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HIGHER-ORDER ALEXANDER INVARIANTS FOR
HOMOLOGICALLY FIBERED KNOTS

HIROSHI GODA AND TAKUYA SAKASAI

1. INTRODUCTION

This note is adapted from the talk at the 2010 Intelligence of Low-dimensional Topology
at Research Institute for Mathematical Sciences, Kyoto University. For the detail, see the
original papers [12], [13].

Let 3, be a compact oriented surface of genus g with n > 1 boundary components,
and the triple (M,iy,i_) be an oriented homology cobordism between £, , and £, , with
two markings of OM :iy,i_ : X, < OM. We call (M,i,,i_) a homology cylinder over
Ygn- This object was introduced by Goussarov [14] and Habiro [16] since it is suitable
for applying the theory of clovers and claspers, and then has been studied together with
finite type invariants of 3-manifolds. The following have been known as methods for
constructing homology cylinders:

e connected sums of the trivial cobordism with homology 3-spheres;

e Levine’s method [19] using string links in the 3-ball;

e Habegger’s method [15] giving homology cylinders as results of surgeries along
string links in homology 3-balls; and

e clasper surgeries (see [14] and [16]).

In [12], the authors gave an explicit construction of homology cylinders, i.e. we introduced
a notion of a homologically fibered knot and construct a homology cylinder using it. The
family of the homologically fibered knots include that of the fibered knots. So, roughly
speaking, the following relationships exist:

Pure Braid +—  Mapping cylinder ++— Fibered knot
N N N
Pure String link eving Homology cylinder +— Homologically fibered knot
(Habegger-Lin) (Goussarov, Habiro)

In [18], Kirk-Livingston-Wang introduced a Reidemeister torsion for string links, then
the second author studied the corresponding Reidemeister torsion for homology cylinders
in [23]. Note that this torsion may be regarded as a special case of a decatogorification of
sutured Floer homology [8]. In this note, we study the Reidemeister torsion for homologi-
cally fibered knots and show a factorization formula. Further, we give a MATHEMATICA
program for explicit calculations of the invariants for homologically fibered knots.
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2. HOMOLOGICALLY FIBERED KNOTS

In this section, we introduce two main objects in this note: homology cylinders and
sutured manifolds. First, we define homology cylinders over surfaces, which have their
origin in Goussarov [14], Habiro [16], Garoufalidis-Levine [11] and Levine [19]. Let £, , be
a compact connected oriented surface of genus ¢ > 0 with » > 1 boundary components.

Definition 2.1. A homology cylinder (M,i4,i_) over £, , consists of a compact oriented
3-manifold M with two embeddings iy,i_ : £,, < OM such that:

(i) 44 is orientation-preserving and i_ is orientation-reversing;
(i) OM =i (Xgn) Ui_(Eg,n) and iy (Xgpn) Ni(Byp) = i4(08g,) = i-(0%40);
(iii) i+|a)391“ = i_lagg,n; and
(iv) 4,0 : H(Zgn;Z) — H,(M;Z) are isomorphisms.
If we replace (iv) with the condition that iy, i : H,(Z4,;Q) — H.(M;Q) are isomor-
phisms, then (M,i,,i_) is called a rational homology cylinder.

i4(Z,,)
l+
Y, — ¢
iz,

FiGURE 1. Homology cylinder

We often write a (rational) homology cylinder (M,i,,i_) briefly by M. Note that our
definition is the same as that in [11] and [19] except that we may consider homology
cylinders over surfaces with multiple boundaries.

Two (rational) homology cylinders (M, i4,i_) and (N, j;, j-) over Xy, are said to be
isomorphic if there exists an orientation-preserving diffeomorphism f : M 5N satisfying
j+ = foip and j_ = foi_. We denote the set of isomorphism classes of homology cylinders
(resp. rational homology cylinders) over X, , by C, . (resp. C?jn).

