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ABSTRACT. Let $G$ be a compact affine definable $C^{\infty}$ group, $X$ a compact definable
$C^{\infty}G$ manifold and $f$ an equivariant definable Morse function on $X$ . We prove that if
$f$ has no critical value in $[a, b]$ , then $f^{-1}((-$oo, $a])$ is definably $C^{\infty}G$ diffeomorphic to
$f^{-1}$ ( $($ -00, $b])$ . Moreover we prove that if $r$ is a positive integer $g1^{\backslash }eater$ than 1, then the
set of equivariant definable Morse functions on $X$ whose critical loci are finite unions of
nondegenerate critical orbits is dense in the set of $G$ invariant $c\infty$ functions on $X$ with
respect to the $C$‘ Whitney topology.

1. INTRODUCTION

In this paper we consider an equivariant definable $C^{\infty}$ version of Morse theory. We
refer the reader to the book by J. Milnor [16] for Morse theory on compact $C^{\infty}$ manifolds.
Its equivariant versions are studied in G. Wasserman [21], K.H. Mayer [15], M. Datta and
N. Pandey [1], and its definable $C^{r}$ versions are considered in T.L. Loi [14], Y. Peterzil
and S. Starchenko [17] when $2\leq r<\infty$ .

Let $\mathcal{M}=(\mathbb{R}, +, \cdot, <, e^{x}, \ldots)$ be an exponential o-minimal expansion of $R_{exp}=(\mathbb{R},$ $+,$ $\cdot$ ,
$<,$ $e^{x})$ admitting the $C^{\infty}$ cell decomposition. General references on o-minimal structures

are [2], [3], see also [20]. It is known in [18] that there exist uncountably many o-minimal
expansions of $\mathcal{R}=(\mathbb{R}, +, \cdot, <)$ .

Every definable $C^{\infty}$ manifold does not have boundary unless otherwise stated. Definable
$C^{r}G$ manifolds are studied in [9], [7] when $0\leq r\leq\omega$ . Everything is considered in M.

Let $G$ be a definable $C^{\infty}$ group, $X$ a definable $C^{\infty}G$ manifold and $f$ : $Xarrow \mathbb{R}$ a $G$

invariant definable $C^{\infty}$ function on $X$ . A closed definable $C^{\infty}G$ submanifold $Y$ of $X$

is called a critical manifold (resp. a nondegenerate critical manifold) of $f$ if each
$p\in Y$ is a critical point (resp. a nondegenerate critical point) of $f$ . We say that $f$ is
an equivariant definable Morse function if the critical locus of $f$ is a finite union of
nondegenerate critical manifolds of $f$ without interior.

Theorem 1.1. Let $G$ be a compact affine definable $C^{\infty}$ group and $f$ an equivariant defin-
able Morse function on a compact definable $C^{\infty}G$ manifold X. If $f$ has no critical value
in $[a, b]$ , then $f^{a}:=f^{-1}((-\infty, a])$ is definably $C^{\infty}G$ diffeomorphic to $f^{b}:=f^{-1}((-\infty, b])$ .

Theorem 1.1 is an equivariant definable version of Theorem 4.3 [21] and a definable $C^{\infty}$

version of 1.1 [6].
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In the non-equivariant definable case, T.L. Loi [14] proves the density of definable Morse
functions.

Let $r$ be a positive integer greater than 1, De$f^{}$ $(\mathbb{R}^{n})$ denote the set of definable $C^{r}$

functions on $\mathbb{R}^{n}$ . For each $f\in$ De$f^{}$ $(\mathbb{R}^{n})$ and for each positive definable continuous
function $\epsilon$ : $\mathbb{R}^{n}arrow \mathbb{R}$ , the $\epsilon$-neighborhood $N(f;\epsilon)$ of $f$ in De $f^{}$ $(\mathbb{R}^{n})$ is defined by $\{h\in$

De$f^{r}(\mathbb{R}^{n})||\partial^{\alpha}(h-f)|<\epsilon,$ $\forall\alpha\in(\mathbb{N}\cup\{0\})^{n},$ $|\alpha|\leq r\}$ , where $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in(N\cup$

$\{0\})^{n},$ $| \alpha|=\alpha_{1}+\cdots+\alpha_{n)}\partial^{\alpha}F=\frac{\partial^{|\alpha.|}F}{\partial x_{1}^{1}..\partial x_{n}^{\alpha_{n}}}$ . We call the topology defined by these
$\epsilon$-neighborhoods the definable $C^{r}$ topology.

