
Critical points parameters for triply connected
Bell domains

Mohaby Karima

Graduate School of Humanities and Sciences,
Nara Women’s University

1 Introduction
The fundamental problem in the geometric function theory is to find a family
of canonical domains. Recently, S. Bell proposed a new family of domains
which admit canonically a simple proper holomorphic map to the unit disc
$U$ . Actually, they are enough.

Theorem 1 ([1]). Every non-degenerate d-ply connected planar domain $W$

with $d>1$ is mapped biholomorphically (or, confomally) onto a domain
$W_{a,b}$ , defined by

$W_{a,b}= \{z\in \mathbb{C}:|z+\sum_{k=1}^{d-1}\frac{a_{k}}{z-b_{k}}|<1\}$

with suitable complex vectors

$a=$ $(a_{1}, a_{2}, \cdots , a_{d-1})$ , $b=(b_{1}, b_{2}, \cdots , b_{d-1})$ .

This theorem can be considered as a natural generalization of the classical
Riemann mapping theorem for simply connected planar domains.

We call such a domain $W_{a,b}$ as in Theorem 1.1 a Bell representation of
$W$ . The function $f_{a,b}$ defined by

$f_{a,b}(z)=z+ \sum_{k=1}^{d-1}\frac{a_{k}}{z-b_{k}}$
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is a proper holomorphic map from $W_{a,b}$ onto $U$ . Set $B_{d}$ be the set of all vec-
tors $(a, b)$ in $\mathbb{C}^{2d-2}$ such that $W_{a,b}$ is a Bell representation of d-ply connected
planar domains, and we call $B_{d}$ the coefficient body of degree $d$ . (Cf. [2].)

Now, from a well-known fact on the theory of moduli, we can conclude
that d-ply connected non-degenerate planar domains have real $3d-6$ moduli
(or Teichm\"uller) parameters if $d\geq 3$ . First we state this fact more precisely.

Definition 1. Let $d\geq 2$ . We call a d-ply connected non-degenerate planar
domain $W$ equipped with an order of boundery components of $W$ a boundary-
marked planar domain of type $d$ .

Two marked planar domains $W_{1}$ and $W_{2}$ of type $d$ are confomally equiv-
alent if there is a conformal mapping $f$ : $W_{1}arrow W_{2}$ which preserves the
boundary-markings.

Let $D_{d}$ be the set of all equivalence classes of boundary-marked planar
domains of type $d$ . We call $D_{d}$ the defomation space of a boundary-marked
planar domain of type $d$ .

Then the following fact is classical.

Proposition 2. If $d\geq 3_{f}$ then $D_{d}$ can be considered as a domain in $\mathbb{R}^{3d-6}$ .

Proof. By Koebe’s theorem ([3]), every d-ply connected non-degenerate pla-
nar domain can be mapped conformally onto a Koebe circle domain.

On the other hand, it is easy to see that boundary-marked Koebe circle
domains have real $3d-6$ real global parameters up to M\"obius tranformations.

口

In the case of triply connected planar domains, there always exists a
canonical symmetry for every such one. Moreover, it is believed that the
intersection of the coefficient body $B_{3}$ with each one of the following families
gives an explicit model of $D_{3}$ . We will discuss about it.

Definition 2. Set

$B^{+}=\{(a, b, d)\in \mathbb{R}^{3}|a>0, b>0, d>0\}$ ,

and
$B^{-}=\{(a, b, d)\in \mathbb{R}^{3}|a>0, b<0, d<0\}$ .

We assume that $B^{\pm}$ are naturally embedded in $\mathbb{C}^{3}$ . Also in the sequel,
we write as

$W_{a,b,d}=\{z\in \mathbb{C}||f_{a,b,d}(z)|<1\}$ ,

where
$f_{a,b,d}(z)=z+ \frac{b}{z-a}+\frac{d}{z+a}$ .
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2 Main results
First, we clarify the correspondence of $(a, b, d)$ with the set of critical points
and the phase transition of the covering structures of $f_{a,b,d}$ for the case of
$B^{+}$ .

