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Abstract

In 1935, S. Ozaki (Sci. Rep. Tokyo Bunrika Daigaku, 2 (1935)) has given the
sufficient condirion for analytic functions to be at most p-valent in the convex domain.
The object of the present paper is to discuss new proof of Ozaki’s teorem. A sufficient
condition for univalent functions is also considered.

1 Main theorems
Theorem 1 Let $f(z)$ be analytic in a convex domain $D$ and suppose that

${\rm Re}(f^{(p)}(z))>0$ $(z\in D)$ .

Then $f(z)$ is at most p-valent in $D$ .

Proof. Applying the mathematical method of redutive absurdity, we prove it. If $f(z)$ is
not at most p-valent in $D$ , then there exist $p+1$ points $z_{1,1},$ $z_{1,2},$ $z_{1,3},$ $\cdots,$ $z_{1,p},$ $z_{1,p+1}$ which
are different each other for which

$f(z_{1,1})=f(z_{1,2})=f(z_{1,3})=\cdots=f(z_{1,p})=f(z_{1,p+1})=0$ .

Let us number the points in order of multitude of real part of the points, but if some of them
have same real part, then let us rotate the z-plane suitably.
Renumbering of $p+1$ points, then without generalization, we can suppose that all the line
segments $\overline{z_{1,1}z_{1,2}},$ $\overline{z_{1,2}z_{1,3}},$ $\overline{z_{1,3}z_{1,4}},$ $\cdots,$ $\overline{z_{1,p-1J,p}z},$ $\overline{z_{1,p}z_{1,p+1}}$ are not perpendicular with the real
axis, and therefore, we can put the following

${\rm Re}(z_{1,1})<{\rm Re}(z_{1,2})<{\rm Re}(z_{1,3})<\cdots<{\rm Re}(z_{1,p})<{\rm Re}(z_{1p+1})$ .

Then we have the followings:
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${\rm Re}( \frac{f(z_{1,2})-f(,z_{1,1})}{z_{1,2}-z_{11}})$ $=$ ${\rm Re}(f’(z_{2,1}))=0$ ,

${\rm Re}( \frac{f(z_{1,3},)-f(,z_{1,2})}{z_{13}-z_{12}})$ $=$ ${\rm Re}(f’(z_{2,2}))=0$ ,

(1) ${\rm Re}( \frac{f(z_{1,4})-f(,z_{1,3})}{z_{1,4}-z_{13}})$ $={\rm Re}(f’(z_{2,3}))=0$ ,

:.

${\rm Re}( \frac{f(z_{1,p})-f(,z_{1,p-1})}{z_{1,p}-z_{1p-1}})$ $=$ ${\rm Re}(f^{f}(z_{2,p-1}))=0$ ,

${\rm Re}( \frac{f(z_{1,p+1})-f(,z_{1,p})}{z_{1,r\vdash 1}-z_{1p}})$ $=$ ${\rm Re}(f’(z_{2,p}))=0$ ,

where
$z_{2,k}=z_{1,k}+\theta_{1,k}(z_{1,k+1}-z_{1,k})$ $(0<\theta_{1,k}<1$ and $k=1,2,3,$ $\cdots,p)$ ,

and the sequence $\{{\rm Re}(z_{2,k})\}$ is a strictly increasing sequence.

From step (1), we have

$\frac{{\rm Re}(f’(z_{2,2},)-f’(z_{2,1}))}{{\rm Re}(z_{22}-z_{2,1})}$ $=$ ${\rm Re}( \frac{\partial f’(z_{3,1})}{\partial x})=0$,

(2) $\frac{{\rm Re}(f’(z_{2,3})-f’(z_{2,2}))}{{\rm Re}(z_{2,3}-z_{2,2})}$ $=$ ${\rm Re}( \frac{\partial f’(z_{3,2})}{\partial x})=0$,

:

$\frac{{\rm Re}(f’(z_{2,p})-f’(z_{2,p-1}))}{{\rm Re}(z_{2,p}-z_{2,p-1})}$ $=$ ${\rm Re}( \frac{\partial f’(z_{3,p-1})}{\partial x})=0$ ,

where

$z_{3,k}=z_{2,k}+\theta_{2,k}(z_{2,k+1}-z_{2,k})$ $(0<\theta_{2,k}<1$ and $k=1,2,$ $\cdots$ , $p-1)$ .

