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Abstract

In this small note we present an introduction to o-minimal sheaves
and their connection to semi-algebraic and sub-analytic sheaves.
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1 Introduction
O-minimal structures are a class of ordered structures which are a model
theoretic (logic) generalization of interesting classical structures such as:

$\bullet$ the field of real numbers;

$\bullet$ the field of real numbers expanded by restricted globally analytic func-
tions ([7]).

More precisely, an ordered structure

$\mathcal{M}=(1|l, (c)_{c\in C}, (f\cdot)_{f\in \mathcal{F}}, (R)_{R\in’\mathcal{R}}, <)$

is o-minimal if every definable subset of $\Lambda I$ in the structure is already defin-
able in the ordered set $(\Lambda I, <)$ .

The development of o-minimality has been strongly influenced by real
analytic geometry and it is based on: (i) adaptation of lnethods of real ana-
lytic geometry to the o-minimal setting; (ii) construction of new and math-
ematically interesting examples of o-minimal structures; (iii) new insights
originated from model-theoretic methods into the real analytic setting. O-
minimal structures provide: a generalization, a uniform treatnlent and new
tools.

Good references on o-minimality are, for example, the book [8] by van den
Dries and the notes [3] by Coste. For semialgebraic geometry relevant to this
paper the reader should consult the work by Delfs [5], Delfs and Knebusch
[6] and the book [2] by Bochnak, Coste and Roy. For subanalytic geometry
we refer to the work [1] by Bierstone and Milmann.

Given an o-minimal structure

$\mathcal{M}=(M, (c)_{c\in C}, (f)_{f\in \mathcal{F}}, (R)_{R\in \mathcal{R}}, <)$

we have:

$\bullet$ the category Def of definable spaces with continuous definable maps.

$\bullet$ the geometry of Def is called o-minimal geometry.

Examples 1.1 (Special cases of o-minimal geometry)

$\bullet$ $\mathcal{M}=(\mathbb{R}, 0,1, +, \cdot, <)$ -semi-algebraic geometry (includes $7ual$ algebmic
geometry);
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$\bullet$ $\mathcal{M}=(\mathbb{R}, 0,1, +, \cdot, (f)_{f\in an}, <)$ -restricted globally sub-analytic geome-
try;

The model theoretic language allows a uniform development of o-minimal
geometry in non-standard o-minimal structures. Concrete non-standard 0-

minimal structures are:

$\bullet$ $\mathbb{R}((t^{\mathbb{Q}}))=(\mathbb{R}((t^{\mathbb{Q}})), 0,1, +, \cdot, <)$ (or any ordered real closed field),

$\bullet \mathbb{R}((t^{\mathbb{Q}}))_{a11}=(\mathbb{R}((t^{\mathbb{Q}})), 0,1, +, \cdot, (f)_{f\in an}, <)$

where $\mathbb{R}((t^{\mathbb{Q}}))$ is the field of power series with well ordered supports on which
every restricted globally analytic function $f\in$ an can be interpreted in a
canonical way ([9]). There are many important $0$-nlininlal expansions

$\mathcal{M}=(\mathbb{R}, 0,1, +, \cdot, (f)_{f\in \mathcal{F}}, <)$

of the ordered field of real numbers. For example $\mathbb{R}_{a11},$ $\mathbb{R}_{\exp},$ $\mathbb{R}_{a11,\exp},$ $\mathbb{R}_{a11^{*}}$ ,
$\mathbb{R}_{an^{*}.\exp}$ see resp., [7, 29, 10, 12, 13]. For each such we have $2^{\kappa}$ many non-
isomorphic non standard o-minimal models for each $\kappa>$ cardinality of the
language! There is however a non-standard o-minimal structure

$\mathcal{M}=(\bigcup_{n\in N}\mathbb{R}((t^{\frac{1}{n}})), 0,1, +, \cdot, (f_{p})_{p\in \mathbb{R}[[\zeta_{1},\ldots,\zeta_{r\iota}]]}, <)$

which does not came from a standard one ([23, 17]). O-minimal geometry
includes the geometry of all those (standard) tame analytic structures but it
goes beyond and includes also a generalization of PL-geometry: any ordered
vector space over an ordered division ring

$\mathcal{M}=(M, 0, +, (\lambda_{d})_{d\in D}, <)$

is an o-minimal structure ([8]).
Following or inspired by the work of:

$\bullet$ Verdier (locally compact topological spaces) $-[16,18,19]$ .

