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EQUIVARIANT DEFINABLE MORSE FUNCTIONS ON DEFINABLE
C*G MANIFOLDS

TOMOHIRO KAWAKAMI AND HIROSHI TANAKA

ABSTRACT. Let G be a compact affine definable C*° group, X a compact definable
C°°G manifold and f an equivariant definable Morse function on X. We prove that if
f has no critical value in [a,b], then f~!((—00,a]) is definably C*G diffeomorphic to
f~1((—00,b]). Moreover we prove that if 7 is a positive integer greater than 1, then the
set of equivariant definable Morse functions on X whose critical loci are finite unions of
nondegenerate critical orbits is dense in the set of G invariant C*° functions on X with
respect to the C™ Whitney topology.

1. INTRODUCTION

In this paper we consider an equivariant definable C*° version of Morse theory. We °
refer the reader to the book by J. Milnor [16] for Morse theory on compact C* manifolds.
Its equivariant versions are studied in G. Wasserman [21], K.H. Mayer [15], M. Datta and
N. Pandey [1], and its definable C" versions are considered in T.L. Loi [14], Y. Peterzil
and S. Starchenko [17] when 2 < r < 0.

Let M = (R, +,-,<,€%,...) be an exponential o-minimal expansion of Re,, = (R, +, -,

<, €®) admitting the C* cell decomposition. General references on o-minimal structures
are [2], [3], see also [20]. It is known in {18] that there exist uncountably many o-minimal
expansions of R = (R, +, -, <).

Every definable C'*° manifold does not have boundary unless otherwise stated. Definable
C"G manifolds are studied in [9], [7] when 0 < 7 < w. Everything is considered in M.

Let G be a definable C* group, X a definable C*°G manifold and f : X - Ra G
invariant definable C* function on X. A closed definable C*°G submanifold Y of X
is called a critical manifold (resp. a nondegenerate critical manifold) of f if each
p € Y is a critical point (resp. a nondegenerate critical point) of f. We say that f is
an equivariant definable Morse function if the critical locus of f is a finite union of
nondegenerate critical manifolds of f without interior.

Theorem 1.1. Let G be a compact affine definable C*® group and f an equivariant defin-
able Morse function on a compact definable C*°G manifold X. If f has no critical value
in [a,b], then f*:= f~1((—oc0,a]) is definably C*G diffeomorphic to f°:= f~1((—o0,b)).

Theorem 1.1 is an equivariant definable version of Theorem 4.3 [21] and a definable C*
version of 1.1 [6].
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In the non-equivariant definable case, T.L. Loi [14] proves the density of definable Morse
functions.

Let r be a positive integer greater than 1, Def"(R") denote the set of definable C"
functions on R™. For each f € Def"(R") and for each positive definable continuous
function € : R® — R, the e-neighborhood N(f;¢) of f in Def™(R™) is defined by {h €
Defr(R™)]|0%(h — f)| < ,YVa € (NU {0})™, |a| < 7}, where o = (aq,...,a,) € (NU
{op™lal = a1 + -+ + @,, 0*F = glelF We call the topology defined by these

dzy 1.0z

e-neighborhoods the de finable C™ topology.

Theorem 1.2 ([14]). Let r be a positive integer greater than 1 and X a definable C" sub-
manifold of R™. Then the set of definable C™ functions on R™ which are Morse functions
on X and have distinct critical values are open and dense in Def"(R™) with respect to the
definable C™ topology.

Remark that the definable C™ topology and the C™ Whitney topology do not coincide
in general. If X is compact, then these topologies of the set Def™(X) of definable C"
functions on X are the same (P156 [20]).

A nondegenerate critical manifold of an equivariant Morse function on a definable C*G
manifold is called a nondegenerate critical orbit if it is an orbit. The following is the
density of equivariant definable Morse functions.

Theorem 1.3. Let G be a compact affine definable C*® group, X a compact definable
C>®G manifold and r a positive integer greater than 1. Then the set De fequi—Morse,o(X)
of equivariant definable Morse functions on X whose critical loci are finite unions of
nondegenerate critical orbits is dense in the set Cio(X) of G invariant C*° functions
on X with respect to the CT Whitney topology. Moreover De fequi—Morse,o(X) 5 open and
dense in the set DefZ (X) of G invariant definable C* functions with respect to the

definable C™ topology.

The following is a definable C* version of a well-known topological result (e.g. 6.2.4
5)). |
Theorem 1.4. Let X be an n-dimensional compact definable C*° manifold admitting a
definable Morse function f : X — R with only two critical points.

(1) ([6]) X is definably homeomorphic to the n-dimensional unit sphere S™.
(2) If n <6, then X is definably C* diffeomorphic to S™.

