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INTRODUCTION
Let $G$ be a connected reductive group defined over a non-Archimedean

local field $F$ , and $G=G(F)$ . It is important to determine the for-
mal degrees of the discrete series representations of $G$ for the explicit
Plancherel measure for $G$ . In Aubert and Plymen [1], the explicit
Plancherel measure for $G=GL_{N}(D)$ is derived via the work of Sil-
berger and Zink [13], where $D$ is a division algebra over $F$ .

For $GL_{N}(F)$ , there are many works, e.g., [16], [8], [4], and [13] of
computing formal degrees of discrete series representations. Indeed, the
general formal degree formula of the discrete series representations are
given in [4], and the explicit values of the formal degrees are computed
in [8] in the tame case, and in [13] in the general case.

In this article, we improve the method of [13] by using the results
of [4], and compute the values of the formal degrees of the discrete
series representations of $GL_{N}(F)$ (Teorem 1.4), which are expressed
in terms of critical exponents (see 1.1 below). These expressions are
implicit in the formula of [13, Theorem 1.1]. Thus, our formulas are
not essentially new. But our improved method remains valid for some
other classical groups. In fact, we obtained analogous results for a
symplectic group $Sp_{N}(F)$ and for a unramified unitary group $U(V, h)$ ,
where $N$ is an even integer $\geq 4$ and $h$ is a non-degenerate Hermitian
form of an N-dimensional F-vector space.

The contents of this article are summarized as follows: In Section 1,
we give the improvement of the method of Silberger and Zink [13] for
$GL_{N}(F)$ , and in Sectin 2, we present results (Theorem 2.7) obtained
using the recent works on Hecke algebras of self-dual simple types of
Kariyama and Miyauchi [11] (cf. [10]) for the unramified unitary group
$U(V, h)$ .

1. AN IMPROVEMENT ON THE METHOD OF SILBERGER-ZINK

1.1. Preliminaries. Let $F$ be a non-Archimedean local field. Let $0_{F}$

be the ring of integers of $F,$ $\mathfrak{p}_{F}$ its maximal ideal, and $k_{F}=0_{F}/\mathfrak{p}_{F}$ the
residue field. We denote by $q=|k_{F}|$ the cardinality of $k_{F}$ .

Let $N$ be an integer $\geq 2$ , and $V$ an N-dimensional vector space over
$F$ . We set $A=End_{F}(V)$ and denote by $G=A^{\cross}$ the multiplicative
group of $A$ . By an appropriate F-basis of $V$ , we identify $A=M_{N}(F)$

and $G=GL_{N}(F)$ .
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We use the notations of Bushnell-Kutzko [4]. Let $\mathfrak{U}$ be a hereditary
$0_{F}$-order in $A$ with Jacobson radical $\mathfrak{P}=$ rad $(\mathfrak{U})$ . We define a subgroup
$\mathcal{K}_{\mathfrak{U}}$ of $G$ by $\mathcal{K}_{\mathfrak{U}}=\{g\in G|g\mathfrak{U}g^{-1}=\mathfrak{U}\}$ . For an element $\beta$ in $A$ , the
integer $k_{0}(\beta, \mathfrak{U})$ is defined in [4, (1.4.5), (1.4.6)].

Following [4, (1.5)], a stratum in $A$ is a 4-tuple $[\mathfrak{U}, n, r, \beta]$ , where 21
is as above, $n,$ $r$ are integers such that $n>r$ , and $\beta\in A$ with $\beta\in \mathfrak{P}^{-n}$ .

Definition 1.1. $($ [4, (1.5.5)] $)$ A stratum $[\mathfrak{U}, n, r, \beta]$ is called pure, if
the following conditions are satisfied:

(1) the algebra $E=F[\beta]$ is a field,
(2) $E^{\cross}\subset \mathcal{K}_{\mathfrak{U}}$ ,
(3) $\beta\in \mathfrak{P}^{-n}\backslash \mathfrak{P}^{1-n}$ .

It is called simple if, in addition,
(4) $r<-k_{0}(\beta, \mathfrak{U})$ .

Thus, for a simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ , the integer $k_{0}(\beta, \mathfrak{U})$ sat-
isfies $k_{0}( \beta, \mathfrak{U})=-\min$ { $r\in \mathbb{Z}$ : $[\mathfrak{U},$ $n,$ $r,\beta]$ in not simple} of [15, (3.6)],
and it is called the critical exponent.

1.2. Simple types. Hereafter, we assume that the hereditary $0_{F}$-order
ut in a simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ is always principal, that is, there
exists an element $z$ in $A$ such that $\mathfrak{P}=z\mathfrak{U}=\mathfrak{U}z$ .