Then the sequence $\{{\rm Re}(z_{3,k})\}$ is also a strictly increasing sequence.
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Form step (2), we have

$\frac{{\rm Re}(\frac{\partial f’(z_{3,2})}{\partial x}-\frac{\partial f’(z_{3,1})}{\partial x})}{{\rm Re}(z_{3,2}-z_{3,1})}$

$={\rm Re}( \frac{\partial^{2}f’(z_{4,1})}{\partial x^{2}})=0$ ,

$\frac{{\rm Re}(\frac{\partial f’(z_{3_{1}3})}{\partial x}-\frac{\partial f’(z_{3,2})}{\partial x})}{{\rm Re}(z_{3,3}-z_{3,2})}$

$={\rm Re}( \frac{\partial^{2}f’(z_{4,2})}{\partial x^{2}})=0$ ,

:

$\frac{{\rm Re}(\frac{\partial f’(z_{3_{)}p-1})}{\partial x}-\frac{\partial f’(z_{3,p-2})}{\partial x})}{{\rm Re}(z_{3,p-1}-z_{3,p-2})}$

$={\rm Re}( \frac{\partial^{2}f’(z_{4,p-2})}{\partial x^{2}})=0$ ,

where

$z_{4,k}=z_{3,k}+\theta_{3,k}(z_{3,k+1}-z_{3,k})$ $(0<\theta_{3,k}<1$ and $k=1,2,$ $\cdots$ , $p-2)$

and $\{{\rm Re}(z_{4,k})\}$ is a strictly increasing sequence.

Let us continue the same steps as the above, then we have finally the following equality

${\rm Re}( \frac{\partial^{p-1}\prime f’(z_{p+1,1})}{\partial x^{p-1}})=0$ ,

where
$z_{p+1,1}=z_{p,1}+\theta_{p,1}(z_{p,2}-z_{p,1})\in D$ $(0<\theta_{p,1}<1)$ .

On the other hand, since $f(z)$ is analytic in $D$ , we have

${\rm Re}( \frac{\partial^{p-1}f’(z_{p+1,1})}{\partial\tau^{p-1}})={\rm Re}(f^{(p)}(z_{p+1,1}))=0$ .

This contradicts the hypothesis of the theorem and it completes the proof of the theorem. $\square$

Remark In the proof of the above, if $f(z)$ has zero at $z_{1,1}$ of order 2 or $z_{1,1}=z_{1,2}$ and all
another zeros are of order 1, then in the step (1), we put

${\rm Re}(f’(z_{2,1}))$ $=$ ${\rm Re}(f’(z_{1,1}))={\rm Re}(f’(z_{1,2}))=0$ ,

${\rm Re}(f’(z_{2,2}))$ $=$ $0$ ,

${\rm Re}(f^{f}(z_{2,3}))$ $=$ $0$ ,

:

${\rm Re}(f^{f}(z_{2,p}))$ $=$ $0$ ,
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where
$z_{2,1}=z_{1,1}=z_{1,2}$ ,

$\sim 2,k=z_{1,k}+\theta_{1,k}(z_{1,k+1}-z_{1,k})$ $(0<\theta_{1,k}<1$ and $k=2,3,$ $\cdots,p)$ ,

the sequence $\{{\rm Re}(z_{1,k})\}$ is not a strictly increasing sequence but the sequence $\{{\rm Re}(z_{2,k})\}$ is a
strictly increasing sequence. Continuing the same steps as the proof of Theorem 1, we have
the same conclusion.
For the cases, $f(z)$ has zeros at many points of multiple orders, then applying the same idea
as the above, we obtain the same conclusion.

Theorem 2 Let $f(z)$ be analytic in a convex domain $D$ and suppose that there exists a
complex constant $\alpha$ which satisfies

$| \arg(-\alpha)|\geqq\frac{\pi}{2}(1+\delta)$

where $0\leqq\delta$ and suppose that

$| \arg(f’(z)-\alpha)|<\frac{\pi}{2}(1+\delta)$ $(z\in D)$ .

Then $f(z)$ is univalent in $D$ .

Proof. If $f(z)$ is not univalent in $D$ , then there exist two points $z_{1}\in D$ and $z_{2}\in D$ ,
$z_{1}\neq z_{2}$ for which

$f(z_{1})=f(z_{2})$ .
Then it follows that

$(f(z_{2})-\alpha z_{2})-(f(z_{1})-\alpha z_{1})$ $=$ $\int_{z_{1}}^{z_{2}}(f’(z)-\alpha)dz$

$=$ $(z_{2}-z_{1}) \int_{0}^{1}\{f’(z_{1}+t(z_{2}-z_{1}))-\alpha\}dt$

and therefore, we have

$\frac{f(z_{2})-f(z_{1})}{z_{2}-z_{1}}-\alpha=\int_{0}^{1}\{f’(z_{1}+t(z_{2}-z_{1}))-\alpha\}dt$ .

Then we have

$\frac{\pi}{2}(1+\delta)\leqq|\arg(-\alpha)|$ $=$ $| \arg(\frac{f(z_{2})-f(z_{1})}{\sim 2\sim-Z_{1}}-\alpha)|$

$=$ $| \arg\int_{0}^{1}\{f’(z_{1}+t(z_{2}-z_{1}))-\alpha\}dt|$

$<$ $\frac{\pi}{2}(1+\delta)$ .

This is a contradiction and therefore it completes the proof. $\square$
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