$\bullet$ Delfs (real algebraic geometry) $-[5]$ .
$\bullet$ Kashiwara-Schapira, L. Prelli et al. (sub-analytic geometry) - [22, 20,

21, 25, 26].

$\bullet$ Grothendieck (\’etale framework) $-[28]$ .

we would like to develop sheaf theory in the category Def in a fixed but
arbitrary o-minimal structures M.
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2 What are o-minimal sheaves
Recall that our goal is to develop sheaf theory in the category Def in a fixed
but arbitrary o-minimal structures $\mathcal{M}$ . Every object of Def is a topological
space with topology defined from the ordering of M. So $w1_{1}y$ not topological
sheaf theory? Topological sheaf theory is not suitable, since it gives:

$\bullet$ no information in the non standard setting;

$\bullet$ no new inforrnation in tlie standard setting.

In fact we have to use sites (Grothedienck topologies). Usually the problem
is having too many or too few open subsets.

So what are o-minimal sheaves? Let $X$ be an object of Def and $k$ a field.
An o-minimal sheaf of k-vector spaces on $X$ , called also an o-minimal k-sheaf
on $X$ , is a contravariant functor:

$F$ :Op$(X_{def})arrow$ Mod $(k)$

$U\mapsto F(U)$

$(V\subset U)\mapsto(F(U)arrow F(V))$

$s\mapsto s_{|V}$

where $X_{def}$ is tlie o-minimal site on $X$ . Satisfying the following gluing condi-
tions: for $U\in$ Op $(arrow\prime Y_{def})$ and $\{U_{j}\}_{j\in J}\in$ Cov $(U)$ we have the exact sequence

$0arrow F(U)arrow\Pi_{j\in J}F(U_{j})arrow\Pi_{j,k\in J}F(U_{j}\cap U_{k})$ .

What is the $0-nli\iota ii_{1}na1$ site on $X$ ? The o-minimal site $X_{def}$ on $X$ is the data
consisting of:

$\bullet$ The category
$Op(X_{def})$

of open definable subsets of $X$ with inclusions;

$\bullet$ The collection of admissible coverings

COV $(U),$ $U\in$ Op$(X_{def})$

such that $\{U_{j}\}_{j\in J}\in$ Cov$(U)$ if $\{U_{j}\}_{j\in J}$ covers $U$ , its elements are in
Op $(X_{elef})$ and fias a finite sub-cover.
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This includes semi-algebraic and restricted globally sub-analytic sites and
sheaves. What about sub-analytic site and $s1_{1}eaves$? If we work in the slightly
more general category of locally definable spaces with continuous locally de-
finable maps, then the o-minimal site includes also the sub-analytic site on
real analytic manifolds.

The gluing condition

$0arrow F(U)arrow\Pi_{j\in J}F(U_{j})arrow\Pi_{j,k\in J}F(U_{j}\cap U_{k})$

means:

$\bullet$ if $s\in F(U)$ and $s_{|U_{j}}=0$ for each $j$ , then $s=0$ ;

$\bullet$ if $s_{j}\in F(U_{j})$ are such that $s_{j}=s_{k}$ on $U_{j}\cap U_{k}$ then they glue to
$s\in F(U)$ $(i.e. s_{|U_{j}}=s_{j})$ .

For $X$ an object of Def and $k$ a field, we use the following notation:
Mod $(k_{X_{def}})$ $:=$ k-sheaves in the o-minimal site $X_{def}$ and Mod$(k_{X})$ $:=$ topo-
logical k-sheaves on $X$ .

