Let $g\in G(A)$ and $(P, \delta)$

be a pair where $P$ is a standard parabolic subgroup of $G$ and $\delta$ is a
class in the quotient $P(F)\backslash G(F)$ . We have defined

$p_{P}^{\delta g}=[H_{P}(\delta g)]_{P}^{G}-[T_{0}]_{P}^{G}$ .

We say that $p_{P}^{\delta g}>Pp$ if we have $p_{P}^{\delta g}-\lceil p]_{P}^{G}\in+a_{P}^{G}$ .

Definition 3.1. We keep the previous notations. Suppose further that
$(P, \delta)$ is the canonical Harder-Narasimhan filtration associated to $g$ and
that $p(g)$ $:=p_{P}^{\delta g}\in a_{P}^{G}$ considered as a point in $\alpha_{M_{0}}^{G}$ is the associated
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Harder-Narasimhan polygon. We will say that $p(g)$ is bounded by $p$ ,
write $p(g)\leq p$ if $p-p(g)\in+a_{M_{0}}^{G}$ .

We review the reduction theory for function fields entirely due to
Harder. For the references, we send the reader to [16, section 4] for
an excellent overview and to the original papers of Harder [10, 11] for
proofs. For a real number $c$ , we consider the following set

$P_{0}(c)=\{g\in P_{0}(A):(\alpha, H_{M_{0}}(g))\geq c, \alpha\in\triangle\}$.

Harder proved two fundamental and deep results of the reduction the-
ory over function fields:

Theorem 3.2 (Harder). There exists a constant $c>-\infty$ such that
$G(A)=G(F)P_{0}(c)K$ . The set $P_{0}(c)$ such that we have the previous
property is called a Siegel domain.

Obviously, if $P_{0}(c)$ is a Siegel domain for some real number $c$ , then
$P_{0}(c’)$ will be a Siegel domain for any real number $c’$ with $d\leq c$ .

Theorem 3.3 (Harder). Let $c$ be a real number such that $G(A)=$

$G(F)P_{0}(c)K$ . Then there exists a positive constant $c_{2}=c_{2}(c)$ depend-
ing on $c$ verifying the following property: If $\gamma\in G(F)$ and $x\in P_{0}(c)$

such that $\gamma x\in P_{0}(c)$ , then $\gamma\in P(F)$ where the pambolic subgroup $P$

corresponds to the subset I of $\Delta$ consisting of all simple roots $\alpha$ with
$(\alpha, x)\geq c_{2}$ .

Harder’s reduction theory imphes immediately that the subset of
$G(F)\backslash G(A)/J$ consisting of elements $g$ such that $p(g)\leq p$ is compact.

4. THE NON-INVARIANT TRACE FORMULA: RESULTS AND

DISCUSSION

We consider the function space $L^{2}(G(F)\backslash G(A))$ which consists of
square integrable complex functions on $G(F)\backslash G(A)$ . Let $f\in C_{c}^{\infty}(G(A))$

be a function over $G(A)$ which is locally constant and of compact sup-
port. We choose a Haar measure on $G(A)$ and define an operator $R(f)$

on $L^{2}(G(F)\backslash G(A))$ as follows:

$(R(f) \varphi)(x)=\int_{G(A)}f(y)\varphi(xy)dy$ .
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A simple calculation implies that

$(R(f) \varphi)(x)=\int_{G(A)}f(y)\varphi(xy)dy$

$= \int_{G(F)\backslash G(A)_{\gamma\in G(F)}}$
$\sum f(x^{-1}\gamma y)\varphi(y)dy$ .

Hence, this integral operator $R(f)$ admits a kernel $K(x, y)$ given by
the formula:

$K(x, y)= \sum_{\gamma\in G(F)}f(x^{-1}\gamma y)$
.

Since $f$ is locally constant and of compact support, the sum vanishes
for all except a finite number of $\gamma\in G(F)$ , therefore the kernel is well
defined.

