On generic automorphisms of a tree structure

神戸大学大学院システム情報学研究科

桔梗 宏孝 (Hirotaka Kikyo) Graduate School of System Informatics, Kobe University

筑波大学大学院数理物質科学研究科 坪井 明人 (Akito Tsuboi) Graduate School of Pure and Applied Sciences University of Tsukuba

Abstract

We give a theory T with the strict order property such that for some automorphism σ_0 of a prime model M_0 of T, the theory

 $T + "\sigma$ is an automorphism" + " $\sigma | M_0 = \sigma_0$ "

is model complete. Note that $T + \sigma$ is an automorphism" has no model companion if T has the strict order property [3]. This seems to have some resemblance with the theory of the rings of Witt Vectors carrying the Frobenius automorphism [1].

We consider each natural number n as the set $\{0, 1, \ldots, n-1\}$. Consider a structure $(M_0, <)$ with

$$M_0 = \{ f : n \to n+1 \mid n < \omega, \ f(i) < i+1 \text{ for } i < n \},\$$

and f < g if g is a proper extension of f as a map for $f, g \in M_0$.

For each $f \in M_0$ with dom f = n, let f^s be a map such that

$$f^{s}(i) = (f(i) + 1) \mod (i + 1)$$

for i < n. Then the map $s : M_0 \to M_0$ defined by $s(f) = f^s$ is an automorphism of $(M_0, <)$. ϵ denotes the least element of M_0 (i.e., ϵ is the empty sequence). Let $<_1$ be a definable relation on M_0 defined by the formula

$$x < y \land \forall z \neg (x < z < y).$$

Let T_0 be the theory of $(M_0, <, <_1)$. Note that for any model M of T_0 , $\operatorname{acl}_M(\emptyset) = M_0$. The root (the least element) of M_0 will be denoted by ϵ .

- (1) $\forall x \exists y \quad x <_1 y.$
- (2) $\forall x, y \quad x < y \rightarrow \exists z \ x <_1 z \le y.$
- (3) $\forall x, y \quad x < y \rightarrow \exists z \ x \leq z <_1 y.$
- (4) $\forall x, y, z \quad x, y \leq z \rightarrow x < y \lor x = y \lor y < x.$
- (5) $\forall x, y \exists u, v \quad x \not\leq y \rightarrow u <_1 v \leq x \land u \leq y \land v \not\leq y.$
- (6) Let n be any natural number. If x < y and x has (at least) n childs then y has (at least) n + 1 childs.

Theorem 2. The theory

 $T_0 \cup \{\sigma \text{ is } a < -automorphism extending } s\}$

in the language $\{<, <_1, \sigma\} \cup M_0$ has a model companion. In fact, it is model complete.

We fix models $M \subset M'$ of T and assume that σ is a <-automorphism of M' extending s and M is σ -invariant.

Lemma 3. If $a, b \in M$ then $\inf_M \{a, b\} = \inf_{M'} \{a, b\}$.

Proof. Let $c = \inf_M \{a, b\}$. If c = a or c = b then there is nothing to prove.

Suppose c < a, b. Then we can choose $c_a, c_b \in M$ such that $c <_1 c_a \leq a$, $c <_1 c_b \leq b$, and c_a is incomparable with c_b . Now, we show that $c = \inf_{M'} \{a, b\}$. Let $d \in M' - M$ be such that d < a, b. Then d is comparable with both c_a and c_b . Only the case $d < c_a, c_b$ is possible. Therefore, d < c.

Definition 4. Suppose $a, b \in M' - M$. We say that a and b are dependent over M if there is $c \in M' - M$ such that $c \leq a$ and $c \leq b$. We call such c a witness of the dependence. a and b are dependent over M if and only if $\{a, b\} \in M' - M$.

We say that a and b are independent over M if a and b are not dependent over M.

Lemma 5. The dependence over M is an equivalence relation on M' - M.

Proof. The reflexivity and the symmetry are trivial. We show the transitivity. Suppose b and c are dependent over M with a witness u, and c and d are dependent over M with a witness v. Since $u \leq c$ and $v \leq c$, u and v are comparable. Without loss of generality, we can assume that $u \leq v$. Then $u \leq v \leq d$. Therefore, b and d are dependent over M with a witness u.

Lemma 6. If $b \in M' - M_0$ then b and $\sigma^m b$ are independent over M_0 for any integer $m \neq 0$.

Proof. Let $m \neq 0$ be an integer and $b \in M' - M$. Choose f < b such that $f \in M_0$ and dom $f \supset m$. Then f and $s^m f$ are incomparable and also $s^m f < \sigma^m b$.

