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Abstract

We give a theory $T$ with the strict order property such that for some auto-
morphism $\sigma_{0}$ of a prime model $M_{0}$ of $T$ , the theory

$T+\sigma$ is an automorphism” $+\sigma|M_{0}=\sigma_{0}$
”

is model complete. Note that $T+\sigma$ is an automorphism“ has no model com-
panion if $T$ has the strict order property [3]. This seems to have some re-
semblance with the theory of the rings of Witt Vectors carrying the Frobenius
automorphism [1].

We consider each natural number $n$ as the set $\{0,1, \ldots, n-1\}$ .
Consider a structure $(\Lambda l_{0}, <)$ with

$M_{0}=\{f$ : $narrow n+1|n<\omega,$ $f(i)<i+1$ for $i<n\}$ ,

and $f<g$ if $g$ is a proper extension of $f$ as a map for $f,$ $g\in M_{0}$ .
For each $f\in M_{0}$ with dom $f=n$ , let $f^{s}$ be a map such that

$f^{s}(i)=(f(i)+1)mod (i+1)$

for $i<n$ . Then the map $s:M_{0}arrow M_{0}$ defined by $s(f)=f^{s}$ is an automorphism of
$(M_{0}, <)$ . $\epsilon$ denotes the least element of $M_{0}$ (i.e., $\epsilon$ is the empty sequence). Let $<_{1}$ be
a definable relation on $M_{0}$ defined by the formula

$x<y\wedge\forall z\neg(x<z<y)$ .

Let $T_{0}$ be the theory of $(M_{0}, <, <_{1})$ . Note that for any model $\Lambda\prime I$ of $T_{0},$ $ac1_{M}(\emptyset)=A/I_{0}$ .
The root (the least element) of $\lrcorner l/I_{0}$ will be denoted by $\epsilon$ .

数理解析研究所講究録
第 1718巻 2010年 52-57 52



Proposition 1. Let $M$ be a model of $T_{0}$ . Then the following sentenses are valid in
$M$ :

(1) $\forall x\exists y$ $x<_{1}y$ .

(2) $\forall x,$ $y$ $x<yarrow\exists zx<_{1}z\leq y$ .

(3) $\forall x,$ $y$ $x<yarrow\exists zx\leq z<_{1}y$ .

(4) $\forall x,$ $y,$ $z$ $x,$ $y\leq zarrow x<y\vee x=y\vee y<x$ .

(5) $\forall x,$ $y\exists u,$ $v$ $x\not\leq yarrow u<_{1}v\leq x\wedge u\leq y\wedge v\not\leq y$ .

(6) Let $n$ be any natuml number. If $x<y$ and $x$ has (at least) $n$ childs then $y$ has
(at least) $n+1$ childs.

Theorem 2. The theory

$T_{0}\cup$ { $\sigma$ is $a<$ -automorphism extending $s$ }

in the language $\{<, <1, \sigma\}\cup M_{0}$ has a model companion. In fact, it is model complete.

We fix models $M\subset M’$ of $T$ and assume that $\sigma$ is a $<$-automorphism of $M’$

extending $s$ and $l1/I$ is $\sigma$-invariant.

Lemma 3. If $a,$ $b\in l1:I$ then $\inf_{M}\{a, b\}=\inf_{\Lambda I’}\{a, b\}$ .

Proof. Let $c= \inf_{M}\{a, b\}$ . If $c=a$ or $c=b$ then there is nothing to prove.
Suppose $c<a,$ $b$ . Then we can choose $c_{a},$ $c_{b}\in M$ such that $c<_{1}c_{a}\leq a$ ,

$c<_{J}c_{b}\leq b$ , and $c_{a}$ is incomparable with $c_{b}$ . Now, we show that $c= \inf_{M’}\{a, b\}$ . Let
$d\in M’-\Lambda I$ be such that $d<a,$ $b$ . Then $d$ is comparable with both $c_{a}$ and $c_{b}$ . Only
the case $d<c_{a},$ $c_{b}$ is possible. Therefore, $d<c$ . $\square$

Definition 4. Suppose $a,$ $b\in M^{f}-M$ . We say that $a$ and $b$ are dependent over $M$

if there is $c\in M’-M$ such that $c\leq a$ and $c\leq b$ . We call such $c$ a witness of the
dependence. $a$ and $b$ are dependent over $M$ if and only if $\inf\{a, b\}\in M’-M$ .