Example 2.2 (Mapping cylinder). For each diffecomorphism ¢ of ¥, , which fixes 0%,
pointwise (hence, ¢ preserves the orientation of £, ), we can construct a homology cylin-
der by setting

(Zgn % [0,1],id x 1, x 0),

where collars of i, (%,,) and i_(X,,) are stretched half-way along (0%,,) x [0,1]. It is
easily checked that the isomorphism class of (X, % [0,1],id x 1,¢ x 0) depends only on
the (boundary fixing) isotopy class of ¢. Therefore, this construction gives a map from
the mapping class group My, of ¥g, to Cgn.
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Next, we recall the definition of sutured manifolds given by Gabai [10]. We here use a
special case of them.

A sutured manifold (M,+) is a compact oriented 3-manifold M together with a subset
v C OM which is a union of finitely many mutually disjoint annuli. For each component
of 7, an oriented core circle called a suture is fixed, and we denote the set of sutures by
s(7y). Every component of R(y) = &M — Int vy is oriented so that the orientations on R(7)
are coherent with respect to s(v), that is, the orientation of each component of OR(7)
induced from that of R(7y) is parallel to the orientation of the corresponding component
of s(7y). We denote by R () (resp. R_(vy)) the union of those components of R(y) whose
normal vectors point out of (resp. into) M.

Example 2.3. For a knot K in S° and a Seifert surface R of K, we set R := RN E(K),
called also a Seifert surface, where E(K) = S — N(K) is the complement of a regular
neighborhood N(K) of K. Then (Mg,7) := (E(K) — N(R),0E(K) — N(OR)) defines a
sutured manifold. We call it the complementary sutured manifold for R. In this paper,
we simply call it the sutured manifold for R.

S(’Y) S(Y) R.
\

1O :

$(1) s

I

FIGURE 2. Complementary sutured manifold

Let L be an oriented link in the 3-sphere S%, and A/ (t) the normalized (one variable)
Alexander polynomial of L, i.e. the lowest degree of Ap(t) is 0.

Definition 2.4. An n-component link L in S? is said to be homologically fibered if L
satisfies the following two conditions:

(i) The degree of Ap(t) is 29 + n — 1, where g is the genus of a connected Seifert
surface of L; and

(ii) AL(0) = £1.

If an n-component link L satisfies (i), then L is said to be rationally homologically fibered.
The Alexander polynomial that satisfies the condition (ii) is said to be monic in this
paper.
Remark 2.5. In general, if L bounds a connected Seifert surface of genus g, then
2g +n — 1 > (the degree of AL(?)).

It is known ([5], [21]) that if L has an alternating diagram that gives, by the Seifert
algorithm, a connected Seifert surface of genus g, then the degree of Ap(t) is equal to
2g+n-—1.



Remark 2.6. Suppose L is an alternating link. Then, L is fibered if and only if A(¢) is
monic, by Murasugi (22] (see also 13.26 (c) in [1]). Therefore, if a homologically fibered
link L is not fibered, then L is non-alternating.

Let L be an n-component link and X,, the compact oriented surface that is diffeo-
morphic to a Seifert surface R of L. We fix a diffeomorphism ¢ : ¥, ,, 5 R and denote
by (Mpg,7) the complementary sutured manifold for R. Then we may see that there
are an orientation-preserving embedding iy : ¥,, — Mg and an orientation-reversing
embedding i_ : £,, — Mg with i.(X,,) = Ri(y) and i_(X,,) = R-(7), where two
embeddings iy are the composite mappings of 9 and embeddings ¢4 : R — Mg such that
iy =13 09 : 5, = Re(y) C Mpg:

Zg,n 19_) R

N

Mg

Ifiy, i : Hi(Xg,) = Hi(Mg) are isomorphisms, we may regard (Mg, ) as a homology
cylinder. The next proposition was essentially mentioned in [6]. A proof is given in [12].

Proposition 2.7. Let R be a Seifert surface of a link L. If the complementary sutured
manifold for R is a homology cylinder, then L is homologically fibered. Conversely, if L
is homologically fibered, then the complementary sutured manifold for each minimal genus
Seifert surface of L is a homology cylinder.

It is known that all homologically fibered knots are fibered among prime knots with at
most 11 crossings. On the other hand, Friedl-Kim [9] (see also [2]) showed that there are
13 non-fibered homologically fibered knots with 12-crossings. See Figure 7.