First note the following

Lemma 3. For every $f=f_{a,b,d}$ with $(a, b, d)\in B^{+}$ , either
1 $)$ $f$ has for real critical points $\{r,p, s, t\}$ , or
2$)$ $f$ has two real critical points $\{r,t\}$ and two others $\{p+si, p- si\}$ . Here

we may assume that

1 $)$ $r<p\leq s<t$ , or 2$)$ $r<t,$ $s>0$ ,

respectively.
For every $f=f_{a,b,d}$ with $(a, b, d)\in B_{f}^{-}f$ has two pair of complex conju-

gates $\{r+it, r- it\}$ and $\{p+si, p- si\}$ . Here we assume that

$r\leq p,$ $t>0,$ $s>0$ .

In the case of $B^{+}$ , the phase transition occurs at the locus Discr$(F)=0$,
where Discr$(F)$ is the constant times

$bda^{2}((4a^{2}-b-d)^{3}-108bda^{2})$

$F(z)=(z-a)^{2}(z+a)^{2}-b(z+a)^{2}-d(z-a)^{2}$ .

Here, we include the figures which show the typical manner of the phase
transition.
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Figure 1: $a=0.05,$ $b=0.001,$ $c=0.00155$
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Next, recall that $F(z)$ is represented also as
$F(z)=z^{4}+\sigma_{1}z^{3}+\sigma_{2}z^{2}+\sigma_{3}z+\sigma_{4}$.

Clearly, $\sigma_{1}=0$ and the vectors $(\sigma_{2}, \sigma_{3}, \sigma_{4})$ correspond to the sets $\{r, s, t\}$

bijectively, which is called the relations between solutions and coefficients.
Also a direct computation gives

Lemma 4. The Jacobian
$\partial(\sigma_{2}, \sigma_{3}, \sigma_{4})$

$\partial(a, b, d)$

$is$

$-8a^{2}(4a^{2}-b-d)$ .

Now, the main theorems are the following

Theorem 5. In the case of $B_{f}^{-}$ the set of three real pammeters

$(r, s, t)$

gives the set of global coordinates of $B^{-}$ . In other words, the map $\Pi^{-}$ of $B^{-}$

to $(r, s, t)\in \mathbb{R}^{3}$ is a homeomorphism onto the image.

Proof. First, the map

$\phi:(a, b, d)\mapsto(\sigma_{2}, \sigma_{3}, \sigma_{4})$

is locally homeomorphic by Lemma 4 and the assumptions that $b<0$ and
$d<0$ . Also $\phi$ is injective. Indeed, $a^{2}$ is a positive solution of

$3x^{2}+\sigma_{2}x-\sigma_{4}=0$ .

And since $\sigma_{4}>0$ , it has exactly one positve solution.
Next, we can show by a direct computation that the Jacobian

$\frac{\partial(\sigma_{2},\sigma_{3},\sigma_{4})}{\partial(r,s,t)}$ $=$ $4st(2(t^{2}-s^{2})^{2}+16r^{2}(2r^{2}+s^{2}+t^{2}))$

$=$ $8st(4r^{2}+(s-t)^{2})(4r^{2}+(s+t)^{2})$ ,

whcih is non-negative, and equals $0$ if and only if $r=0,$ $s=t$. But these
conditions imply that $a=b=d=0$, and hence can not occur. Thus we
conclude that

$\psi:(r, s, t)\mapsto(\sigma_{2}, \sigma_{3}, \sigma_{4})$

is also locally homeomorphism and clearly $\psi^{-1}$ is injective.
Thus we can show that the map $\Pi^{-}$ of $B^{-}$ to $(r, s, t)\in \mathbb{R}^{3}$ is injective and

locally homeomorphic, and hence is a homeomorphism onto the image. $\square$
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Theorem 6. In the case $B^{+}$ , the map $\Pi^{+}:(a, b, d)\mapsto(r, s, t)$ is locally
homeomorphic except for the degenemte locus

$E_{1}=\{(a, b, d)|4a^{2}-b-d=0\}$ ,

The bifurcation locus is

$E_{2}=\{(a, b, d)|Discr(F)=(4a^{2}-b-d)^{3}-108bda^{2}=0\}$ .

Proof. The first assertion follows from Lemma 4. And the second assertion
is already stated before Lemma 4. 口

Remark 1. On the subset of $B^{+}$ where $s^{2}-b-d>0,$ $\Pi^{+}$ is injective.

Finally we include the figures of

$(4a^{2}-b-d)^{3}-108bda^{2}=0$ ,

which are symmetric with respect to $\{a=0\}$ aqnd $\{b=c\}$ . The planes in
the figures are a-, b-, c-planes.
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