Theorem 1.2 ([14]). Let $r$ be a positive integer greater than 1 and $X$ a definable $C^{r}$ sub-
manifold of $\mathbb{R}^{n}$ . Then the set of definable $C^{r}$ functions on $\mathbb{R}^{n}$ which are Morse functions
on $X$ and have distinct critical values are open and dense in De $f^{}$ $(\mathbb{R}^{n})$ with respect to the
definable $C^{r}$ topology.

Remark that the definable $C^{r}$ topology and the $C^{r}$ Whitney topology do not coincide
in general. If $X$ is compact, then these topologies of the set De$f^{}$ (X) of definable $C^{r}$

functions on $X$ are the same (P156 [20]).
A nondegenerate critical manifold of an eqUivariant Morse function on a definable $C^{\infty}G$

manifold is called a nondegenerate critical orbit if it is an orbit. The following is the
density of equivariant definable Morse functions.

Theorem 1.3. Let $G$ be a compact affine definable $C^{\infty}$ group, $X$ a compact definable
$C^{\infty}G$ manifold and $r$ a positive integer greater than 1. Then the set $Def_{equi-Morse,0}(X)$

of equivariant definable Morse functions on $X$ whose critical loci are finite unions of
nondegenemte critical orbits is dense in the set $C_{inv}^{\infty}(X)$ of $G$ invariant $C^{\infty}$ functions
on $X$ with respect to the $C^{r}$ Whitney topology. Moreover $Def_{equi-Morse,0}(X)$ is open and
dense in the set De $f_{inv}^{\infty}(X)$ of $G$ invariant definable $C^{\infty}$ functions with respect to the
definable $C^{r}$ topology.

The following is a definable $C^{\infty}$ version of a well-known topological result (e.g. 6.2.4
[5] $)$ .

Theorem 1.4. Let $X$ be an n-dimensional compact definable $C^{\infty}$ manifold admitting a
definable Morse function $f:Xarrow \mathbb{R}$ with only two critical points.

(1) ([6]) $X$ is definably homeomorphic to the n-dimensional unit sphere $S^{n}$ .
(2) If $n\leq 6$ , then $X$ is definably $C^{\infty}$ diffeomorphic to $S^{n}$ .

2. PROOF OF THEOREM 1.1

A definable $C^{\infty}$ manifold is a $C^{\infty}$ manifold with a finite system of charts whose
transition functions are definable, and definable $C^{\infty}$ maps, definable $C^{\infty}$ diffeomorphisms
and definable $C^{\infty}$ imbeddings are defined similarly ([9], [7]). A definable $C^{\infty}$ manifold
is $af$fine if it is definably $C^{\infty}$ imbeddable into some $\mathbb{R}^{n}$ . If $\mathcal{M}=\mathcal{R}$ , a definable $C^{\omega}$

manifold (resp. an affine definable $C^{\omega}$ manifold) is called a Nash manifold (resp. an
$af$fine Nash manifold). By [8], every definable $C^{r}$ manifold is affine when $r$ is a non-
negative integer. The definable $C^{\omega}$ case is complicated. Even if $\Lambda\Lambda=\mathcal{R}$ , it is known
that for every compact or compactifiable $C^{\omega}$ manifold of positive dimension admits a
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continuum number of distinct nonaffine Nash manifold structures [19], and its equivariant
version is proved in [10].

A group $G$ is a definable $C^{\infty}$ group if $G$ is a definable $C^{\infty}$ manifold such that the
group operations $G\cross Garrow G$ and $Garrow G$ are definable $C^{\infty}$ maps. By definition, every
definable $C^{\infty}$ group is a Lie group. Let $G$ be a definable $C^{\infty}$ group. A definable $C^{\infty}G$

manifold is a pair $(X, \phi)$ consisting of a definable $C^{\infty}$ manifold $X$ and a group action
$\phi$ : $G\cross Xarrow X$ such that $\phi$ is a definable $C^{\infty}$ map. For simplicity, we write $X$ instead
of $(X, \phi)$ .