3. FACTORIZATION FORMULAS OF ALEXANDER INVARIANTS

Let R be a minimal genus Seifert surface of a rationally homologically fibered knot K in
S3, and Mg be the sutured manifold for R = %, ;. We fix a basis of H;(R; Q), which yields
an isomorphism H;(R; Q) = Q. Then we can rewrite the definition Ag(t) = det(S—tST)
of the Alexander polynomial of K by using the invertibility (over Q) of the Seifert matrix
S, and obtain a factorization

(3.1) Ak(t) = det(S) det(Iyy — to(Mg))
of Ak(t). Note that o(Mpg) := S71S7T represents the composite of isomorphisms

Q¢ = Hi(RQ = Hi(MpQ —p (R Q) = Q.

The matrix o(Mg) can be interpreted as a monodromy of My from a view point of the
rational homology. Regarding the formula (3.1) as a basic case, we constructed in [12] its
generalization under the framework of higher-order Alexander invariants due to Cochran
[3], Harvey [17] and Fried] [7]. In this procedure, the Seifert matrix .S, the monodromy
o(Mg) and Ag(t) are generalized to a certain Reidemeister torsion 7,7 (Mg), the Magnus
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matrix 7,(Mpz) and some higher-order (non-commutative) Reidemeister torsion 7,(E(K))
associated with a representation p of the fundamental group of Mp.

Here, we review higher-order Alexander invariants quickly. For a matrix A with entries
in a group ring ZG (or its quotient field) for a group G, we denote by A the matrix
obtained from A by applying the involution induced from (z — z~!, £ € G) to each
entry. For a module M, we write M™ for the module of column vectors with n entries.
For a finite cell complex X, we denote by X its universal covering. We take a base point
p of X and a lift p of p as a base point of X nm=m (X,p) acts on X from the right
through its deck transformation group, so that the lift of a loop | € 7 starting from p
reaches pl~!. Then the cellular chain complex C,()? ) of X becomes a right Zm-module.
For each left Zm-algebra R, the twisted chain complex C,(X;R) is given by the tensor
product of the right Zr-module C,(X) and the left Zr-module R, so that C,(X;R) and
H,.(X;R) are right R-modules.

In the definition of higher-order Alexander invariants, PTFA groups play important
roles, where a group I' is said to be poly-torsion-free abelian (PTFA) if it has a sequence

F=T¢plyp--->T, = {1}

whose successive quotients I';/T;y; (i > 0) are all torsion-free abelian. An advantage of
using PTFA groups is that the group ring ZI" (or QI') of T is known to be an Ore domain
so that it can be embed into the field (skew field in general)

Kr := ZL(ZT - {0})~! = QI(QT - {0})~!

called the right field of fractions. A typical example of PTFA groups is Z", where Kz~ is
isomorphic to the field of rational functions with n variables.

For a rationally homologically fibered knot K, we take a homomorphism p : G(K) :=
m1(E(K)) — I whose target I is PTFA. We suppose that p is non-trivial. We regard Kr
as a local coeflicient system on E(K) through p.

Lemma 3.1 (Cochran [3, Lemma 3.9]). For any non-trivial homomorphismp : G(K) - T
to a PTFA group T, we have H,(E(K); Kr) = 0.

By this lemma, we can define the Reidemeister torsion
T,(E(K)) := T(C.(E(K); Kr)) € Ki(Kr)/ £ p(G(K))

for the acyclic complex C.(E(K); Kr). We refer to Milnor [20] for generalities of torsions.
By higher-order Alexander invariants for K, we here mean this torsion 7,(E(K)).

We now describe a factorization of 7,(E(K)) generalizing (3.1). Let (Mg,i4,i_) € CSl
be the rational homology cylinder obtained as the sutured manifold for a minimal genus
Seifert surface R of K. We use the same notation p : m(Mg) — I for the composition
m(Mg) = G(K) % T. Applying Cochran-Orr-Teichner [4, Proposition 2.10], we have
the following:

Lemma 3.2. i,i_ : H.(Z,1,p;13.Kr) = H.(Mg,p; Kr) are isomorphisms as right Kp-
vector spaces. Equivalently, H,(Mg,i4(24,1); Kr) = 0.
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This lemma provides the following two kinds of invariants for Mpg.