We say that $a$ and $b$ are independent over $M$ if $a$ and $b$ are not dependent over
$M$ .

Lemma 5. The dependence over $M$ is an equivalence relation on $M’-M$ .

Proof. The reflexivity and the symmetry are trivial. We show the transitivity. Sup-
pose $b$ and $c$ are dependent over $\Lambda I$ with a witness $u$ , and $c$ and $d$ are dependent over
$M$ with a witness $v$ . Since $u\leq c$ and $v\leq c,$ $u$ and $v$ are comparable. Without loss
of generality, we can assume that $u\leq v$ . Then $u\leq v\leq d$ . Therefore, $b$ and $d$ are
dependent over $M$ with a witness $u$ . 口

Lemma 6. If $b\in M’-M_{0}$ then $b$ and $\sigma^{rn}b$ are independent over $M_{0}$ for any integer
$m\neq 0$ .
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Proof. Let $m\neq 0$ be an integer and $b\in M’-M$ . Choose $f<b$ such that $f\in M_{0}$

and dom $f\supset m$ . Then $f$ and $s^{m}f$ are imcomparable and also $s^{m}f<\sigma^{m}b$ .
Suppose there is $a\in M’-M_{0}$ such that $a\leq b$ and $a\leq\sigma^{?n}b$ . $f$ and $a$ are

comparable by $f<b$ and $a\leq b$ . Since $f$ has a finite distance from the root, we have
$f<a$ . Similarly, $s^{m}f<a$ . Therefore, $f$ and $s^{m}f$ are comparable. A contradiction.

口

Corollary 7. If $a,$ $b\in M’-M$ are dependent over $M$ then $a$ and $\sigma^{m}b$ are independent
over $M$ for any integer $m\neq 0$ .

Proof. Suppose $a,$ $b\in M’-M$ are dependent over $M$ and $a$ and $\sigma^{m}b$ are dependent
over $M$ for some integer $m\neq 0$ . Suppose $c\leq a,$ $c\leq b$ with $c\in M^{f}-M$ , and $d\leq a$ ,
$d\leq\sigma^{m}b$ with $d\in M’-M$ .

Since $c,$ $d\leq a,$ $c$ and $d$ are comparable. Therefore, $\min\{c, d\}\leq\inf\{b, \sigma^{m}b\}$ , and
hence $\inf\{b, \sigma^{m}b\}\in M^{f}-M$ contradicting Lemma 6. $\square$

Definition 8. Suppose $a,$ $b\in M’-M$ . We say that $a$ and $b$ are quasi-connected over
$M$ if there is $c\in M’$ such that

(1) $M’\models c\leq a,$ $b$ ,

(2) $M’\models c\leq y\leq a$ implies $y\in M’-M$ , and

(3) $M’\models c\leq y\leq b$ implies $y\in M’-M$ .

We call $c$ a witness of this property. Note that if $a$ and $b$ are quasi-connected over $\Lambda l$

then it is dependent over $M$ .

Lemma 9. The quasi-connectedness over $M$ is an equivalence relation on $M^{f}-M$ .

Proof. The reflexivity and the symmetry are trivial. We show the transitivity. Sup-
pose $b$ and $c$ are quasi-connected over $\Lambda I$ with a witness $u$ and $c$ and $d$ are quasi-
connected over $M$ with a witness $v$ . Since $u\leq c$ and $v\leq c,$ $u$ and $v$ are comparable.
Without loss of generality, we can assume that $u\leq v$ . We show that $u$ is a witness
for quasi-connectedness of $b$ and $d$ over $M$ . If $u\leq w\leq b$ then $w\in M^{f}-\Lambda I$ since $u$

is a witness for quasi-connectedness of $b$ and $c$ .
Suppose $u\leq w\leq d$ . Then $w$ and $v$ are comparable. If $w\leq v$ then $u\leq w\leq c$ and

thus $w\in M’-M$ . If $v<w$ then $v\leq w\leq d$ and thus $w\in M’$ –M. 口

Lemma 10. Suppose that $B$ is a finite subset of $\Lambda l’-M$ quasi-connected over $M$ ,
$a_{1},$ $\ldots,$

$a_{m}\in M$ and for each $a_{i}$ there is $b_{i}\in B$ such that $b_{i}<a_{i}$ . Then there is $b\in B$

such that $b< \inf\{a_{1}, \ldots, a_{m}\}$ .