Let $e_{0}=e(\mathfrak{U}|0_{F})$ be the $0_{F}$-period of $\mathfrak{U}$ , that is, $\mathfrak{P}^{e_{0}}=\mathfrak{p}_{F}\mathfrak{U}$, and set

$f_{0}=N/e_{0}$ .
Then each element $x$ of $\mathfrak{U}$ has the block form $x=(x_{ij})_{1\leq i,j\leq e0}$ with
$x_{ij}\in M_{f_{0}}(0_{F})$ if $i\leq j$ , and $x_{ij}\in M_{\int_{0}}(\mathfrak{p}_{F})$ otherwise.

Let $B$ be the A-centralizer of $\beta$ , and $\mathfrak{B}=\mathfrak{U}\cap B$ . Then it follows
from Definition 1.1(2) that $\mathfrak{B}$ is a hereditary $0_{E}$-order in $B$ . Let $e_{1}=$

$e(\mathfrak{B}|0_{E})$ be the $0_{E}$-period of $\mathfrak{B}$ , defined as is $e_{0}$ above, where $0_{E}$ is the
maximal ideal of $E$ .

Associated with a simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ , the following three
compact open subgroups

$H^{1}=H^{1}(\beta, \mathfrak{U})\subset J^{1}=J^{1}(\beta, \mathfrak{U})\subset J=J(\beta, \mathfrak{U})$

of $G$ are defined in [4, (3.1)]. Via these groups, a simple type in $G$ ,
denoted by $(J, \lambda)$ , is constructed as follows: Take a simple character
$\theta$ of $H^{1}$ (see [4, (3.2)] for the definition). Then it is known that there
exists a unique irreducible representation $\eta=\eta(\theta)$ of $J^{1}$ containing $\theta$ .
We obtain an extension, $\kappa$ , of $\eta$ to $J$ , which is called a $\beta$ -extension.

Write $G_{E}=B^{\cross}$ . Then $G_{E}$ is isomorphic to $GL_{N/[E:F]}(E)$ . Set
$f_{1}=N/([E:F]e_{1})$ .

For $U(\mathfrak{B})=\mathfrak{B}^{\cross}\supset U^{1}(\mathfrak{B})=1+$ rad $(\mathfrak{B})$ , it follows from [4, (3.1.15)]
that $J=U(\mathfrak{B})J^{1}$ and that

$J/J^{1}\simeq U(\mathfrak{B})/U^{1}(\mathfrak{B})\simeq GL_{f_{1}}(k_{E})^{e_{1}}$ ,

98



where $k_{E}$ denotes the residue field of $E$ . Then $J/J^{1}$ is isomorphic to
a Levi subgroup of $G_{N/[E:F]}(k_{E})$ . Let $\sigma_{0}$ be an irreducible cuspidal
representation of $GL_{f_{1}}(k_{E})$ , and $\sigma$ the inflation of the representation
$\sigma_{0}^{\otimes e_{1}}=\sigma_{0}\otimes\cdots\otimes\sigma_{0}$ ( $e_{1}$ -times) of $J/J^{1}$ to $J$ . Now the simple type
$(J, \lambda)$ in $G$ is defined by

$\lambda=\kappa\otimes\sigma$,

in $[$4, (5.5.10) $(a)]$ .
In particular, a simple type $(J, \lambda)$ in $G$ of level zero is defined in [4,

$(5.5.10)(b)]$ . This is a special case of $[4, (5.5.10)(a)]$ , by setting $E=F$ ,
$\mathfrak{B}=\mathfrak{U},$ $J^{t}=U^{t}(\mathfrak{U})(t=0,1)$ , and $\theta,$

$\eta,$
$\kappa$ all trivial. Thus, $J/J^{1}$ is

isomorphic to $GL_{N/e_{1}}(k_{F})^{e_{1}}$ for $e_{1}=e(\mathfrak{U}|0_{F})$ , and $\lambda$ is the inflation of
a representation $\sigma_{0}^{\otimes e_{1}}$ , where we set $f_{1}=N/e_{1}$ and $\sigma_{0}$ is an irreducible
cuspidal representation of $GL_{f_{1}}(k_{F})$ , as above.

A simple type $(J, \lambda)$ in $G$ is called maximal, if $e_{1}=e(\mathfrak{U}|0_{E})=1$ .

1.3. Discrete series representations of $G=GL_{N}(F)$ . Let $e_{1}$ be a
positive integer dividing $N$ , and $\rho$ an irreducible supercuspidal repre-
sentation of $G’=GL_{N/e_{1}}(F)$ . Then there exists a maximal simple type
$(J_{0}, \lambda_{0})$ in $G’$ containing $\lambda_{0}$ by [4, (8.4.1)].