We consider the kernel over the diagonal and define

$k(x)=K(x, x)= \sum_{\gamma\in G(F)}f(x^{-1}\gamma x)$

as the function over $G(F)\backslash G(A)$ . Remark that this function is invariant
by multiplication with $Z(A)$ where $Z$ is the center of $G$ . We will intro-
duce a discrete torsion-free subgroup $J$ of $Z(A)$ such that $JZ(F)\backslash Z(A)$

is compact and $Z(F)\cap J=0$ . In general, the integral $\int_{JG(F)\backslash G(A)}k(x)$

diverges and the goal of the trace formula and its refinements is to
regularize this integral.

We follow closely Arthur’s procedure to define the modified ker-
nel. Let $P$ be a standard parabolic subgroup of $G$ . Following Arthur,
we consider the integral operator $R_{P}(f)$ acting on the function space
$L^{2}(M(F)N(A)\backslash G(A))$ defined as follows:

$(R_{P}(f) \varphi)(x)=\int_{G(A)}f(y)\varphi(xy)dy$ .

It has a kernel given by the formula

$K_{P}(x, y)= \int_{N(A)_{\gamma\in M(F)}}$
$\sum$ $f(x^{-1}\gamma ny)dn$

for every $x,$ $y\in M(F)N(A)\backslash G(A)$ . Denote by $k_{P}(x)=K_{P}(x, x)$ , in
other words, for every $x\in M(F)N(A)\backslash G(A)$ ,

$k_{P}(x, y)= \int_{N(A)}\sum_{\gamma\in M(F)}f(x^{-1}\gamma nx)dn$ .

Let $p$ be a point in the acute chamber $a_{M_{0}}^{G+}$ . Suppose that it is
sufficiently regular in the sense that $\langle\alpha,p\rangle$ is sufficiently large with
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respect to the support of $f$ . We define the Arthur’s modified kernel

$k^{p}(g)= \sum_{P_{0}\subseteq P}(-1)^{\dim a_{P}^{G}}\sum_{\delta\in P(F)\backslash G(F)}1(p_{P}^{\delta g}>Pp)k_{P}(\delta g)$
.

It is a function over $G(A)$ which is invariant on the left by the subgroup
$JG(F)$ . Hence, we will consider the modified kernel as a function over
the double quotient $G(F)\backslash G(A)/J$ .

In contrast to the number field setting, we will show that, in the
function field case, the modified kernel over $G(F)\backslash G(A)/J$ is in fact the
product of the original kernel and the characteristic function of a com-
pact set. Consequently, it is automatically integrable over $G(F)\backslash G(A)/J$ .

Theorem 4.1. We keep the previous notations. Then for every $g\in$

$G(A)$ , we have the following equality:

$k^{p}(g)=1(p(g)\leq p)k(g)$ .

The modified integral will be defined as follows:

$J^{p}(f)=l_{G(F)\backslash G(A)}k^{p}(x)$ .

We have proved that our modified integral converges. The modified
kernel has an obvious geometric expression. It also has a spectral ex-
pression following from deep results of Langlands and Morris [16, 17, 18]
called the Langlands decomposition theorem. Hence, we get the first
step of our desired non-invariant trace formula, which states an equality
between a geometric side and a spectral side.

Next, we need to refine the previous trace formula. On the geometric
side, Arthur proposed to decompose the kernel into semisimple conju-
gacy classes. However, since we are working with the function field
$F$ which is not perfect, we cannot apply directly Arthur’s procedure
and it would be an interesting question how to overcome this difficulty.
Let us attract our attention to the spectral side. It turns out that a
fine spectral refinement could be obtained using only the Langlands
decomposition theorem. It has been proved by Lafforgue for GL$(n)$

[15, 13] and then generalized by the author for reductive groups over
$F[19,20]$ .

Finally, it would be very interesting to investigate the behavior of
$J^{p}(f)$ in function of the truncating parameter $p$ for fixed $f$ . In the
number field setting, the parameter takes value in some open chamber
of a real vector space and Arthur proved that the function $J^{p}(f)$ is in
fact a polynomial of $p$ . In our function field setting, the parameter $p$
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takes value in a lattice of a real vector space, but we can still prove
that the $J^{p}(f)$ is a quasi-polynomial of $p[20]$ .
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