Suppose there is $a \in M' - M_0$ such that $a \leq b$ and $a \leq \sigma^m b$. f and a are comparable by f < b and $a \leq b$. Since f has a finite distance from the root, we have f < a. Similarly, $s^m f < a$. Therefore, f and $s^m f$ are comparable. A contradiction.

Corollary 7. If $a, b \in M' - M$ are dependent over M then a and $\sigma^m b$ are independent over M for any integer $m \neq 0$.

Proof. Suppose $a, b \in M' - M$ are dependent over M and a and $\sigma^m b$ are dependent over M for some integer $m \neq 0$. Suppose $c \leq a, c \leq b$ with $c \in M' - M$, and $d \leq a$, $d \leq \sigma^m b$ with $d \in M' - M$.

Since $c, d \leq a, c$ and d are comparable. Therefore, $\min\{c, d\} \leq \inf\{b, \sigma^m b\}$, and hence $\inf\{b, \sigma^m b\} \in M' - M$ contradicting Lemma 6.

Definition 8. Suppose $a, b \in M' - M$. We say that a and b are quasi-connected over M if there is $c \in M'$ such that

- (1) $M' \models c \leq a, b,$
- (2) $M' \models c \le y \le a$ implies $y \in M' M$, and
- (3) $M' \models c \le y \le b$ implies $y \in M' M$.

We call c a witness of this property. Note that if a and b are quasi-connected over M then it is dependent over M.

Lemma 9. The quasi-connectedness over M is an equivalence relation on M' - M.

Proof. The reflexivity and the symmetry are trivial. We show the transitivity. Suppose b and c are quasi-connected over M with a witness u and c and d are quasi-connected over M with a witness v. Since $u \leq c$ and $v \leq c$, u and v are comparable. Without loss of generality, we can assume that $u \leq v$. We show that u is a witness for quasi-connectedness of b and d over M. If $u \leq w \leq b$ then $w \in M' - M$ since u is a witness for quasi-connectedness of b and c.

Suppose $u \le w \le d$. Then w and v are comparable. If $w \le v$ then $u \le w \le c$ and thus $w \in M' - M$. If v < w then $v \le w \le d$ and thus $w \in M' - M$.

Lemma 10. Suppose that B is a finite subset of M' - M quasi-connected over M, $a_1, \ldots, a_m \in M$ and for each a_i there is $b_i \in B$ such that $b_i < a_i$. Then there is $b \in B$ such that $b < \inf\{a_1, \ldots, a_m\}$.

Proof. Let $a = \inf\{a_1, \ldots, a_m\}$ in M. Then $a = \inf\{a_1, \ldots, a_m\}$ in M' by Lemma 3. Let $b = \inf B$ in M'. We have $b \in M' - M$ because B is quasi-connected over M. Since b is a lower bound for $\{a_1, \ldots, a_m\}$, we have $b \leq a$. Choose $b_1 \in B$ such that $b_1 < a_1$. Then b_1 and a are comparable. If $a \leq b_1$ then $b \leq a \leq b_1$, but this cannot happen since there is no element $y \in M$ such that $b \leq y \leq b_1$. Therefore, $b_1 < a$. \Box

- **Lemma 11.** (1) Suppose $M' \models a <_1 b$ with $a \in M$ and $b \in M' M$. Then there is no $a' \in M$ such that $M' \models b < a'$.
 - (2) If $b \in M' M$ then there is no $a \in M$ such that $M' \models b <_1 a$.

Proof. (1) Suppose $M' \models a <_1 b < a'$ with $a, a' \in M$ and $b \in M' - M$. Then there must be $a'' \in M$ such that $M \models a <_1 a'' < a'$, and thus $M' \models a <_1 a'' < a'$. But this cannot happen because $b \neq a''$.

(2) Suppose there is $b \in M' - M$ and $a \in M$ such that $M' \models b <_1 a$. Since $M' \models \epsilon < a$, we have $M \models \epsilon < a$. Therefore, $M \models a' <_1 a$ for some $a' \in M$ and thus $M' \models a' <_1 a$. But this cannot happen because $b \neq a'$.

Definition 12. Suppose C and D are subsets of M'. We write C < D if there is $c \in C$ such that $c \leq d$ for any $d \in D$.

Definition 13. A finite subset X of M' - M is called *canonical* if the following conditions are satisfied:

- (1) For any $x, y \in X$, whenever x and $\sigma^m(y)$ with $m \in \mathbb{Z}$ are dependent over M then m = 0;
- (2) if $x, y \in X$ are dependent over M then there is $z \in X$ witnessing the dependence; and
- (3) if $x, y \in X$ are quasi-connected over M then there is $z \in X$ witnessing the quasi-connectedness.