Let $M$ be a Levi subgroup of $G=GL_{N}(F)$ that is isomorphic to
$G^{\prime e_{1}}=G’\cross\cdots\cross G’$ ( $e_{1}$-times), and $P=MN$ a parabolic subgroup of
$G$ with Levi factor $M$ and with unipotent radical $N$ . Then $\rho^{\otimes e_{1}}$ is an
irreducible supercuspidal representation of $M\simeq G^{;e_{1}}$ . Set $J_{M}=J_{0^{1}}^{e}$ ,
and $\lambda_{M}=\lambda_{0}^{\otimes e_{1}}$ . Then $(J_{M}, \lambda_{M})$ is a $[M, \rho^{\otimes e_{1}}]_{M}$-type in the sense
of [5, (8.1)], and by [6, Proposition 1.4], there exists an irreducible
representation $\lambda_{P}$ of a compact open subgroup $J_{P}$ of $G$ associated with
the parabolic subgroup $P$ such that $(J_{P}, \lambda_{P})$ is a G-cover of $(J_{M}, \lambda_{M})$ .
Thus, $(J_{P}, \lambda_{P})$ is a $[M, \rho^{\otimes e_{1}}]_{G}$-type. The pair $(J_{P}, \lambda_{P})$ is derived, as in
[4, (7.2.17)], from a simple type $(J, \lambda)$ in $G$ associated with a simple
stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ as in Section 1.2, and satisfies $Ind_{J_{P}}^{J}$ Ap $\simeq\lambda$ .

By [17], the induced representation

$Ind_{P}^{G}(|\det|^{(1-e_{1})/2}\rho\otimes\cdots\otimes|\det|^{(e_{1}-1)/2}\rho)$

contains a unique irreducible discrete series representation, say $(\pi, \mathcal{V})$ ,
of $G$ . Hence, by [4, (7.3.14)], $(\pi, \mathcal{V})$ contains $(J, \lambda)$ and so $(J_{P}, \lambda_{P})$ .

1.4. A formal degree formula. Let $(\pi, \mathcal{V})$ be the irreducible discrete
series representation of $G$ in the previous section that contains a simple
type $(J, \lambda)$ in $G$ associated with a simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ with
$E=F[\beta]$ as in Section 1.2. Let $B$ be the A-centralizer of $\beta$ , and
$\mathfrak{B}=B\cap \mathfrak{U}$ .

Let $e_{1}=e(\mathfrak{B}|0_{E})$ and $f_{1}=N/([E:F]e_{1})$ be as in Section 1.2. Let
$K/E$ be an unramified extension of degree $f_{1}$ , and set $C^{\cross}=GL_{e_{1}}(K)$ .
Let $\mathcal{I}$ be an Iwahori subgroup of $C^{\cross}$ , and $1_{\mathcal{I}}$ the trivial representation
of $\mathcal{I}$ . Then the Hecke algebras $\mathcal{H}(G, \lambda)$ and $\mathcal{H}(C^{\cross}, 1_{\mathcal{I}})$ for $(J, \lambda)$ and
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$(\mathcal{I}, 1_{\mathcal{I}})$ , respectively, are obtained (cf. [4, Section 4]). It follows from
[4, (5.5.16), (5.6.6)] that there exists a support-preserving isomorphism

$\Psi:\mathcal{H}(G, \lambda)\simeq \mathcal{H}(C^{\cross}, 1_{\mathcal{I}})$

(cf. [4, (7.6.18)]). Via this isomorphism $\Psi$ , the equivalence class of
the irreducible discrete series representation $(\pi, \mathcal{V})$ of $G$ corresponds
to that of an unramified twist $\phi$ . St $C^{\cross}$ of the Steinberg representation
St $C^{\cross}$ of $C^{\cross}$ (cf. [13, p.13]). In the notation of [4, (7.7.1)], we have

$\pi\simeq \mathfrak{U}0_{\Psi}(\phi\cdot St_{C^{\cross}})$

where $\mathfrak{U}V_{\Psi}$ is defined as in [4, (7.6.21)]. Denote by $St_{G}$ the Steinberg
representation of $G$ , and by $\deg(St_{G}, dx)$ the formal degree of $St_{G}$ rela-
tive to a Haar measure $dx$ on $G$ . Since the formal degrees of $St_{C^{\cross}}$ and
$\phi$ . St $C^{\cross}$ are the same, by [4, (7.7.11)], we obtain the following result.

Theorem 1.2. (cf. [13, Proposition 3.6]) Let notations and assump-
tions be as above. Then for arbitmry measures $dx$ on $G$ and $dy$ on
$C^{\cross}$ ,
(1.1)

$\frac{\dim(\lambda)}{e(E|F)}vol(K^{\cross}\mathcal{I}/K^{\cross}, dy)\deg(Stc\cross, dy)=vol(F^{\cross}J/F^{\cross}, dx)\deg(\pi, dx)$ ,

where $e(E|F)$ denotes the index of ramification of $E/F$ .