Proof. Let $a= \inf\{a_{1}, \ldots, a_{m}\}$ in $M$ . Then $a= \inf\{a_{1}, \ldots, a_{?n}\}$ in $M’$ by Lemma 3.
Let $b= \inf B$ in $M’$ . We have $b\in M’-M$ because $B$ is quasi-connected over $M$ .

Since $b$ is a lower bound for $\{a_{1}, \ldots, a_{rn}\}$ , we have $b\leq a$ . Choose $b_{1}\in B$ such that
$b_{1}<a_{1}$ . Then $b_{1}$ and $a$ are comparable. If $a\leq b_{1}$ then $b\leq a\leq b_{1}$ , but this cannot
happen since there is no element $y\in M$ such that $b\leq y\leq b_{1}$ . Therefore, $b_{1}<a$ . $\square$
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Lemma 11. (1) Suppose $M’\models a<_{1}b$ with $a\in M$ and $b\in M’$ –M. Then there
is no $a’\in M$ such that $\Lambda I’\models b<a’$ .

(2) If $b\in M’-M$ then there is no $a\in M$ such that $M’\models b<_{1}a$ .

Proof. (1) Suppose $M’\models a<_{1}b<a’$ with $a,$ $a’\in M$ and $b\in$ $\Lambda$ノ I’ $-M$ . Then there
must be $a”\in M$ such that $M\models a<_{1}a’’<a^{f}$ , and thus $M’\models a<_{1}a’’<a’$ . But this
cannot happen because $b\neq a^{\prime f}$ .

(2) Suppose there is $b\in M’-M$ and $a\in M$ such that $M’\models b<_{1}a$ . Since
$M^{f}\models\epsilon<a$ , we have $M\models\epsilon<a$ . Therefore, $M\models a’<_{1}$ $a$ for some $a’\in M$ and thus
$l|_{i}I’\models a^{f}<_{1}a$ . But this cannot happen because $b\neq a^{f}$ . $\square$

Definition I2. Suppose $C$ and $D$ are subsets of $\Lambda/I’$ . We write $C<D$ if there is
$c\in C$ such that $c\leq d$ for any $d\in D$ .

Definition 13. A finite subset $X$ of $M^{f}-1\downarrow l$ is called canonical if the following
conditions are satisfied:

(1) For any $x,$ $y\in X$ , whenever $x$ and $\sigma^{\prime n}(y)$ with $m\in \mathbb{Z}$ are dependent over $M$

then $m=0$ ;

(2) if $x,$ $y\in X$ are dependent over $M$ then there is $z\in X$ witnessing the dependence;
and

(3) if $x,$ $y\in X$ are quasi-connected over $M$ then there is $z\in X$ witnessing the
quasi-connectedness.

Definition 14. Let $B$ be a subset of $M’$ . $\langle B\rangle_{\sigma}$ denotes the set $\{\sigma^{m}(b)|b\in B,$ $m\in$

$\mathbb{Z}\}$ .

Lemma 15. For any finite subset $X\subset M^{f}-M$ there is a canonical subset $Z\subset$

$M’-M$ such that $X\subset\langle Z\rangle_{\sigma}$ .

Proof. We prove the statement by induction on the number of elements in $X$ . It
is trivial if $|X|=0$ . Suppose $X=\{a\}\cup X’$ with $|X’|<|X|$ . By the induction
hypothesis, there is a cononical subset $Y’$ of $M’-M$ such that $X’\subset\langle Y^{f}\rangle_{\sigma}$ .

We split the proof into the following cases.
Case 1. $\sigma^{m}a$ and $b$ are quasi-connected over $lII$ for some $b\in Y’$ and an integer $m$ .
Let $b_{0}$ be the least element in $Y^{f}$ which is quasi-connected to $\sigma^{m}a$ over $M$ . Let

$c= \inf\{\sigma^{m}a, b_{0}\}$ . We claim that $Y=Y’\cup\{\sigma^{m}a, c\}$ is canonical and has the desired
property.