Let $G$ be a definable $C^{\infty}$ group. A representation map of $G$ means a group homo-
morphism from $G$ to some $O_{n}(\mathbb{R})$ which is a definable $C^{\infty}$ map and the representation
of this representation map is $\mathbb{R}^{n}$ with the orthogonal action induced by the representa-
tion map. In this paper, we always assume that every representation is orthogonal. A
definable $C^{\infty}G$ submanifold of a representation $\Omega$ of $G$ is a $G$ invariant definable $C^{\infty}$

submanifold of $\Omega$ . We say that a definable $C^{\infty}G$ manifold is $af$fine if it is definably
$C^{\infty}G$ diffeomorphic to a definable $C^{\infty}G$ submanifold of some representation of $G$ .

In our assumption, every compact definable $C^{\infty}G$ manifold is affine.

Theorem 2.1 ([9]). Let $G$ be a compact affine definable $C^{\infty}$ group. Then every compact
definable $C^{\infty}G$ manifold is affine.

Remark that if $\mathcal{M}$ is polynomially bounded, then Theorem 2.1 is not always true [10].

Theorem 2.2. Let $G$ be a compact affine definable $C^{\infty}$ group. Let $X$ and $Y$ be com-
pact definable $C^{\infty}G$ manifolds possibly with boundary. If either $\partial X=\partial Y=\emptyset$ or $X,$ $Y$

are affine, then $X$ and $Y$ are definably $C^{\infty}G$ diffeomorphic if and only if they are $C^{1}G$

diffeomorphic.

To prove Theorem 2.2, we prepare several results.

Theorem 2.3 (2.24 [7]). Let $G$ be a compact definable $C^{\infty}$ group.
(1) Eve$7^{v}y$ definable $C^{\infty}G$ submanifold $X$ possibly with boundary of a representation $\Omega$ of
$G$ has a definable $C^{\infty}G$ tubular neighborhood $(U,p)$ of $X$ in $\Omega$ .
(2) Any compact affine definable $C^{\infty}G$ manifold $X$ with boundary $\partial X$ admits a definable

$C^{\infty}G$ collar, namely there exists a definable $C^{\infty}G$ imbedding $\phi$ : $\partial X\cross[0,1)arrow X$ such that
$\phi(\partial X\cross[0,1))$ is a $G$ invariant definable open neighborhood of $\partial X$ in $X$ and $\phi(x, 0)=x$

for all $x\in\partial X$ , where the action on the closed unit interval $[0,1]$ is trivial.

Let $G$ be a compact definable $C^{\infty}$ group. Let $f$ be a map from a $C^{\infty}G$ manifold $X$ to
a representation $\Omega$ of $G$ . Denote the Haar measure of $G$ by $dg$ and let $C^{\infty}(X, \Omega)$ denote
the set of $C^{\infty}$ maps from $X$ to $\Omega$ . Define

$A:C^{\infty}(X, \Omega)arrow C^{\infty}(X, \Omega),$ $A(f)(x)= \int_{G}g^{-1}f(gx)dg$ .

We call $A$ the averaging function. In particular, if $G=\{g_{1}, \ldots, g_{n}\}$ , then $A(f)(x)=$
$\frac{1}{n}\sum_{i=1}^{n}g_{i}^{-1}f(g_{i}x)$ .

Observations similar to 2.6 [12], 4.3 [7] and 2.35 [13] show the following proposition.

Proposition 2.4 ([12], [7], [13]). Let $G$ be a compact definable $C^{\infty}$ group.
(1) $A(f)$ is equivariant, and $A(f)=f$ if $f$ is equivariant.
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(2) If $0\leq r\leq\infty$ and $f\in C^{r}(X, \Omega)$ , then $A(f)\in C^{r}(X, \Omega)$ .
(3) If $f$ is a polynomial map, then so is $A(f)$ .
(4) If $0\leq r<\infty$ and $X$ is compact, then $A$ : $C^{r}(X, \Omega)arrow C^{r}(X, \Omega)$ is continuous in the

$C^{r}$ Whitney topology.
(5) If $G$ is a finite group, $X$ is a definable $C^{\infty}G$ manifold and $f$ is a definable $C^{\infty}$ map,
then $A(f)$ is a definable $C^{\infty}G$ map.