1.5. A deformation of the formal degree formula. There exists
a hereditary $0_{F}$-order $\mathfrak{U}_{m}$ in $A$ such that $U(\mathfrak{U}_{m})=\mathfrak{U}_{m}^{\cross}$ is an Iwahori
subgroup of $G$ that is contained in the parahoric subgroup $U(\mathfrak{U})$ . Now,
we first normalize $dx$ on $G$ so that $vol(F^{\cross}U(\mathfrak{U}_{m})/F^{\cross}, dx)=1$ . Then

$vol(F^{\cross}U(\mathfrak{U})/F^{\cross}, dx)$ $=$ $(U(\mathfrak{U}):U(\mathfrak{U}_{m}))vol(F^{\cross}U(\mathfrak{U}_{m})/F^{\cross}, dx)$

$=$ $(U(\mathfrak{U}):U(\mathfrak{U}_{m}))$ ,

and by [3, Proposition 5.3], the formal degree of the Steinberg repre-
sentation $St_{G}$ of $G$ is given by

$\deg(St_{G}, dx)=\frac{1}{N}\overline{W}_{A_{N-1}}(q^{-1})^{-1}$ ,

where $\overline{W}_{A_{N-1}}(t)$ is the Poincar\’e series of type $A_{N-1}$ (see [12]). Thus,.
we obtain Macdonald $s$ formula:

$vol(F^{\cross}U(\mathfrak{U})/F^{\cross}, dx)\deg(St_{G}, dx)=\frac{1}{N}(U(\mathfrak{U}) :U(\mathfrak{U}_{m}))\tilde{W}_{A_{N-1}}(q^{-1})^{-1}$

which is the same as that of [13, 3.7]. This formula holds for any Haar
measure $dx$ on $G$ . We again normalize $dx$ on $G$ so that

$\deg(St_{G}, dx)=1$ .
Then

$vol(F^{\cross}U(\mathfrak{U})/F^{\cross}, dx)=\frac{1}{N}(U(\mathfrak{U}):U(\mathfrak{U}_{m}))\tilde{W}_{A_{N-1}}(q^{-1})^{-1}$
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On the other hand, for $C^{\cross}=GL_{e_{1}}(K)$ , set
$f=f(K|F)=[k_{K}:k_{F}]$ ,

where $k_{K}$ is the residue field of $K$ . Then, from Macdonald $s$ formula
for St $C^{\cross}$ , we also obtain

1–
$vol(K^{\cross}\mathcal{I}/K^{\cross}, dy)\deg(Stc\cross, dy)=\overline{e_{1^{W_{A_{e}}}}}$1-1

$(q^{-f})^{-1}$ .

Hence, since $N/e_{1}=[K:F]=fe(E|F)$ and
$vol(F^{\cross}J/F^{\cross}, dx)=vol(F^{\cross}U(\mathfrak{U})/F^{\cross}, dx)(U(\mathfrak{U}):J)^{-1}$ ,

we obtain
(1.2)

$\frac{\deg(St_{C^{\cross}},dy)}{e(E|F)}\frac{vo1(K^{\cross}\mathcal{I}/K^{\cross},dy)}{vo1(F^{\cross}J/F^{\cross},dx)}=f\frac{\tilde{W}_{A_{N-1}}(q^{-1})}{\tilde{W}_{A_{e-1}}1(q-f)}\frac{(U(\mathfrak{U}):J)}{(U(\mathfrak{U}):U(\mathfrak{U}_{m}))}$.

Since $J=U(\mathfrak{B})J^{1}$ and $J^{1}\subset U^{1}(\mathfrak{U})$ , we moreover obtain

(1.3) $(U( \mathfrak{U}) :J)=\frac{(U(\mathfrak{U}):U^{1}(\mathfrak{U}))}{(U(\mathfrak{B}):U^{1}(\mathfrak{B}))}(U^{1}(\mathfrak{U}):J^{1})$ .

Lemma 1.3. Let notations and assumptions be as above. Then the
formal degree $\deg(\pi, dx)$ is equal to

$(f \frac{\overline{W}_{A_{N-1}}(q^{-1})}{\overline{W}_{A_{e-1}1}(q^{-f})})(U(\mathfrak{U}_{m}):U^{1}(\mathfrak{U}))(\frac{\dim(\sigma)}{(U(\mathfrak{B}).U^{1}(\mathfrak{B}))})$

$\cross((U^{1}(\mathfrak{U}):J^{1})\dim(\eta))$ .

Proof. By definition, $\dim(\lambda)=\dim(\eta)\dim(\sigma)$ . Thus, the lemma fol-
lows from Eqs. (1.1) to (1.3).