The Magnus matrix Let X C X, ; be the bouquet of 2g circles 7y, ..., 5, tied at p (see
Figure 3). X is a deformation retract of £, ; relative to p. Therefore, for + € {+, -}, we
have

Hi(Z,1,p;83Kr) 2 Hy (X, p;i%Kr) = C1(X) ®ny(z,,,) 12K = KF
with a basis

M ®1,..., 5 ®1} C C1(X) ®nryx, ) 12Kr

as a right Kp-vector space. Here we fix a lift p of p as a base point of X , and denote by
7; the lift of the oriented loop ~; starting from p.

Definition 3.3. For Mg = (Mg, i,,i_) € C3y,
ro(Mg) € GL(2g, Kr)
of M is defined as the representation matrix of the right Xr-isomorphism

K = Hy(Z41,p; Kr) ?” Hi (Mg, p; Kr) %) Hy(Sg1,p;Kr) = K,
— 'l+

the Magnus matriz

where the first and the last isomorphisms use the bases mentioned above.

The matrix r,(Mg) can be interpreted as a monodromy of My from a view point of the
twisted homology with coeflicients in Kr.

FIGURE 3. Cell decomposition of ¥

I'-torsion Since the relative complex C,(Mpg,i4(E,,1); Kr) obtained from any cell de-
composition of (Mg,i4(%,,1)) is acyclic by Lemma 3.2, we can define the following:

Definition 3.4. For Mg = (Mpg,i,,i_) € CSI, the I-torsion 7,7 (Mg) of Mg is defined by

7, (MR) = 7(Cu(Mp,i1(Z4,1); Kr)) € K1(Kr)/ £ p(m1(Mg)).

A method for computing r,(Mg) and 7} (Mg) is given in [12, Section 4], which is based
on Kirk-Livingston-Wang’s method [18] for invariants of string links, and we now recall
it briefly. An admissible presentation of m;(Mpg) is defined to be the one of the form

(32) (i-(’)ll)’ . -ai—(rbg)azla . .,Zl,’i+(71), .. "i+(72g) | T1,-. '7r2g+l>
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for some integer [. That is, it is a finite presentation with deficiency 2¢g whose generating
set contains i (y1),...,5-(72¢),%4+(71),- -+, 4+(724) and is ordered as above. Such a pre-
sentation always exists. For any admissible presentation, define 2g x (29 + 1), I x (29 +1)
and 2g X (2g + [) matrices A, B,C over ZI" by

p Or,- ’ aTj ’ aTj
A= (81'_(%-)) 1<i<2g B= (6_7;) 1<i<t ¢= (6i+(fy,-)) 1<i<2g

1<5<29+l 1<5<2g+ 1<5<2g+1

Proposition 3.5 ([12, Propositions 4.5, 4.6]). As matrices with entries in Kr, we have:

(1) The square matriz (g) is invertible and 7} (Mp) = (A> ; and

B
(2) rp(Mg) = -C (2) i (o(lfzgg)>

Using the above invariants, the factorization formula for 7,(E(K)) is given as follows:

Theorem 3.6. Let K be a rationally homologically fibered knot of genus g. For any
non-trivial homomorphism p : G(K) — I' to a PTFA group I, a loop u representing the
meridian of K satisfies p(u) # 1 € ' C Kr and we have a factorization

_ 7 (M) - (I — p(p)ry(Mk))
1 - p(p)

(3-3) 7o(E(K)) € Ki(Kr)/ £ p(G(K))

of the torsion 1,(E(K)).
Ak(t)

To compare (3.3) with (3.1), recall Milnor’s formula [20] that _lK—t

represents the

Reidemeister torsion associated with the abelianization map p; : G(K) — (t) C Q(¢).
Taking p; as p, we recover the formula (3.1).

4. COMPUTATIONS

Although all the ingredients in the formula (3.3) are theoretically determined by infor-
mation on fundamental groups, it is difficult to compute them explicitly because of the
non-commutativity of Kr except in some special cases including the following.