Examples 2.1 (Simple examples) Let $X$ be an object of Def. The fol-
lowing pre-sheaves are in Mod $(\mathbb{R}_{X_{def}})$ :

$\bullet$ $U\mapsto \mathbb{R}_{X}(U):=$ { $f:Uarrow \mathbb{R}|f$ locally constant};
$\bullet$ $U\mapsto$ { $f:Uarrow \mathbb{R}|f$ bounded};
$\bullet$ $U\mapsto C_{X}(U):=$ { $f:Uarrow \mathbb{R}|f$ continuous};
$\bullet$ $U\mapsto$ { $f:Uarrow \mathbb{R}|f$ definable};

The second and the fourth examples above are not in Mod $(\mathbb{R}_{X})$ .

In our context the gluing condition gives rise to the following gluing cri-
teria. Let $X$ be an object of Def (resp. a real analytic manifold) and $F$ a
presheaf on $X_{def}$ (resp. on $X_{sa}-$ the sub-analytic site of $X$ ). Assume that

$\bullet F(\emptyset)=0$ ;

$\bullet$ for all $U,$ $V\in$ Op $(X_{def})$ (resp. in $O_{I}$) $(X_{sa}))$ the sequence

$0arrow F(U\cup V)arrow F(U)\oplus F(V)arrow F(U\cap V)$

is exact.
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Then $F$ is a sheaf on $X_{def}$ (resp. $X_{sa}$ ).

Examples 2.2 ([20] - Deep examples) M. Kashiwara and P. Schapim com-
bined classical analytical results of S. Lojasiewicz and the gluing criteria to
show that the following pre-sheaves

$\bullet$ tempered distributions $\mathcal{D}b_{X}^{t}$ ;

$\bullet$ tempc$rcdC^{\infty}$ functions;

$\bullet$ Whitney $C^{\infty}$ functions;

$\bullet$ tempered holomorphic $\mathcal{O}_{X}^{t}$ functions;

are sheaves on $X_{sa}$ . This is $ver\cdot y$ deep and has applications to the theory of
D-modules.

3 Some results
Of course all the classical homological results for sheaves on sites hold in the
category Mod $(k_{X_{def}})$ . So if we want to obtain specific results on the geometry
of objects of Def we have to introduce something more. For this it will be
convenient to replace the $0$-lninimal site $X_{def}$ by the o-minimal spectrunl $\tilde{X}$

of $X$ . See [14]. This method was also used in the semi-algebraic context but
never in the sub-analytic case where everything is standard- [2, 4, 5].

The o-minimal spectrum $\tilde{X}$ of $X$ is the set of ultrafilters of definable
subsets of $X$ equipped with the topology generated by the open subsets of
the form $\tilde{U}$ where $U\in$ Op $(X_{def})$ . This is a spectral topological space -

[3, 14, 24].

Example 3.1 (The connection to real algebraic geometry) If $R$ is a
real closed field and $X$ an affine real algebraic variety over $R$ with coordinate
ririg $R[X]$ , then $\tilde{X}\simeq SpecrR[X]$ (the real spectrum of the commutative ring
$R[X])$ .

The tilde operation determines the tilde functor Def $arrow\overline{Def}$ which de-
termines morphisms of sites

$\nu_{X}:\tilde{X}arrow X_{def}$

given by the functor $\nu_{X}^{t}$ : Op $(X_{def})arrow$ Op $(\tilde{X}):U\mapsto\tilde{U}$ .
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Theorem 3.2 ([14]) The functor Def $arrow$ Def induces an isomorphism of
categories

Mod$(k_{X_{def}})arrow$ Mod $(k_{\tilde{X}}):F\mapsto\tilde{F}$ ,

where Mod $(k_{\tilde{X}})$ is the category of sheaves of k-modules on the topological
space $\tilde{X}$ .