1.6. Calculation of the factors of $\deg(\pi, dx)$ . By the definition in
[12],

(1.4) $f \frac{\tilde{W}_{A_{N-1}}(q^{-1})}{\tilde{W}_{A_{e_{1}-1}}(q^{-f})}=f\frac{q^{N}-1(q^{f}-1)^{e_{1}}}{q^{N/e}-1(q-1)^{N}}$

where we set $e=e(E|F)$ .
Since $U(\mathfrak{U})/U^{1}(\mathfrak{U})\simeq GL_{f_{0}}(k_{F})^{e_{0}}$ in Section 1.2, the quotient group

$U(\mathfrak{U}_{m})/U^{1}(\mathfrak{U})$ is isomorphic to the product of $e_{0}$-copies of a Borel sub-
group $\overline{B}_{0}$ of $GL_{fo}(k_{F})$ . Hence,

(1.5) $(U(\mathfrak{U}_{m}):U^{1}(\mathfrak{U}))=|\overline{B}_{0}|^{e0}=\{(q-1)^{fo}q^{\frac{1}{2}f_{0}(fo-1)}\}^{e_{0}}$.

By the definition of $\sigma_{0}$ ,

$\dim(\sigma)=(\dim(\sigma_{0}))^{e_{1}}=\prod_{i=1}^{f_{1}-1}(q^{f(E|F)i}-1)^{e_{1}}$ ,
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and $(U(\mathfrak{B}):U^{1}(\mathfrak{B}))=|GL_{f_{1}}(k_{E})|^{e_{1}}$ . Hence,

(1.6) $\frac{\dim(\sigma)}{(U(\mathfrak{B}):U^{1}(\mathfrak{B}))}=\frac{q^{-\frac{1}{2}f(E|F)e_{1}f_{1}(f_{1}-1)}}{(q^{f}-1)^{e_{1}}}$ .

1.7. Calculation of the factor $(U^{1}(\mathfrak{U}) : J^{1})\dim(\eta)$ . Since by defini-
tion $U^{1}(\mathfrak{U})=1+$ as $\supset J^{1}=1+\mathfrak{J}^{1}\supset H^{1}=1+\mathfrak{H}^{1}$ , it follows from [4,
(5.1.1) $]$ that the last factor $(U^{1}(\mathfrak{U}):J^{1})\dim(\eta)$ is equal to

$(\mathfrak{P}:0^{1})\sqrt{(J^{1}:H^{1})}=$ $(\mathfrak{P}:7^{1})(3^{1}:\mathfrak{H}^{1})^{1/2}$

$=$ $(\mathfrak{P}:3^{1})^{1/2}(\mathfrak{P}:\ovalbox{\tt\small REJECT}^{1})^{1/2}$ .

This amounts to $\dim\pi_{\beta}^{1}$ in [13, 7.1]. We compute this similarly to as
done in [13].

For the simple stratum $[\mathfrak{U}, n, 0,\beta]$ in $A,$ $[\mathfrak{U}, n, r, \beta]$ with $r=-k_{0}(\beta, \mathfrak{U})$

is a pure stratum, and it determines a family $[\mathfrak{U}, n, r_{i}, \gamma_{i}],$ $0\leq i\leq s$

of simple strata that satisfy the conditions [4, (2.4.2)]. This family is
called a defining sequence for the pure stratum $[\mathfrak{U}, n, r, \beta]$ . Hence we
get a family of pairs $(r_{i}, \gamma_{i}),$ $0\leq i\leq s$ , such that

(1) $[\mathfrak{U}, n, r_{i}, \gamma_{i}]$ is simple, $0\leq i\leq s$ ;
(2) $[\mathfrak{U}, n, r_{0}, \gamma_{0}]\sim[\mathfrak{U}, n, r, \beta]$ ;
(3) $0<r=r_{0}<r_{1}<\cdots<r_{s}<r_{s+1}=n$;
(4) $r_{i+1}=-k_{0}(\gamma_{i}, \mathfrak{U})$ , and for $0\leq i\leq s-1$ ,

$[\mathfrak{U}, n, r_{i+1}, \gamma_{i+1}]\sim[\mathfrak{U}, n, r_{i+1}, \gamma_{i}]$ ,

(5) $-k_{0}(\gamma_{s}, \mathfrak{U})=n$ or $\infty$ .
These conditions include all the conditions in [4, (2.4.2)] except condi-
tion (vi).

