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1 Introduction

The fundamental problem in the geometric function theory is to find a family
of canonical domains. Recently, S. Bell proposed a new family of domains
which admit canonically a simple proper holomorphic map to the unit disc
U. Actually, they are enough.

Theorem 1 ([1]). Every non-degenerate d-ply connected planar domain W
with d > 1 is mapped biholomorphically (or, conformally) onto a domain

Wa,b, defined by
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with suitable complex vectors

This theorem can be considered as a natural generalization of the classical
Riemann mapping theorem for simply connected planar domains.

We call such a domain Wy, as in Theorem 1.1 a Bell representation of
W. The function fa) defined by
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is a proper holomorphic map from W, onto U. Set By be the set of all vec-
tors (a, b) in C?#~2 such that W, is a Bell representation of d-ply connected
planar domains, and we call By the coefficient body of degree d. (Cf. [2].)
Now, from a well-known fact on the theory of moduli, we can conclude
that d-ply connected non-degenerate planar domains have real 3d — 6 moduli
(or Teichmiiller) parameters if d > 3. First we state this fact more precisely.

Definition 1. Let d > 2. We call a d-ply connected non-degenerate planar
domain W equipped with an order of boundery components of W a boundary-
marked planar domain of type d.

Two marked planar domains W, and W, of type d are conformally equiv-
alent if there is a conformal mapping f : Wi — W, which preserves the
boundary-markings.

Let D4 be the set of all equivalence classes of boundary-marked planar
domains of type d. We call Dy the deformation space of a boundary-marked
planar domain of type d.

Then the following fact is classical.

Proposition 2. If d > 3, then Dy can be considered as a domain in R348,

Proof. By Koebe’s theorem ([3]), every d-ply connected non-degenerate pla-

nar domain can be mapped conformally onto a Koebe circle domain.
On the other hand, it is easy to see that boundary-marked Koebe circle
domains have real 3d— 6 real global parameters up to Mobius tranformations.
O

In the case of triply connected planar domains, there always exists a
canonical symmetry for every such one. Moreover, it is believed that the
intersection of the coefficient body Bs with each one of the following families
gives an explicit model of D;. We will discuss about it.

Definition 2. Set

B* = {(a,b,d) € R* | a > 0,b> 0,d > 0},
and

B~ = {(a,b,d) € R*|a>0,b<0,d <0}.

We assume that B are naturally embedded in C3. Also in the sequel,
we write as

Wopa={z € C||fapa(2)| <1},

where
b d

+ .
z—a z+a

fa,b,d(z) =2z4+
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2 Main results

First, we clarify the correspondence of (a,b, d) with the set of critical points
and the phase transition of the covering structures of f,q for the case of
B,

First note the following

Lemma 3. For every f = f,pq with (a,b,d) € B, either

1) f has for real critical points {r,p, s,t}, or

2) f has two real critical points {r,t} and two others {p+si,p—si}. Here
we may assume that

1) r<p<s<t, or2) r<t, s>0,
respectively.
For every f = fopq with (a,b,d) € B™, f has two pair of complex conju-
gates {r +it,r — it} and {p+ si,p — si}. Here we assume that
r<p, t>0, s>0.

In the case of B, the phase transition occurs at the locus Discr(F') = 0,
where Discr(F) is the constant times

bda® ((4a® — b — d)® — 108bda®)
F(2)=(z—a)* (2 +a)? = b(z +a)® — d(z — a)*.

Here, we include the figures which show the typical manner of the phase
transition.



Fzpob/(z-a)+c/(z00)
= 0,08

bz 0,001

¢z 0,001%

Figure 1: a = 0.05, b = 0.001, ¢ = 0.00155
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Frzeb/{z-a)ve/{zra)
= 0,05

b= 0,001

ez 0,00153054

Figure 2: a = 0.05, b = 0.001, ¢ = 0.00153853756925731479
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Fzzeb/(z-0)+c/(2¢+a)
* 0,06
be 0,001
ez 0,0015

Figure 3: a = 0.05, b = 0.001, ¢ =0.0015
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Next, recall that F'(z) is represented also as
F(2) = 2* 4+ 0123 + 022° + 032 + 04.

Clearly, oy = 0 and the vectors (g9, 03,04) correspond to the sets {r,s,t}
bijectively, which is called the relations between solutions and coefficients.
Also a direct computation gives

Lemma 4. The Jacobian
0(02,03,04)
d( a, b, d)
18
—8a?(4a® — b — d).
Now, the main theorems are the following

Theorem 5. In the case of B™, the set of three real parameters

(r,s,t)
gives the set of global coordinates of B~. In other words, the map 11~ of B~
to (r,s,t) € R3 is a homeomorphism onto the image.

Proof. First, the map
¢ : (a, bs d) — (0'2, o3, 04)

is locally homeomorphic by Lemma 4 and the assumptions that b < 0 and
d < 0. Also ¢ is injective. Indeed, a? is a positive solution of

3z? +o9x — o4 =0.

And since o4 > 0, it has exactly one positve solution.
Next, we can show by a direct computation that the Jacobian

0(02,03,04) 2 2\2 26,2 | 2, 42

N e R - 2

e 4st (2(8? — s°)? + 16r°(2r® + s° + %))
= 8st (4% + (s —t)%) (4r® + (s +1)?),

whcih is non-negative, and equals 0 if and only if r = 0,s = ¢t. But these
conditions imply that a = b = d = 0, and hence can not occur. Thus we
conclude that

Y : (r,s,t) — (02,03,04)

is also locally homeomorphism and clearly 1! is injective.
Thus we can show that the map II~ of B~ to (r, s,t) € R? is injective and
locally homeomorphic, and hence is a homeomorphism onto the image. [J
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Theorem 6. In the case Bt, the map II* : (a,b,d) — (r,s,t) is locally
homeomorphic except for the degenerate locus

E, = {(a,b,d) | 40> — b —d = 0},
The bifurcation locus is
E> = {(a,b,d) | Discr(F) = (4a®> — b — d)® — 108bda® = 0}.

Proof. The first assertion follows from Lemma 4. And the second assertion
is already stated before Lemma 4. a

Remark 1. On the subset of B* where s> — b —d > 0, II* is injective.
Finally we include the figures of
(4a® — b — d)® — 108bda® = 0,

which are symmetric with respect to {a = 0} aqnd {b = c}. The planes in
the figures are a-, b-, c-planes.




27



28

References

[1] M. Jeong and M. Taniguchi, Bell representation of finitely connected
planar domains, Proc. AMS., 131 (2003), 2325-2328.

[2] M. Joeng and M. Taniguchi, The coefficient body of Bell representations
of finitely connected planar domains, J. Math. Anal. Appl. 295 (2004),
620-632.

[3] P. Koebe, Abhandlungen zur Theorie der Konformen Abbildung; iV,
Math. Z. 7 (1920), 235-301.