The isomorphism is the inverse image $\nu_{X}^{-1}$ and its inverse is the direct image
$\nu_{X*}$ . The canonical isomorphism extends to the derived categories

$D^{*}(k_{X_{def}})arrow D^{*}(k_{\tilde{X}})$ : $I\mapsto\tilde{I}$

where $D^{*}(k_{\tilde{X}})=D^{*}$ (Mod $(k_{\tilde{X}})$ ) and $(*=b, +, -)$ .

Corollary 3.3 The functors
RHom$k_{X_{def}}$

$(\bullet$ , $\bullet$ $)$ : $D^{-}(k_{X_{def}})^{op}\cross D^{+}(k_{X_{def}})arrow D^{+}(k)$ ,

$R\mathcal{H}om_{k_{X_{def}}}$ ( $\bullet$ , e): $D^{-}(k_{X_{def}})^{op}\cross D^{+}(k_{X_{def}})arrow D^{+}(k_{X_{def}})$ ,

$f^{-1}:D^{*}(k_{1_{def}’})arrow D^{*}(k_{X_{def}})$ $(*=b, +, -)$ ,
$Rf_{*}:D^{+}(k_{X_{def}})arrow D^{+}(k_{Y_{def}})$ ,
$\bullet\otimes_{k_{X_{def}}}^{L}\bullet$ : $D^{*}(k_{X_{def}})\cross D^{*}(k_{X_{def}})arrow D^{*}(k_{X_{def}})$ $(*=b, +, -)$

commute with the tilde functor.

In the paper [14] can develop o-minimal sheaf cohomology by setting

$H^{*}(X;F):=H^{*}(\tilde{X};\tilde{F})$

where $X$ is a definable space and $F$ is a sheaf in Mod $(k_{X_{def}})$ and prove the
following results:

Theorems 3.4 ([14])

$\bullet$ Vanishing Theorem.

$\bullet$ Vietoris-Begle Theorem.

$\bullet$ Eilenberg-Steenrod Axioms.

The vanishing theorem above $1_{1}as$ the following application to sub-analytic
sheaves:

Theorem 3.5 ([27]) Let $X$ be a real analytic manifold. The homological
dimension of Mod$(k_{X}..)$ is finite.
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After developing the theory of defiriably compact supports one obtains
the following result conjectured by Delfs in the semi-algebraic case:

Theorem 3.6 ([15]-Global Verdier duality) Let $X$ be definably nor-
mal, definably locally compact, definable space. Thcre exists $\mathcal{D}^{*}$ in $D^{+}(k_{X_{def}})$

and a natural isomorphism

$RHom_{k_{X_{def}}}(\mathcal{F}^{*}, \mathcal{D}^{*})\simeq RHom_{k}(R\Gamma_{c}(X, \mathcal{F}^{*}), k)$

as $\mathcal{F}^{*}vari_{L}es$ through $D^{+}(k_{X_{def}})$ .

This is a general form of Poincar\’e duality:

Corollary 3.7 ([15]-Poincar\’e and Alexander duality) Let $X$ be de-
finably normal definably locally compact, definable manifold of dimension
$n$ .

$\bullet$ If $X$ has an orientation k-sheaf $\mathcal{O}r_{X}$ , then

$H^{p}(X;\mathcal{O}r_{X})\simeq H_{c}^{n-p}(X;\underline{k})^{\vee}$ .

$\bullet$ If $X$ is $h’$.-orientable and $Z$ is a closed definable subset, then

$H_{Z}^{p}(X;k_{X})\simeq H_{c}^{n-p}(Z;\underline{k})^{\vee}$ .

With L. Prelli we are working on developing the formalism of the six
operations on o-minimal sheaves in Def:

$Rf_{*},$ $f^{-1},$ $\otimes^{L},$ $R\mathcal{H}om,$ $Rf_{!!},$ $f^{!!}$

Such formalism was developed for sub-analytic sheaves by Kashiwara-Schapira
using the complicated theory of ind-sheaves and later a direct construction
was given by L. Prelli. However, both methods do not generalize to o-minimal
sheaves since they rely on the fornlalism of the six operations on topological
sheaves in locally compact topological spaces (Verdier).
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