Denote by $A_{\gamma_{i}}$ the A-centralizer of $\gamma_{i}$ . Then by using the family
$(r_{i}, \gamma_{i}),$ $0\leq i\leq s$ , we define $\mathfrak{J}=\mathfrak{J}(\beta)=\mathfrak{J}(\beta, \mathfrak{U})$ and S) $=$ Sb $(\beta)=$

$\mathfrak{H}(\beta, \mathfrak{U})$ inductively as follows:
$\mathfrak{J}(\gamma_{i})=\mathfrak{U}\cap A_{\gamma:}+\mathfrak{J}(\gamma_{i+1})\cap \mathfrak{P}^{[(+1)/2]}r:+1$ ,
$\mathfrak{H}(\gamma_{i})=\mathfrak{U}\cap A_{\gamma_{i}}+\mathfrak{H}(\gamma_{i+1})\cap \mathfrak{P}^{[r+1/2]+1}:$,

for-l $\leq i\leq s$ , where we set $\gamma_{-1}=\beta$ and $\mathfrak{J}(\gamma_{s+1})=$ Sb $(\gamma_{s+1})=\mathfrak{U}$ , (see
[4, (3.1.7), (3.1.8)] $)$ .

For a real number $r$ , set

$\overline{r}=[r/2]+1,$ $\underline{r}=[(r+1)/2]$ ,

where $[x]$ denotes the greatest integer $\leq x$ , for a real number $x$ . From
a filtration

$\mathfrak{P}=\mathfrak{P}+\mathfrak{J}^{1}\supset \mathfrak{P}^{\underline{r_{1}}}+0^{1}\supset \mathfrak{P}^{\underline{r_{2}}}+O^{1}\supset\cdots\supset \mathfrak{P}^{\underline{r_{s}}}+\mathfrak{J}^{1}\supset \mathfrak{P}^{\underline{n}}+\mathfrak{J}^{1}=0^{1}$
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in $\mathfrak{P}\supset \mathfrak{J}^{1}$ , we get

$(\mathfrak{P}:0^{1})$ $=$ $\prod_{i=-1}^{s}(\mathfrak{P}^{\underline{r_{i}}}+\mathfrak{J}^{1}:\mathfrak{P}^{\underline{r_{1+1}}}+\mathfrak{J}^{1})$

$=$ $\prod_{i=-1}^{s}\frac{(\mathfrak{P}^{\underline{r_{i}}}\cdot \mathfrak{P}^{\underline{r_{i+1}}})}{(\mathfrak{P}^{\underline{r_{i}}}\cap O:\mathfrak{P}^{\underline{r_{i+1}}}\cap \mathfrak{J})}$

$=$ $\prod_{i=-1}^{s}\frac{(\mathfrak{P}^{\underline{r_{i}}}\cdot \mathfrak{P}^{\underline{r_{i+1}}})}{(\mathfrak{P}^{\underline{r_{i}}}\cap A_{\gamma_{i}}.\mathfrak{P}^{\underline{r_{1+1}}}\cap A_{\gamma:})}$,

where we set $r_{-1}=1$ . The last line follows from [4, (3.1.8), (3.1.10)].
For-l $\leq i\leq s$ , set

$d_{i}=\underline{r_{i+1}}-\underline{r_{i}}$ .

Since $\mathfrak{P}$ is principal,
$(\mathfrak{P}^{\underline{r_{i}}}:\mathfrak{P}^{\underline{r_{i+1}}})=(\mathfrak{U}:\mathfrak{P})^{d_{i}}=|M_{f_{0}}(k_{F})|^{e_{0}d_{i}}=q^{Nf_{0}d_{i}}$ .

Set $f_{i}^{f}=f(F[\gamma_{i}]|F),$ $e_{i}’=e(F[\gamma_{i}]|F)$ , and

$m_{i}=$ $(N/[F[\gamma_{i}] :F])/(e_{0}/e_{i}’)=f_{0}/f_{i}’$ .

Then

$(\mathfrak{P}^{\underline{r_{i}}}\cap A_{\gamma_{i}}:\mathfrak{P}^{\underline{r:+1}}\cap A_{\gamma_{i}})=|M_{m_{i}}(k_{F[\gamma_{i}]})|^{(e_{0}/e_{i}’)d_{i}}=q^{Nfod_{i}/[F[\gamma:1:F]}$ .
Hence,

$( \mathfrak{P}:\mathfrak{J}^{1})=q^{\mu};\mu=\sum_{i=-1}^{s}Nf_{0}(1-[F[\gamma_{i}]:F]^{-1})d_{i}$ .

Similarly, setting $d_{i}’=\overline{r_{i+1}}-\overline{r_{i}}$, we get

$( \mathfrak{P}:\mathfrak{H}^{1})=q^{\mu’};\mu’=\sum_{i=-1}^{s}Nf_{0}(1-[F[\gamma_{i}]:F]^{-1})d_{i}’$ .

Finally, we obtain $(\mathfrak{P} : \mathfrak{J}^{1})^{1/2}(\mathfrak{P} : \ovalbox{\tt\small REJECT}^{1})^{1/2}=q^{\nu/2}$ with

(1.7) $\nu=\sum_{i=-1}^{s}Nf_{0}(1-[F[\gamma_{i}]:F]^{-1})(r_{i+1}-r_{i})$ .