2. PrROOF OF THEOREM 1.1

A definable C™ manifold is a C*® manifold with a finite system of charts whose
transition functions are definable, and definable C*® maps, definable C* diffeomorphisms
and definable C* imbeddings are defined similarly ([9], [7]). A definable C*° manifold
is af fine if it is definably C* imbeddable into some R™. If M = R, a definable C¥
manifold (resp. an affine definable C* manifold) is called a Nash manifold (resp. an
affine Nash manifold). By [8], every definable C™ manifold is affine when r is a non-
negative integer. The definable C% case is complicated. Even if M = R, it is known
that for every compact or compactifiable C* manifold of positive dimension admits a
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continuum number of distinct nonaffine Nash manifold structures [19], and its equivariant
version is proved in [10].

A group G is a definable C*® group if G is a definable C*° manifold such that the
group operations G X G — G and G — G are definable C* maps. By definition, every
definable C* group is a Lie group. Let G be a definable C* group. A definable C*°G
manifold is a pair (X, ¢) consisting of a definable C*° manifold X and a group action
¢ : G x X — X such that ¢ is a definable C* map. For simplicity, we write X instead
of (X, ¢).

Let G be a definable C*® group. A representation map of G means a group homo-
morphism from G to some O,(R) which is a definable C* map and the representation
of this representation map is R™ with the orthogonal action induced by the representa-
tion map. In this paper, we always assume that every representation is orthogonal. A
definable C*°G submanifold of a representation 2 of G is a G invariant definable C'*°
submanifold of . We say that a definable C*°G manifold is af fine if it is definably
C*G diffeomorphic to a definable C*°G submanifold of some representation of G.

In our assumption, every compact definable C*°G manifold is affine.

Theorem 2.1 ([9]). Let G be a compact affine definable C* group. Then every compact
definable C*°G manifold is affine.

Remark that if M is polynomially bounded, then Theorem 2.1 is not always true [10].

Theorem 2.2. Let G be a compact affine definable C*® group. Let X and Y be com-
pact definable C*°G manifolds possibly with boundary. If either X = dY =0 or X,Y
are affine, then X and Y are definably C*®G diffeomorphic if and only if they are C'G
diffeomorphic.

To prove Theorem 2.2, we prepare several results.

Theorem 2.3 (2.24 [7]). Let G be a compact definable C*® group.

(1) Every definable C*®G submanifold X possibly with boundary of a representation 2 of
G has a definable C*°G tubular neighborhood (U, p) of X in Q.

(2) Any compact affine definable C°°G manifold X with boundary 8X admits a definable
C>G collar, namely there exists a definable C*°G imbedding ¢ : 0X x[0,1) — X such that
#(0X x [0,1)) is a G invariant definable open neighborhood of 8X in X and ¢(z,0) =z
for all x € 8X, where the action on the closed unit interval [0, 1] is trivial.

Let G be a compact definable C* group. Let f be a map from a C°°G manifold X to
a representation 2 of G. Denote the Haar measure of G by dg and let C*°(X, ) denote
the set of C* maps from X to Q. Define

A:C%(X, Q) — C®(X,0), A(f)(x) = /G g7 f(gz)dg.

We call A the averaging function. In particular, if G = {g1,...,9n}, then A(f)(z) =
% Z?:l gi_lf(gig:)_
Observations similar to 2.6 [12], 4.3 [7] and 2.35 [13] show the following proposition.

Proposition 2.4 ([12], [7], [13]). Let G be a compact definable C* group.
(1) A(f) is equivariant, and A(f) = f if f is equivariant.
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(2) If0<r<ooand f € C"(X,Q), then A(f) € C"(X, Q).

(3) If f is a polynomial map, then so is A(f).

(4) If 0 <r < 00 and X is compact, then A : C™(X,Q) — C"(X,Q) is continuous in the
C™ Whitney topology.

(5) If G is a finite group, X is a definable C*°G manifold and f is a definable C*° map,
then A(f) is a definable C®G map.

Theorem 2.5 (P 38 [5]). (1) Let X,Y be C' manifolds. Then the set of C* diffeomor-
phisms from X onto Y is open in the set CY(X,Y) of C* maps from X to Y with respect
to the C' Whitney topology.
(2) Let X,Y be C' manifolds with boundary 8X,0Y, respectively. Then the set of C*
diffeomorphisms from X onto Y is open in {f € CY(X,Y)|f(8X) C f(3Y)} with respect
to the C* Whitney topology.

Theorem 2.6 (1.2 [4]). Let A, B be definable disjoint closed subsets of R™. Then there
exists a definable C™ function ¢ : X — R such that p|A =1 and ¢|B = 0.

The following is an equivariant version of Theorem 2.6.

Theorem 2.7 ([11]). Let G be a compact definable C* group and X a compact definable
C®G manifold. Suppose that A, B are G invariant definable disjoint closed subsets of X .
Then there ezists a G invariant definable C* function f : X — R such that f|A=1 and

fIB=0.