Theorem 2.5 $(P38[5])$ . (1) Let $X,$ $Y$ be $C^{1}$ manifolds. Then the set of $C^{1}$ diffeomor-
phisms from $X$ onto $Y$ is open in the set $C^{1}(X, Y)$ of $C^{1}$ maps from $X$ to $Y$ with respect
to the $C^{1}$ Whitney topology.
(2) Let $X,$ $Y$ be $C^{1}$ manifolds with boundary $\partial X,$ $\partial Y$ , respectively. Then the set of $C^{1}$

diffeomorphisms from $X$ onto $Y$ is open in $\{f\in C^{1}(X, Y)|f(\partial X)\subset f(\partial Y)\}$ with respect
to the $C^{1}$ Whitney topology.

Theorem 2.6 (1.2 [4]). Let $A,$ $B$ be definable disjoint closed subsets of $\mathbb{R}^{n}$ . Then there
exists a definable $C^{\infty}$ function $\phi$ : $Xarrow \mathbb{R}$ such that $\phi|A=1$ and $\phi|B=0$ .

The following is an equivariant version of Theorem 2.6.

Theorem 2.7 ([11]). Let $G$ be a compact definable $C^{\infty}$ group and $X$ a compact definable
$C^{\infty}G$ manifold. Suppose that $A,$ $B$ are $G$ invariant definable disjoint closed subsets of $X$ .
Then there exists a $G$ invariant definable $C^{\infty}$ function $f$ : $Xarrow \mathbb{R}$ such that $f|A=1$ and
$f|B=0$ .

Remark that if $\mathcal{M}$ is polynomially bounded, then Theorem 2.6 and 2.7 are not always
true.

Proof of Theorem 2.2. Assume first that $\partial X=\partial Y=\emptyset$ . By Theorem 2.1, we may
assume that $X,$ $Y$ are definable $C^{\infty}G$ submanifolds of a representation $\Omega$ of $G$ . Using
Theorem 2.3, we have a definable $C^{\infty}G$ tubular neighborhood $(U, p)$ of $Y$ in $\Omega$ .

Let $f$ : $Xarrow Y$ be a $C^{1}G$ diffeomorphism and $i$ : $Yarrow\Omega$ the inclusion. Applying
the polynomial approximation theorem, we have a polynomial map $f’$ : $Xarrow\Omega$ as a $C^{1}$

approximation of $i\circ f$ . Applying the Haar measure and Proposition 2.4, there exists a
polynomial $G$ map $f”$ : $Xarrow\Omega$ approximating $i\circ f$ . If this approximation is sufficiently
close, then $i\circ f(X)\subset U$ . By Proposition 2.4, $F$ $:=p\circ f’’$ : $Xarrow Y$ is a definable $C^{\infty}G$

map which is a $C^{1}$ approximation of $f$ . Hence using Theorem 2.5 and the inverse function
theorem, $F:Xarrow Y$ is a definable $C^{\infty}G$ diffeomorphism.

We now prove the second case. By Theorem 2.3, we have definable $C^{\infty}G$ collar neigh-
borhoods $\phi_{X}$ : $\partial X\cross[0,1)arrow X,$ $\phi_{Y}$ : $\partial Y\cross[0,1)arrow Y$ of $\partial X,$ $\partial Y$ in $X,$ $Y$ , respectively.

By the first argument, we have a definable $C^{\infty}G$ diffeomorphism $F_{\partial X}$ : $\partial Xarrow\partial Y$

as a $C^{1}$ approximation of $f|\partial X$ . Using these definable $C^{\infty}G$ collar neighborhoods, we
have a definable $C^{\infty}G$ diffeomorphism $L_{1}$ : $\phi_{X}(\partial X\cross[0,1))arrow\phi_{Y}(\partial Y\cross[0,1))$ as a $C^{1}$

approximation of $f|\phi_{X}(\partial X\cross[0,1))$ . Since $X- \phi(\partial X\cross[0, \frac{3}{4}))$ is a compact definable
$C^{\infty}G$ manifold with boundary and by the first argument, there exists a definable $C^{\infty}G$

map $L_{2}$ : $X- \phi(\partial X\cross[0, \frac{3}{4}))arrow Y$ as a $C^{1}$ approximation of $f|(X- \phi(\partial X\cross[0, \frac{3}{4})))$ .
By Theorem 2.7, we have a $G$ invariant definable $C^{\infty}$ function $k$ : $Xarrow \mathbb{R}$ such that
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$k| \phi(\partial X\cross[0, \frac{1}{3}])=1$ and $k|(X- \phi(\partial X\cross[0, \frac{1}{2})))=0$ . Thus the map $H$ : $Xarrow Y$ defined
by