Let K be a homologically fibered knot with a minimal genus Seifert surface R and let
Mg be the sutured manifold for R. Consider the group extension

(4.1) 1 — G(K)/G(K)" — Do(K) — G(K)/G(K) = Hi(E(K)) =2 Z — 1
relating to the metabelian quotient Dy(K) := G(K)/G(K)" of G(K). We have
G(K)'/G(K)" = Hi(R) = Hi(Mkg)

since it coincides with the first homology of the infinite cyclic covering of E(K), which
can be seen as the product of infinitely many copies of Mg. In particular, we may regard
H,(Mp) as a natural (namely, independent of choices of minimal genus Seifert surfaces)
subgroup of D,(K). We take p to be the natural projection

p2 : G(K) — Dy (K).



It is known that D,(K) is PTFA, so that Kp, (k) is defined. Then, Proposition 3.5 shows
that 7.5 (Mg) and r,,(Mg) can be computed by calculations on a commutative subfield
’CH1(MR) of ,CDg(K)-

Let us see an example of calculations of our invariants. Let K be the knot as the
boundary of the Seifert surface R illustrated in Figure 4. This is the knot 0057 in Figure
7. We can easily compute that Ag(t) = 1 — 2t + 3t — 2t* + t* and the genus of R is
2. Hence K is a homologically fibered knot and R is of minimal genus. The graph G
in the right hand side of Figure 4 is obtained from R by a deformation retract. Thus

o
m1(Mg) = m(S® — N(G)). Then m;(Mp) has a presentation:
-1 -1,-1 -1 -1,-1 ~1,-1
21,22, -+, 210 | 212525 , 22237421, 2329 25y 21747, 28210%, 222527 %5 5 29%4%10 24 ) -

The first 5 relations come from the vertices of G and the last 2 relations come from the
crossings of G. We can drop the last relation 2924275 25" because it is derived from the
others.

FIGURE 4

We take a spine of R as in Figure 5, by which we can fix an identification of ¥ ; and
R. A direct computation shows that

FIGURE 5

1 1

i(m) =2z i-(m) =2z  i-(1) =22 g i-(vs) = 24
iv(n) =2 iv(12) = 2% i4(13) = 2625 zszsey 2 2 i) = Zerrzg
Here the darker color in R is the +-side. Then, we obtain an admissible presentation of

m1(Mp):
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Generators (Y1) -5 0=(Va)s 215+ -5 210, 24 (V1)s- -+ 5 34 (74)
Relations z1z5z6-1, 29232421, zazg_lzgl, z72428_1, 2821026, 222’527_125_1,
i-(n)ay 75y i (ve) 22, i-(va)zazszrzs 'y i (va) 2,
ip(m)z5 'y ir(12)25 26 Y i (va)2ezazrzs V2 as g iy (va) 2627

If we have an admissible presentation, we can use the program shown in Section 5.
However, we here demonstrate a calculation by hand.

By sliding the edges v; and v, of G as in Figure 6, we obtain a graph whose complement
is clearly a genus 4 handlebody. This means that the complement of G (and hence Mpg)
is homeomorphic to a genus 4 handlebody. Let Dy,..., D, be the meridian disks of the
handlebody as illustrated in the figure.

FIGURE 6

Then, Hi(Mpg) is the free abelian group generated by ¢; (i = 1,...,4) where t; corre-
sponding to an oriented loop which intersects D; transversely in one point from the above
to the down side in Figure 6 and is disjoint from D; (i # j).

We have the natural homomorphism 7, (Mg) — H;(Mpg) which maps

21—t} 2z > tot3 ! 23 > 11ty gty 24 > by 25+ tty!
Zg > t2_1 27— tgt:;l Zg t2t§1t4 29 — t3t4_1 210 M t3t4_1
. -1 : -1 ; —3,2,-2 - -1
i_(m)» i-(r)— it i_(v3) P ity taty i_(74) >t

ir(m) — tity! ir(72) P 85 sty ! i+ (13) & it 285852 it (va) o tat3?

Under the bases ([y1], [v2], [v3], [74]) of H1(X2,1) and (¢1,t2, 3, ts) of H;(Mp), the induced
maps i_,i, are represented by

0 0 1 0 1 0 1 0
-1 -1 -3 0 -1 -1 -2 1
SS=1o 1 2 of S |0 1 2 -
0 0 -2 -1 0 -1 -2 0

respectively. Note that det(I — ¢ (S7'S_)) = 1 — 2t + 3¢2 — 2t + t* is the Alexander
polynomial of K.