Let $C_{b_{0}}$ be the quasi-connected component of $Y$ containing $b_{0}$ and $D_{b_{0}}$ be the
dependent component of $Y$ containing $b_{0}$ . It is easy to see that $\{c\}\cup C_{b_{0}}$ is a tree.
$\{c\}\cup D_{b_{0}}$ is also a tree. Let $d$ be the least element of $D_{b_{0}}$ . Since $c\leq b_{0}$ and $d\leq b_{0},$ $c$

and $d$ are comparable. Therefore, $\{c\}\cup D_{b_{0}}$ is a tree.
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Now, supppose that $\sigma^{m+l}a$ and $b\in Y’$ are dependent over $M$ . Then $\sigma^{l}b_{0}$ and
$\sigma^{m+l}a$ are dependent over $M$ and thus $\sigma^{l}b_{0}$ and $b\in Y’$ are dependent over $M$ . Since
$Y^{f}$ is canonical, we have $l=0$ .

Case 2. Case 1 does not hold but $\sigma^{m}a$ and $b$ are dependent over $M$ for some
$b\in Y’$ and an integer $m$ .

Let $b_{0}$ be the least element in $Y^{f}$ which is dependent to $\sigma^{?n}a$ over $M$ . Choose a
witness $c\in M’-M$ of dependence of $b_{0}$ and $\sigma^{?n}a$ . $Y=Y’\cup\{\sigma^{m}a, c\}$ is canonical
and has the desired property. The argument is the same as that for Case 1.

Case 3. There is no integer $m$ and $b\in Y^{f}$ such that $\sigma^{m}a$ and $b$ are dependent over
$M$ . In this case, $Y=Y^{f}\cup\{a\}$ is canonical and has the desired property. $\square$

Lemma 16. Suppose $\{t_{1}, \ldots, t_{n}\}\subset M’-M$ is canonical. Then any formula in
qftp$\{<,\sigma\}(t_{1}, \ldots, t_{n}/M)$ is realised in Af.

Proof. Suppose $\{t_{1}, \ldots, t_{n}\}\subset M’-M$ is canonical. Let $t$ be the tuple $(t_{1}, \cdots, t_{n})$

and $\varphi(x)$ a formula with $x=(x_{1}, \ldots, x_{n})$ belonging to qftp$\{<,<1,\sigma\}(t/M)$ . Let $N$ be
a natural number such that if $\sigma^{m}(x_{i})$ occurs in $\varphi(x)$ then $m\leq N$ . Let $A$ be a finite
subset of $M$ such that $\varphi(x)$ is over $A$ .

By adding finitely many points of $M$ to $A$ if necessary, we can assume the following:

$\bullet$ If $C$ is a quasi-connected component of $t$ then $\{a\}<C$ for some $a\in A$ ;

$\bullet$ if $C$ and C’ are two quasi-connected components of $t$ with $C<C’$ then there is
$a\in A$ such that $C<\{a\}<C’$ ;

$\bullet$ if $C$ is a quasi-connected component of $t$ and there is $a\in M$ and $c\in M’-M$

quasi-connected to $C$ over $M$ such that $a<_{1}c$ then $a\in A$ and $c\in C$ ;

$\bullet$ if $C$ is a quasi-connected component of $t$ such that $\{a\in A|C<\{a\}\}$ is
non-empty then $\inf\{a\in A|C<\{a\}\}\in A$ ;

$\bullet$ if $a\in A$ is comparable with $t_{i}$ for some $i$ then $\sigma^{m}(a)\in A$ for $m\leq N$ ; and

$\bullet$ if $a\in A$ is comparable with $\sigma^{m}(t_{i})$ for some $i$ and a natural number $m\leq N$

then $\sigma^{-m}(a)\in A$ .

We can assume that $t=C_{1^{\wedge\wedge}}\cdots C_{l}$ where each $C_{i}$ is an enumeration of a quasi-
connected component of $t$ .