Definition 14. Let B be a subset of M'. $\langle B \rangle_{\sigma}$ denotes the set $\{\sigma^m(b) \mid b \in B, m \in \mathbb{Z}\}$.

Lemma 15. For any finite subset $X \subset M' - M$ there is a canonical subset $Z \subset M' - M$ such that $X \subset \langle Z \rangle_{\sigma}$.

Proof. We prove the statement by induction on the number of elements in X. It is trivial if |X| = 0. Suppose $X = \{a\} \cup X'$ with |X'| < |X|. By the induction hypothesis, there is a cononical subset Y' of M' - M such that $X' \subset \langle Y' \rangle_{\sigma}$.

We split the proof into the following cases.

Case 1. $\sigma^m a$ and b are quasi-connected over M for some $b \in Y'$ and an integer m. Let b_0 be the least element in Y' which is quasi-connected to $\sigma^m a$ over M. Let $c = \inf\{\sigma^m a, b_0\}$. We claim that $Y = Y' \cup \{\sigma^m a, c\}$ is canonical and has the desired property.

Let C_{b_0} be the quasi-connected component of Y containing b_0 and D_{b_0} be the dependent component of Y containing b_0 . It is easy to see that $\{c\} \cup C_{b_0}$ is a tree. $\{c\} \cup D_{b_0}$ is also a tree. Let d be the least element of D_{b_0} . Since $c \leq b_0$ and $d \leq b_0$, c and d are comparable. Therefore, $\{c\} \cup D_{b_0}$ is a tree. Now, suppose that $\sigma^{m+l}a$ and $b \in Y'$ are dependent over M. Then $\sigma^l b_0$ and $\sigma^{m+l}a$ are dependent over M and thus $\sigma^l b_0$ and $b \in Y'$ are dependent over M. Since Y' is canonical, we have l = 0.

Case 2. Case 1 does not hold but $\sigma^m a$ and b are dependent over M for some $b \in Y'$ and an integer m.

Let b_0 be the least element in Y' which is dependent to $\sigma^m a$ over M. Choose a witness $c \in M' - M$ of dependence of b_0 and $\sigma^m a$. $Y = Y' \cup \{\sigma^m a, c\}$ is canonical and has the desired property. The argument is the same as that for Case 1.

Case 3. There is no integer m and $b \in Y'$ such that $\sigma^m a$ and b are dependent over M. In this case, $Y = Y' \cup \{a\}$ is canonical and has the desired property. \Box

Lemma 16. Suppose $\{t_1, \ldots, t_n\} \subset M' - M$ is canonical. Then any formula in $qftp_{\{<,\sigma\}}(t_1, \ldots, t_n/M)$ is realised in M.

Proof. Suppose $\{t_1, \ldots, t_n\} \subset M' - M$ is canonical. Let t be the tuple (t_1, \cdots, t_n) and $\varphi(x)$ a formula with $x = (x_1, \ldots, x_n)$ belonging to $\operatorname{qftp}_{\{<,<_1,\sigma\}}(t/M)$. Let N be a natural number such that if $\sigma^m(x_i)$ occurs in $\varphi(x)$ then $m \leq N$. Let A be a finite subset of M such that $\varphi(x)$ is over A.

By adding finitely many points of M to A if necessary, we can assume the following:

- If C is a quasi-connected component of t then $\{a\} < C$ for some $a \in A$;
- if C and C' are two quasi-connected components of t with C < C' then there is $a \in A$ such that $C < \{a\} < C'$;
- if C is a quasi-connected component of t and there is $a \in M$ and $c \in M' M$ quasi-connected to C over M such that $a <_1 c$ then $a \in A$ and $c \in C$;
- if C is a quasi-connected component of t such that $\{a \in A \mid C < \{a\}\}$ is non-empty then $\inf\{a \in A \mid C < \{a\}\} \in A$;
- if $a \in A$ is comparable with t_i for some *i* then $\sigma^m(a) \in A$ for $m \leq N$; and
- if $a \in A$ is comparable with $\sigma^m(t_i)$ for some *i* and a natural number $m \leq N$ then $\sigma^{-m}(a) \in A$.

We can assume that $t = C_1 \cdot \cdot \cdot \cdot C_l$ where each C_i is an enumeration of a quasiconnected component of t.

Let a_i be the maximum element in A such that $\{a_i\} < C_i$ and b_i be the minimum element in A such that $C_i < \{b_i\}$. Such a_i exists by the assumption on A and such b_i exists if there is $b \in A$ such that $C_i < \{b\}$ by Lemma 10 and the assumption on A.