Remark that if M is polynomially bounded, then Theorem 2.6 and 2.7 are not always
true.

Proof of Theorem 2.2. Assume first that X = dY = (). By Theorem 2.1, we may
assume that X,Y are definable C*°G submanifolds of a representation 2 of G. Using
Theorem 2.3, we have a definable C*°G tubular neighborhood (U, p) of Y in Q.

Let f: X — Y be a C'G diffeomorphism and 7 : ¥ — Q the inclusion. Applying
the polynomial approximation theorem, we have a polynomial map f': X — Q as a C!
approximation of ¢ o f. Applying the Haar measure and Proposition 2.4, there exists a
polynomial G map f”: X — Q approximating i o f. If this approximation is sufficiently
close, then ¢ o f(X) C U. By Proposition 2.4, F :=po f”: X — Y is a definable C*G
map which is a C? approximation of f. Hence using Theorem 2.5 and the inverse function
theorem, F': X — Y is a definable C*°G diffeomorphism.

We now prove the second case. By Theorem 2.3, we have definable C*°G collar neigh-
borhoods ¢x : X x [0,1) = X, ¢y : IY x [0,1) = Y of 0X,0Y in X,Y, respectively.

By the first argument, we have a definable C*°G diffeomorphism Fzx : X — 9Y
as a C' approximation of f|0X. Using these definable C*®°G collar neighborhoods, we
have a definable C*°G diffeomorphism L; : ¢x(8X x [0,1)) — ¢y (Y x [0,1)) as a C*
approximation of f|¢x(8X x [0,1)). Since X — ¢(8X x [0,3)) is a compact definable
C*°G manifold with boundary and by the first argument, there exists a definable C*°G
map Ly : X — ¢(8X x [0,2)) — Y as a C? approximation of f|(X — ¢(8X x [0,3))).
By Theorem 2.7, we have a G invariant definable C* function £ : X — R such that
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k|¢(8X x [0,3]) =1 and k|(X — ¢(8X x [0,3))) = 0. Thus the map H : X — Y defined
by

H(z) = { p(k(t)L1(z) + (1 — k(t)) La(z)), = € ¢x(8X x [0,1))

Ly(z), z€ X — ¢x(0X x[0,1))
is a definable C*°G map such that H(X) = 8Y and H is a C' approximation of f.
Therefore H is the required definable C*°G diffeomorphism. O

Proof of Theorem 1.1. By Theorem 4.3 [21], f* = f~1((—o00, a]) is C*°G diffeomorphic
to f® = f71((—o0,b]). Since X is compact and by Theorem 2.1, these two manifolds
are compact affine definable C*°G manifolds with boundary. Thus Theorem 2.2 proves
Theorem 1.1. O

Remark that the method of the proof Theorem 4.3 [21] is the integration of a G in-
variant C'* vector field. This method does not work in the definable setting because the
integration of a G invariant definable C* vector field is not always definable.

3. PROOF OF THEOREM 1.3 AND 1.4

Theorem 3.1 ([21]) Let G be a compact Lie group and X a compact C*°G manifold.
Then the set Cgpyi_prorse,o(X) of equivariant Morse functions on X whose critical loct are
finite untons of nondegenerate critical orbits is open and dense in the set C2 (X) of G
invariant C™ functions on X with respect to the C* Whitney topology.

Proof of Theorem 1.3. Let f € C2 (X) and N C C2 (X) an open neighborhood of f
in C,(X). By Theorem 3.1, there exists an open subset N7 C A such that each h € N
is an equivariant Morse function whose critical locus is a finite union of nondegenerate
critical orbits. Let C*(X) denote the set of C* functions on X. Since A : C®(X) —
C*(X) is continuous and A(C®(X)) = C2 (X), A: C®(X) — CL,(X) is continuous.
Fix h € N. Since A(h) = h, A"}(N") is an open neighborhood of h in C*(X). Applying
the polynomial approximation theorem, we have a polynomial function A’ lies in A~1(N”).
Applying the averaging function, we have a G invariant polynomial function F' := A(h’)
lies in N’. Since F is a G invariant polynomial function, it is a G invariant definable C*
function. Thus F' is an equivariant definable Morse function lies in N.

We now prove the second part. By the first part, De fequi—aorse,o(X ) is dense in CZ2, (X).
Thus it is dense in Def2,(X).

Let h € De fequi—Morse,o(X). By Theorem 3.1, there exists an open neighborhood V of
h in CZ,(X) such that each h € V is an equivariant Morse function whose critical locus is

a finite union of nondegenerate critical orbits. Thus V N De f;n,(X) is the required open
neighborhood of A in De fi,, (X). O

Proof of Theorem 1.4. Using classical results, if n < 6, then X is C'*° diffeomorphic
to S™. Thus since X is compact and by Theorem 2.2, X is definably C* diffeomorphic
to S™. O
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