Since My is homeomorphic to a handlebody, we have the following admissible presen-
tation of m(Mg) by setting z; := 2z7*, 1y = 25", 73 := (2627)"! and x4 := 24, which are
mapped to ty, ta, t3 and t4 by the homomorphism 7, (Mg) — H;(Mg).

Generators i—(71),---,5-(74), T1, T2, 23, T4, i4 (1), .- ,9+(V4)

Relations z'_('n):zrla:gml_l, i_(’}’Q)Z].’Bs_l.’IZQ.’EI_l, i_(73)9:4:1:2:1:;1:541:2:10;13:2951_1, i_(y4)x4,
1'+(71):1:2:r1_1, 'i+('yz)x4x§]m2, i+('yg)z;lzngglxngl:cwglzz, i+(’y4)a:2—1.'z:3
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We write 71, ..., 7s for these relations in order. Note that g, (amy) is isomorphic to the

field of rational functions with variables z, ..

., T4. Then we have:

Tn%, T T3 T4 Ts5 Te T7r T8
i_(m) ( 1 0 0 0 0 0 0 0 \
i(y)] O 1 0 0 0 0 0 0
i-(ys)| O 0 1 0 0 0 0 0
i_('y4) 0 0 0 1 0 0 0 0
A T g11 912 G913 914 G915 Gie Gir 9gis
Bl = % 921 922 923 9G24 925 Y26 G271 928
C Z3 931 932 933 Y34 G35 Y6 937 938
T4 941 Ga2 G43 Gaa 945 Gae G417  G48
iv(m)] O 0 0 0 1 0 0 0
i+(f72) 0- 0 0 0 0 , 1 0 0
iv(y)] O 0 0 0 0 0 1 0
idd\o o0 o0 0o 0 0 0 1 /
1 O 0 0 o0 O 0 0
0 1 0 0 O 0 0 O
- 0 0 1 0 0 0 0 0
] A 0 O 0 1 0 O 0 0
h = —2 Th +(Mg) = = A
WAETe 9 ox; us 7 (Mg) <B> gl 912 913 gue G5 Gie G117 Y18 ®
921 G22 G923 G924 925 G26 927 928
931 G932 933 934 935 036 Gg37 938
941 G42 Q43 G944 945 Gi6  G47 948}
15 G916 917 918
a torsion, it is equivalent to 925 926 921 928 , where
g3 g3 937 938
945 Ga6 Gar G48
g15 = —1, g16 = 0, g18 = 0,
925 = T7'T2, G2 = To, g2g = — I3,
g3s = 0, 936 = —Za2, g3g = I3,
945 = 0, ga6 = ToT3 T4, Gss =0,
gi7 = —552(351354,
gor = To + o7 zdzy ey + a7 adTy 2ry — o7 ayTy e,
g7 = —Tg — 331_1$§$3_1$4,

-1 -1.3..-2.2
g47 = 1:2.'1:3 T4 + "El I2$3 .’174
Then we have:

915
925
935
945

917
Ga7
937
947

g6
926
J3s
G46

det (7 (Mg)) = det

g1 3 9 '
5T
28 24
g ——— (T2 — 23— ToZy)-
gs3s I173
g48
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The Magnus matrix r,,(Mg) can be computed by the formula in Proposition 3.5 (2).
However we omit here.

Remark 4.1. If we change bases of H;(22;) = H,(Mg) by

T =72, T =%y 3 = e,z =ty
Y3

——— (1 + 72 ~ 7274). This expression
1 ve

where 7; denotes i (v;), we have det(r, (Mg)) =

is used in the program in Section 5.