Suppose that there are infinitely many elements d of M connected to a_i such that $a_i < d < C_i$. Choose $a'_i \in M$ connected to a_i with the following properties:

- If $x \in A$ and $M \models \sigma^m b_i \leq x$ with $0 \leq m \leq N$ then $M \models \sigma^m a_i \leq x$; and
- if C' is a quasi-connected component of t such that $C_i \not\leq C'$ then $\{a'_i\} \not\leq C'$.

In the case that b_i exists, choose a tuple C'_i from M such that $qftp_{\{<,<_1\}}(C_i/a'_i, b_i) = qftp_{\{<,<_1\}}(C'_i/a'_i, b_i)$. Then we have $qftp_{\{<,<_1\}}(\sigma^m C_i/A) = qftp_{\{<,<_1\}}(\sigma^m C'_i/A)$ for $m = 0, 1, \ldots, N$.

In the case that there is no such b_i for C_i , choose a tuple C'_i from M such that $\operatorname{qftp}_{\{<,<_1\}}(C_i/a'_i) = \operatorname{qftp}_{\{<,<_1\}}(C'_i/a'_i)$. Then we have $\operatorname{qftp}_{\{<,<_1\}}(\sigma^m C_i/A) = \operatorname{qftp}_{\{<,<_1\}}(\sigma^m C'_i/A)$ for $m = 0, 1, \ldots, N$.

Suppose C_{i_1}, \ldots, C_{i_k} are quasi-connected and $a <_1$ inf C_{i_j} for $j = 1, \ldots, k$. In this case, there is no $x \in A$ such that $C_{i_j} < \{x\}$ by Lemma 11. We can choose $c'_{i_j} \in M - A$ for $j = 1, \ldots, k$ which are pairwise distinct such that $M \models a_i <_1 c'_{i_j}$ and $M \models \sigma^m c'_{i_j} \not\leq x$ for $x \in A$ and m with $0 \leq m \leq N$. Choose a tuple C'_{i_j} for $j = 1, \ldots, k$ from M such that $\operatorname{qftp}_{\{<, <_1\}}(C_{i_j}, \inf C_{i_j}) = \operatorname{qftp}_{\{<, <_1\}}(C'_{i_j}, c'_{i_j})$. Then $\operatorname{qftp}_{\{<, <_1\}}(C_{i_j}/A) = \operatorname{qftp}_{\{<, <_1\}}(C'_{i_j}/A)$. Let $t' = C'_1 \cdots C'_l$.

Claim 1.
$$\operatorname{qftp}_{\{<,<_1\}}(t^{\circ}\sigma t^{\circ}\sigma^2 t^{\circ}\dots^{\circ}\sigma^N t/A) = \operatorname{qftp}_{\{<,<_1\}}(t^{\prime}\sigma t^{\prime}\sigma^2 t^{\prime}\dots^{\circ}\sigma^N t^{\prime}/A)$$

Proof of Theorem 2. We show that $(M, <, \sigma | M)$ is existentially closed in $(M', <, \sigma)$. Choose a finite tuple (t_1, \ldots, t_n) from M' - M and let $\varphi(x_1, \ldots, x_n)$ be a quantifierfree formula of $\{<, \sigma\} \cup M$ realised by (t_1, \ldots, t_n) . By Lemma 15, we can choose $t'_1, \ldots, t'_n \in M' - M$ such that $t_i = \sigma^{k_i}(t'_i)$ for each *i* with some $k_i \ge 0$ and the set $\{t'_1, \ldots, t'_n\}$ is canonical. We have

$$M' \models \varphi(\sigma^{k_1}(t'_1), \dots, \sigma^{k_n}(t'_n)).$$

By Lemma 16, we can choose $t''_1, \ldots, t''_n \in M$ such that

$$M \models \varphi(\sigma^{k_1}(t_1''), \dots, \sigma^{k_n}(t_n'')).$$

Therefore, $\varphi(x_1, \ldots, x_n)$ is realised in M.

References

- [1] Luc Bélair, Angus Macintyre, and Thomas Scanlon, Model theory of the Frobenius on the Witt vectors, American Journal of Mathematics, vol. **129** (2007), 665–721.
- [2] Hirotaka Kikyo, Model companions of theories with an automorphism, Journal of Symbolic Logic, vol. **65**, No. 3 (2000), 1215–1222.
- [3] Hirotaka Kikyo and Saharon Shelah, The strict order property and generic automorphisms, Journal of Symbolic Logic, vol. **67**, No. 1 (2002), 124–126.