Let $a_{i}$ be the maximum element in $A$ such that $\{a_{i}\}<C_{i}$ and $b_{i}$ be the minimum
element in $A$ such that $C_{i}<\{b_{i}\}$ . Such $a_{i}$ exists by the assumption on $A$ and such $b_{i}$

exists if there is $b\in A$ such that $C_{i}<\{b\}$ by Lemma 10 and the assumption on $A$ .
Suppose that there are infinitely many elements $d$ of $l1I$ connected to $a_{i}$ such that

$a_{i}<d<C_{i}$ . Choose $a_{i}’\in M$ connected to $a_{i}$ with the following properties:

$\bullet$ If $x\in A$ and $M\models\sigma^{m}b_{i}\not\leq x$ with $0\leq m\leq N$ then $M\models\sigma^{m}a_{i}\not\leq x$ ; and

$\bullet$ if $C’$ is a quasi-connected component of $t$ such that $C_{i}\neq C’$ then $\{a_{i}’\}\neq C’$ .
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In the case that $b_{i}$ exists, choose a tuple $C_{i}’$ from $M$ such that qftp$\{<,<1\}(C_{i}/a_{i}’, b_{i})=$

$qftp_{\{<,<\}}1(C_{i}’/a_{i}^{f}, b_{i})$ . Then we have qftp$\{<,<1\}(\sigma^{m}C_{i}/A)=$ qftp$\{<,<1\}(\sigma^{m}C_{i}’/A)$ for
$m=0,1,$ . . . , $N$ .

In the case that there is no such $b_{i}$ for $C_{i}$ , choose a tuple $C_{i}’$ from $M$ such
that qftp$\{<,<1\}(C_{i}/a_{i}’)=$ qftp$\{<,<1\}(C_{i}’/a_{i}’)$ . Then we have qftp$\{<,<1\}(\sigma^{m}C_{i}/A)=$

qftp$\{<,<1\}(\sigma^{m}C_{i}^{f}/A)$ for $m=0,1,$ $\ldots,$
$N$ .

Suppose $C_{i_{1}},$
$\ldots$ , $C_{i_{k}}$ are quasi-connected and $a<_{1} \inf C_{i_{j}}$ for $j=1,$ $\ldots,$

$k$ . In
this case, there is no $x\in A$ such that $C_{i_{j}}<\{x\}$ by Lemma 11. We can choose
$c_{i_{j}}’\in M-A$ for $j=1,$ $\ldots$ , $k$ which are pairwise distinct such that$\cdot$

$M\models a_{i}<_{1}c_{i_{j}}’$

and $M\models\sigma^{m}c_{i_{j}}’\not\leq x$ for $x\in A$ and $m$ with $0\leq m\leq N$ . Choose a tuple $C_{i_{j}}’$ for
$j=1,$ $\ldots,$

$k$ from $M$ such that qftp$\{<,<1\}(C_{i_{j}}, \inf C_{i_{j}})=$ qftp $\{<,<1\}(C_{i_{j}}’, c_{i_{J}}^{f})$ . Then
qftp$\{<,<1\}(C_{i_{j}}/A)=$ qftp$\{<,<1\}(C_{i_{j}}^{f}/A)$ .

Let $t’=C_{1}^{f\wedge}C_{l}’$ .

Claim 1. qftp$\{<,<1\}(t^{\wedge}\sigma t^{\wedge}\sigma^{2}t^{\wedge}\sigma^{N}t/A)=$ qftp$\{<,<1\}(t^{J^{\wedge}}\sigma t^{\prime\wedge}\sigma^{2}t^{;\wedge}\sigma^{N}t’/A)$

口

Proof of Theorem 2. We show that $(M, <, \sigma|M)$ is existentially closed in $(M’, <, \sigma)$ .
Choose a finite tuple $(t_{1}, \ldots, t_{n})$ from $M’-M$ and let $\varphi(x_{1}, \ldots, x_{n})$ be a quantifier-
free formula of $\{<, \sigma\}\cup M$ realised by $(t_{1}, \ldots, t_{n})$ . By Lemma 15, we can choose
$t_{1}’,$

$\ldots,$ $t_{n}’\in M’-M$ such that $t_{i}=\sigma^{k_{i}}(t_{i}’)$ for each $i$ with some $k_{i}\geq 0$ and the set
$\{t_{1}’, \ldots, t_{n}’\}$ is canonical. We have

$M’\models\varphi(\sigma^{k_{1}}(t_{1}’), \ldots, \sigma^{k_{n}}(t_{n}^{f}))$ .

By Lemma 16, we can choose $t_{1}’’,$

$\ldots,$
$t_{n}’’\in M$ such that

$M\models\varphi(\sigma^{k_{1}}(t_{1}’’), \ldots, \sigma^{k_{n}}(t_{n}’’))$.

Therefore, $\varphi(x_{1}, \ldots, x_{n})$ is realised in M. 口
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