5. MATHEMATICA PROGRAM

The following is a MATHEMATICA program which calculates the invariants discussed
in the previous section.

hiClass = {};
hiMonodromy = {};
torsionMatrix = {};
magnusMatrix = {};

invariants(g_, z_, RELATIONS_] :=
Module[{reindexedRel, hiMatrix, i, alex},
GENUS = g;
Ztotal = z;

reindexedRel = Map[reindexing, RELATIONS, {2}];

hiMatrix = -Map([Take([#, -2 GENUS] &, homologyComputation[reindexedRel]];
hiClass =
Join([Map [monomialExpression, hiMatrix],
Table[ToExpression[ToString[SequenceForm["\[Gammal", i]]], {i, 2 GENUS}1];
Print["Homology classes of generators = ", hiClass // DisplayForm];

hiMonodromy = Transpose[Take(hiMatrix, 2 GENUS]);
Print ["Homological monodromy = ", hiMonodromy // MatrixForm];

alex = Transpose[makeAlexanderMatrix{reindexedRel]];
torsionMatrix = Take[alex, 2 GENUS + Ztotal];
Print["torsion matrix = ", torsionMatrix // MatrixForm];
Print["det(torsion) = ", Expand[Det[torsionMatrix]]];

magnusMatrix = Simplify([Transposel[
Take [Transpose[-Drop[alex, 2 GENUS + Ztotal].Inversel[
torsionMatrix]], 2 GENUS]]];
Print["Magnus matrix = ", magnusMatrix // MatrixForm]

1

reindexing[num_] :=
Module [{numString, sg},
If [NumberQ[num], num + 2 GENUS*Sign(num],
numString = ToString(num];
sg = If[StringTake[numString, 1] == "-", 1, 0];
If [StringTake [numString, {1 + sg}] == "m",
((-1) "sg) *ToExpression[StringDrop [numString, 1 + sgll,
((~1)"sg) *(ToExpression[StringDrop [numString, 1 + sgl] + 2 GENUS + Ztotal)]]



1;

homologyComputation[rel_ ] :=
Module [{i, j},
RowReduce[Table[Count [rel[[i]], j] - Count(irel[[il], -j],
{i, 1, 2 GENUS + Ztotall}, {j, 1, 4 GENUS + Ztotal}]]];

monomialExpression[list_] :=
Module[{i, prod = 1},
For[i = 1, i <= 2 GENUS, i++,
prod = prod*(ToExpression[ToString[SequenceForm["\[Gammal", i]1]1]-1list[[il])];

prodl;

makeAlexanderMatrix[rel_] :=
Module [{i, j},
Table(foxDer[rel[[i]], jl, {i, 1, Length[rell}, {j, 1, 4 GENUS + Ztotal}]];

foxDer [word_, var_] :=
Module{{entry = 0, i},
For[i = 1, i <= Length{word], i++,
Which[word{[i]] == var,
entry = entry + (makeMonomial[Take[word, i - 1]];(-1)),

word[[i]] == -var,
entry = entry - (makeMonomial [Take[word, i]]1~(-1))]];
entryl;

makeMonomial [list_] :=
Module[{prod = 1},
For[i = 1, i <= Length([list], i++,
prod = prod*(hiClass([[Abs{1ist[[i]]]]]"Sign([list{[il1])];

prod];

A computation by this program goes as follows. Let (M,i;,i_) € C,; with an admis-
sible presentation

(i—(fyl)’ . 'ai~(729)azl7 .. '1zl’i+(7l), .- "i+(7‘2g) | T1y--- 7r29+l>

of m1(M). The main function in the program is invariants having three slots as the
input. These slots correspond to the genus g, the number [ of z-generators and the list of
relations. For each word in the relations, we make a list by replacing i_(y;)*!, z' and
i+ (7;)*! by +mj, +j and +pj. By lining up them, we obtain the list of relations.
For example, the knot 0815 in Figure 7 has a minimal genus Seifert surface giving a
sutured manifold whose fundamental group has the following admissible presentation:
Generators i (1), s 0= (Ya)y 215- -y 2115 B4 (V1)s - - oy G4 (V4)
Relations 21292, zlzglzj(l, z4zl“11z5, zl—olzglzszﬂg, Zé—lze_leZG,
2;125123Z6,Z4Z§121121m
i_(m)zazs 2 1o () 2z, - (78) 20, 1o (Va) 25 25
()7 7 2 (e g, () azs 2, i ()20 25
Then, the input is:
invariants[2, 11, {{1, 9, 6}, {1, -2,-4}, {4,-11, 5},
{-10, -5, 6, 7, 8}, {-8, -6, 9, 6}, {-7, -6, 3, 6},
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{4) -3, -4, 10}) {m1) 4, -3, -4}: {m29 4, 11})
{m3, 9}, {m4, -2, -9}, {p1, -2, -3, -4}, {p2, 11, 1},
{Ps y 9, -3, 1}, {P4 » 9, -2, -9}}]