1.8. Main Theorem for $GL_{N}(F)$ . We are now ready to determine
the explicit formal degree formula for an irreducible discrete series rep-
resentation $(\pi, \mathcal{V})$ of $G$ as in Section 1.3.

Theorem 1.4. ([13, Theorem 1.1]) Let $(\pi, \mathcal{V})$ be an irreducible dis-
crete series representation of $G$ that contains a simple type $(J, \lambda)$ in $G$

associated with a simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ as in Section 1.3. Let
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$dx$ be a Haar measure on $G$ such that $\deg(St_{G}, dx)=1$ . For a family
$(r_{i}, \gamma_{i}),$ $0\leq i\leq s$ , as in Section 1.7, set

$\Delta=\frac{1}{e(\mathfrak{U}|0_{F})}\sum_{i=-1}^{s}(1-[F[\gamma_{i}]:F]^{-1})(r_{i+1}-r_{i})$

where we reset $(r_{-1}, \gamma_{-1})=(0, \beta)$ and $r_{s+1}=n$ . Then this positive
rational number $\triangle$ does not depend on the choice of defining sequence,
and

$\deg(\pi, dx)=f\frac{q^{N}-1}{q^{N/e}-1}q^{\frac{1}{2}[N^{2}\Delta-N(1-1/e)]}$ ,

where $f=f(K|F)$ and $e=e(K|F)=e(E|F)$ .

Proof. Denote by $\deg(\pi, dx)_{p’}$ the p-prime part of $\deg(\pi, dx)/f$ . From
Lemma 1.3 and from Eqs. (1.4) to (1.6), it follows immediately that

$f \cdot\deg(\pi, dx)_{p’}=f\frac{q^{N}-1}{q^{N/e}-1}$ .

Since the q-power of $(1.5)\cross(1.6)$ is equal to

$\frac{1}{2}e_{0}f_{0}(f_{0}-1)$ $-$ $\frac{1}{2}f(E|F)e_{1}f_{1}(f_{1}-1)$

$=$ $\frac{1}{2}N(\frac{1}{e}-1)+\frac{1}{2}Nf_{0}(1-\frac{1}{[E:F]})$ ,

the sum of this value and the value $\nu$ of (1.7) is reduced to the q-power
of the right-hand side of the formula in the assertion.

It follows directly from [4, (2.1.4)] that $\Delta$ does not depend on the
choice of defining sequence. The proof is complete.

In Theorem 1.4, if $e_{1}=e(\mathfrak{B}|0_{E})=1$ , the irreducible discrete se-
ries representation $(\pi, \mathcal{V})$ of $G$ is supercuspidal. Thus, Theorem 1.4
contains the formal degree formula for an irreducible supercuspidal
representation of $G$ containing a maximal simple type $(J, \lambda)$ as follows:

Corollary 1.5. Let $(\pi, \mathcal{V})$ be an irreducible supercuspidal representa-
tion of $G$ containing a maximal simple type $(J, \lambda)$ in $G$ , and $\{(r_{i}, \gamma_{i})$ :
$0\leq i\leq s\}$ a family as in Theorem 1.3. Then

$\deg(\pi, dx)=f\frac{q^{N}-1}{q^{N/e}-1}q^{\frac{1}{2}[N^{2}\Delta-N(1-1/e)]}$ ,

for a Haar measure $dx$ on $G$ with $\deg(St_{G}, dx)=1$ , where

$\triangle=\frac{1}{e}\sum_{i=-1}^{s}(1-[F[\gamma_{i}]:F]^{-1})(r_{i+1}-r_{i})$ .

Remarks 1.6. (i) It is shown by [4, (6.2.2)] that an irreducible super-
cuspidal representation $(\pi, \mathcal{V})$ of $G$ containing a maximal simple type
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$(J, \lambda)$ in $G$ of positive level is equivalent to $c-Ind_{E^{x}J}^{G}\Lambda$ for an extension
$\Lambda$ of $\lambda$ . From this fact, we obtain

$\deg(\pi, dx)=\frac{\dim(\lambda)}{vol(E^{\cross}J/F^{\cross},dx)}$

for any Haar measure $dx$ on $G$ , (cf. [7, 5.9]), independently from The-
orem 1.2, and can similarly show Corollary 1.5.