$H(x)=\{\begin{array}{ll}p(k(t)L_{1}(x)+(1-k(t))L_{2}(x)), x\in\phi_{X}(\partial X\cross[0,1))L_{2}(x), x\in X-\phi_{X}(\partial X\cross[0,1))\end{array}$

is a definable $C^{\infty}G$ map such that $H(\partial X)=\partial Y$ and $H$ is a $C^{1}$ approximation of $f$ .
Therefore $H$ is the required definable $C^{\infty}G$ diffeomorphism. $\square$

Proof of Theorem 1.1. By Theorem 4.3 [21], $f^{a}=f^{-1}$ ( $($ -00, $a])$ is $C^{\infty}G$ diffeomorphic
to $f^{b}=f^{-1}((-\infty, b])$ . Since $X$ is compact and by Theorem 2.1, these two manifolds
are compact affine definable $C^{\infty}G$ manifolds with boundary. Thus Theorem 2.2 proves
Theorem 1.1. $\square$

Remark that the method of the proof Theorem 4.3 [21] is the integration of a $G$ in-
variant $C^{\infty}$ vector field. This method does not work in the definable setting because the
integration of a $G$ invariant definable $C^{\infty}$ vector field is not always definable.

3. PROOF OF THEOREM 1.3 AND 1.4

Theorem 3.1 ([21]). Let $G$ be a compact Lie group and $X$ a compact $C^{\infty}G$ manifold.
Then the set $C_{equi-Morse,0}^{\infty}(X)$ of equivariant Morse functions on $X$ whose critical loci are
finite unions of nondegenemte critical orbits is open and dense in the set $C_{inv}^{\infty}(X)$ of $G$

invariant $C^{\infty}$ functions on $X$ with respect to the $C^{\infty}$ Whitney topology.

Proof of Theorem 1.3. Let $f\in C_{inv}^{\infty}(X)$ and $\mathcal{N}\subset C_{tnv}^{\infty}(X)$ an open neighborhood of $f$

in $C_{inv}^{\infty}(X)$ . By Theorem 3.1, there exists an open subset $\mathcal{N}’\subset \mathcal{N}$ such that each $h\in \mathcal{N}’$

is an equivariant Morse function whose critical locus is a finite union of nondegenerate
critical orbits. Let $C^{\infty}(X)$ denote the set of $C^{\infty}$ functions on $X$ . Since $A$ : $C^{\infty}(X)arrow$

$C^{\infty}(X)$ is continuous and $A(C^{\infty}(X))=C_{inv}^{\infty}(X),$ $A:C^{\infty}(X)arrow C_{inv}^{\infty}(X)$ is continuous.
Fix $h\in \mathcal{N}’$ . Since $A(h)=h,$ $A^{-1}(\mathcal{N}’)$ is an open neighborhood of $h$ in $C^{\infty}(X)$ . Applying
the polynomial approximation theorem, we have a polynomial function $h$‘ lies in $A^{-1}(\mathcal{N}’)$ .
Applying the averaging function, we have a $G$ invariant polynomial function $F:=A(h’)$
lies in $\mathcal{N}’$ . Since $F$ is a $G$ invariant polynomial function, it is a $G$ invariant definable $C^{\infty}$

function. Thus $F$ is an equivariant definable Morse function lies in $\mathcal{N}$ .
We now prove the second part. By the first part, De$f_{equi-Morse,0}(X)$ is dense in $C_{inv}^{\infty}(X)$ .

Thus it is dense in $Def_{inv}^{\infty}(X)$ .
Let $h\in Def_{equi-Morse,0}(X)$ . By Theorem 3.1, there exists an open neighborhood $\mathcal{V}$ of

$h$ in $C_{inv}^{\infty}(X)$ such that each $h\in \mathcal{V}$ is an equivariant Morse function whose critical locus is
a finite union of nondegenerate critical orbits. Thus $\mathcal{V}\cap Def_{inv}(X)$ is the required open
neighborhood of $h$ in $Def_{inv}(X)$ . $\square$

Proof of Theorem 1.4. Using classical results, if $n\leq 6$ , then $X$ is $C^{\infty}$ diffeomorphic
to $S^{n}$ . Thus since $X$ is compact and by Theorem 2.2, $X$ is definably $C^{\infty}$ diffeomorphic
to $S^{n}$ . $\square$
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