Then the function returns homology classes of generators in terms of vj := i4(7;) €
H;(Mg), the homological monodromy matrix o(Mpg), the torsion matrix 7 (Mp) and
the Magnus matrix r,,(Mg). These data can be referred as the variables hiClass,
hiMonodromy, torsionMatrix and magnusMatrix. ’

Using this program, we can easily check the calculations presented in [13] for 13 non-
fibered homologically fibered knots with 12-crossings (Figure 7).

REFERENCES

(1] G. Burde, H. Zieschang, Knots, de Gruyter Studies in Mathematics, 5. Walter de Gruyter & Co.,
Berlin, 2003.

[2] J. Cha, C. Livingston, Table of Knot Invariants, http://www.indiana.edu/ knotinfo/.

[3] T. Cochran, Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004), 347-398.

[4] T. Cochran, K. Orr, P. Teichner, Knot concordance, Whitney towers and L?-signatures, Ann. of
Math. 157 (2003), 433-519.

[5] R. Crowell, Genus of alternating link types, Ann. of Math. (2) 69 (1959), 258-275.

[6] R. Crowell, H. Trotter, A class of pretzel knots, Duke Math. J. 30 (1963), 373-377.

{7] S. Friedl, Reidemeister torsion, the Thurston norm and Harvey’s invariants, Pacific J. Math. 230
(2007), 271-296.

[8] S. Friedl, A. Juhdsz, J. Rasmussen, The decategorification of sutured Floer homology, preprint (2009),
arXiv:0903.5287.

[9] S. Friedl, T. Kim, The Thurston norm, fibered manifolds and twisted Alezander polynomials, Topol-
ogy 45 (2006), 929-953.

[10] D. Gabai, Foliations and the topology of 3-manifolds, J. Differential Geom. 18 (1983), 445-503.

[11] S. Garoufalidis, J. Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson
homomorphism, Graphs and patterns in mathematics and theorical physics, Proc. Sympos. Pure
Math. 73 (2005), 173-205.

[12] H. Goda, T. Sakasai, Homology cylinders in knot theory, preprint (2008), arXiv:0807.4034.

[13] H. Goda, T. Sakasai, Factorization formulas and computations of higher-order Alezander invariants
for homologically fibered knots, preprint (2010), arXiv:1004.3326.

[14] M. Goussarov, Finite type invariants and n-equivalence of 3-manifolds, C. R. Math. Acad. Sci. Paris
329 (1999), 517-522.

[15] N. Habegger, Milnor, Johnson, and tree level perturbative invariants, preprint.

[16] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83.

[17] S. Harvey, Monotonicity of degrees of generalized Alezander polynomials of groups and 3-manifolds,
Math. Proc. Cambridge Philos. Soc. 140 (2006), 431-450.

[18] P. Kirk, C. Livingston, Z. Wang, The Gassner representation for string links, Commun. Contemp.
Math. 3 (2001), 87-136.

[19] J. Levine, Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1
(2001), 243-270.

[20] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.

[21] K. Murasugi, On the genus of the alternating knot, I, II, J. Math. Soc. Japan 10 (1958), 94-105,
235-248.

[22] K. Murasugi, On a certain subgroup of the group of an alternating link, Amer. J. Math. 85 (1963),
544-550.



[23] T. Sakasai, The Magnus representation and higher-order Alezander invariants for homology cobor-
disms of surfaces, Algebr. Geom. Topol. 8 (2008), 803-848.

DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY, 2-24-
16 NAKA-CHO, KOGANEI, TOKYO 184-8588, JAPAN
E-mail address: goda@cc.tuat.ac.jp

DEPARTMENT OF MATHEMATICAL, TOKYO INSTITUTE OF TECHNOLOGY, 2-12-1 OH-OKAYAMA,
MEGURO-KU, TOKYO 152-8552, JAPAN
E-mail address: sakasai@math.titech.ac.jp

97






