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Abstract

Model matching control is an important and useful method to solve
the feedback control for electric devices, the vibration control for archi-
tecture and so on. In these days, a method of Robust model matching
control is often used. In that method, usually appear the formula
IT1(s) — T2(s)Q(s)|l,, < 7, where T;(j = 1,2) are known weighted
functions and @ is an unknown free parameter. Engineers want to
know infirmumn value of 4. The Nevanlinna-Pick Interpolation is useful
and powerful method to obtain the infimum ~. In this paper, we show
a solution to a interpolation between n-tuples which lies on circles.

1 Introduction

It is an importaut problemn in engiucering to obtain the infimum value
of v in the formula

IT1(s) — T2(s)Q(8)lloo < 7: (1)

where T;(j = 1, 2) are known weighted functions and @ is an unknown
free parameter. To solve this problem, let (85)7=1 be an n-tuple of
zeros of T5 and let v be considered as a fixed parameter. Then set

1
G(s) := ; (T1(8) — T2(s)Q(3)) - (2)
Since T} is known and s; is a zero of Tb, the correspondences
1 .
G(s;) = :YfT1(sj) =w;, j=1,...,n, (3)

induces the interpolation problem between n-tuples, (s;) and (w;).
Engineers often suppose that functions are analytic. Thus the inter-
polation problem for engineers can be reduced to Nevanlinna-Pick In-
terpolation Problem for mathematicians. Therefore we can assume
that both preimage and image regions are the unit disk D and G is an

analytic map of D into .



The Nevanlinna-Pick Interpolation Problem is that: Let (z_,-)?_;_'(} be
an n-tuple of distinct points in I and (w; )}‘;& be an n-tuple of points
in D. Let # denotes the class of analytic maps of D into D. Then does

there exist a solution f € % to solve the interpolation

f(zj))=wj, j=0,...,n-17 (4)
G. Pick([9]) and R. Nevanlinna([8]) showed the necessary and sufficient
condition for the existence of such a solution f.

Theorem A (Nevanlinna-Pick, cf. Theorem 2.2 in [5]). For some
positive integer n, let (21,...,2,) be an n-tuple of distinct points in D,
and (wy, ..., wn) be an n-tuple of points in D. Then there exists f € B
satisfying the interpolation

f(zj)=w]~, j=1,2,...,n (5)
if and only if the quadratic form
21— w; Wk
Qn(tr,... ta) = Y ——{—z_ktjtk (6)

jk=1

is non-negative, i.e., Q, > 0. When Q,, > 0 there is a Blaschke product
of degree at most n which solves (5).

The Hermitian matrix P, for (z1,...,2,) and (wy,...,w,), defined
as
1 —w;wg
P, = [—’—_] (7)
B Rl E N (PSP

is called the Pick matrix. The condition Q,, > 0 is equivalent to
that the Pick matrix for (21,...,2,) and (wy,...,w,) is positive semi-

definite, iu other words, all of its eigenvalues are nonunegative real nun-
bers.

In principle, Pick’s theorem determines whether the given Nevanlinna-

Pick interpolation problem has a solution or not. However both the
quadratic form (6) and the Pick matrix (7) are not very easy to calcu-
late. Therefore more explicit conditions are expected in many cases.

Baribeau, Rivard and Wegert showed in [2] an explicit necessary
and sufficient condition for a problem in their example. The problem
is the interpolation between (r,ri, —r, —ri) and (s, —si, —s, 8i) respec-
tively, where 0 < r,s < 1 and i denotes the imaginary unit. Their
simple and beautiful condition is that s < r3. But they obtained their
result by direct calculation, not theoretically.

In this paper, we will shows that the images of a solution to inter-
polations between (re27#/ ");-’;d and (se~2%i/ ");.';(}, where n > 2 and
where 0 < r, s < 1. Before we shows a precise method and results, we
introduce our theorem.

Theorem. Let n > 2 be a given integer and let 0 < r,s < 1 be given
numbers. Set z; = re?™1/™ and w; = se~2"/" for0 < j <n-1.
Then there ezists an analytic map f of D into D which maps zj to wj
for0<j<n-—1ifand onlyif s < r*-1.
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Proof of the theorem is shown in [10].

Remark 1.1. The solution can be given as a Blaschke product of
degree at most n. In this case the boundary of D is mapped onto
itself. Moreover it can also be given as a rational map f of degree at
most n — 1 such that f(D) C D.

Remark 1.2. If s < 7"~! and the solution f for the interpolation
between (re"/") and (r"~'e~%7/") has been known, then f =
(s/r™™=D)f is a solution for the interpolation between (re?"*/") and

(se~274/") and m c D.
2 Construct a solution f,

Let m, denote the Mdbius transformation with respect to a € D as

Z—a

(8)

my(2) := T %,

2.1 reduction

Let z; = m,,_,(2;) and wj = My, _,(w;) for 0 < j < n —2. Since m,

is an automorphism of D and z;s are distinct each other, z; # 0 for 0 <

j < n—2. Then, suppose that we have already known a solution ﬁ,_l to
the interpolation between (2),...,25_5) and (wg/zg,- - - Wh_o/%_3)-
Obviously a function f,(z) = z - f_1(z) is a solution to the interpola-
tion between (2g, ..., 2}, _5,0) and (wy,...,w,_5,0). It follows that

fa(z) =mgl_ o faom., (2) (9)

solves an interpolation between (zo,...,2zn_1) and (wg,...,Wn—-1).
Clearly, a solution to an interpolation between (zp) and (wyp) is
given as a constant map

f1(2) = wo, (10)

as an automorphism

fi(z) = myl omy (2), (11)

or as some holomorphism which is not an automorphism, i.e., which is
contracting with respect to hyperbolic metric.

Hence, we can construct a solution to an interpolation between
any given n-tuples by reduction in theory, if and only if there exists a
solution. This method is shown in [6].

In general a solution is not unique. See [3] when a solution becomes
unique.

2.2 Some examples

We show some examples here. In these figures, the outer circle is the
unit circle, the middle circle is {}z| = r}, where r = 0.8, and the inner
circle is {|z| = s}, where s = r®~1.
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2.2.1 Line correspondency

2.2.2 4-tuples

|z| =1
2| =r

2| =8

This is an example of an interpolation between 4-tuples.

(r,ri, -7, —71) — (8, —8i, —8, 81)

2.2.3 Images of {|z| =1}

Next figures are images of {|z| = r} by a solution to an interpolation
between {r,ri,—r} and {s,—si,—s}. Thease figures are symmetric
with respect to the imaginary axis, but in general images are not sym-

.
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r = 0.99

Next figures are interpolation between {r, rw, rw?} and {s, sw?, sw},
where w is the primitive cubric root of 1.
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In this case, the image of a circle centered at origin is also a circle
centered at origin.

These figures shows that the image of the circle {]z| = r} tends to
the unit circle as r — 1—.
Remark 2.1. If one changes constructing order, then the solution will
be changed. It shows that the solution is not unique even if the degree
is same as n.



An example is shown below. This is the two images of 4-tuples
cases. In both case r = 0.80,s = r?. The differnce between each
cases is only order of points in tuples. However, the solution we obtain
becomes difler.

{ri,-ri,—r,r} > {—si,si,—s,8} {r,—r,ri,—ri} — {s,—3,—si,si}
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