(ii) In Theorem 1.4, the level zero case is implicit. In this case,
$E=F,$ $\mathfrak{B}=\mathfrak{U},$ $J^{t}=U^{t}(\mathfrak{U})(t=0,1)$ and $\eta$ is trivial, as in Section 1.2.
Thus, in the formula for $\deg(\pi, dx)$ of Lemma 1.3, we have $(U^{1}(\mathfrak{U})$ :
$J^{1})\dim(\eta)=1$ , and can get

$\deg(\pi, dx)=N/e(\mathfrak{U}|0_{F})$

similarly to as done in Section 1.6, for such a Haar measure $dx$ on $G$

as above.
(iii) This formula follows also from Theorem 1.4, by setting $e=$

$1,$ $\triangle=0$ and $\lambda=\lambda_{1}$ , since $E=F,$ $J=U(\mathfrak{U})$ and so the defining
sequence is empty. Hence, by Theorem 1.4, the formal degrees of all
discrete series representations of $GL_{N}(F)$ are computed.

2. AN APPLICATION TO UNRAMIFIED $p$-ADIC UNITARY GROUPS

2.1. Unramified unitary groups. Let $F$ be a non-Archimedean 10-
cal field of odd residual characteristic, with a non-trivial galois involu-
tion $x\mapsto$ hi with fixed field $F_{0}$ . Let $N$ be an even integer $\geq 4$ , and $V$ an
N-dimensional F-vector space equipped with a non-degenerate $F/F_{0^{-}}$

Hermitian form $h$ with anisotropic part (0). Let $G=U(V, h)$ be the
unitary group of $(V, h)$ . Hereafter, we assume that $F/F_{0}$ is unramified.

Recently, in [9], we defined a self-dual simple type $(J, \lambda)$ in $G$ associ-
ated with a certain skew simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ , and, in [11],
we proved that the Hecke algebra $\mathcal{H}(G, \lambda)$ is the affine Hecke algebra of
type $\tilde{C}_{m}$ for some positive integer $m\geq 2$ , and determined the parame-
ters of the Hecke algebra completely. Thanks to these results on $G$ , we
can apply the improved method of the previous section for $GL_{N}(F)$ to
the unramified unitary group $G$ , and we obtain analogous results for
the group $G$ . Here we present a part of these results without proofs.

2.2. Self-dual simple types. We also denote by $x\mapsto$ hi the adjoint
(anti-)involution on $A=End_{F}(V)$ induced by the Hermitian form $h$ .

A simple stratum $[\mathfrak{U}, n, 0, \beta]$ in $A$ , defined in Section 1.1, is called
skew if $\mathfrak{U}$ is defined by a self-dual strict $0_{F}$-lattice sequence $\Lambda$ in $V$ (cf.
[14, 1.2] $)$ and $\beta$ is skew in $A$ , i.e., $\overline{\beta}=-\beta$ . Assume that $[\mathfrak{U}, n, 0, \beta]$ is a
skew simple stratum in $A$ with $E=F[\beta]$ . Write $E_{0}=\{x\in E:\overline{x}=x\}$ .
Then there exists a non-degenerate $E/E_{0}$-Hermitian form $h_{E}$ on the
E-vector space $V$ such that, setting $L\#=\{v\in V : h_{E}(v, L)\subset \mathfrak{p}_{E}\}$ , for
an $0_{E}$-lattice $L$ in $V$ , we have $L\#=\{v\in V:h(v, L)\subset p_{F}\}$ (cf. [15,
Section 2] $)$ .

105



Definition 2.1. Following [9], we say that a skew simple stratum
$[\mathfrak{U}, n, 0,\beta]$ in $A$ is good if the following conditions are satisfied:

(1) $E/E_{0}$ is an unramified quadratic extension;
(2) $R=\dim_{E}(V)$ is even;
(3) there exists an $0_{E}$-lattice $L$ in $\{\Lambda(n) : n\in \mathbb{Z}\}$ such that $L^{\#}=$

$\varpi_{E}L$ . where $\Lambda$ is as above and $\varpi_{E}$ is a uniformizer of $E$ .
Hereafter, we assume that $[\mathfrak{U}, n, 0, \beta]$ is a good skew simple stratum

in $A$ with $E=F[\beta]$ . Let $B$ be the A-centralizer of $\beta,$ $\mathfrak{B}=B\cap \mathfrak{U}$ ,
$e_{1}=e(\mathfrak{B}|0_{E})$ , and $f_{1}=N/([E:F]e_{1})$ , as before.

Similarly, we have compact open subgroups $H^{1}(\beta, \mathfrak{U})\subset J^{1}(\beta, \mathfrak{U})\subset$

$J(\beta, \mathfrak{U})$ of $G$ . Denote simply by $H^{1}\subset J^{1}\subset J$ these subgroups. As
in Section 1.2, we begin with a skew simple character $\theta$ of $H^{1}$ , and
there exists a unique irreducible representation $\eta$ of $J^{1}$ containing $\theta$ .
Moreover, we also have a $\beta$-extension $\kappa$ of $\eta$ to $J$ by [15, 4.2]. Set

$m=[e_{1}/2]$ .
It follows from the conditions of Definition 2.1 that the quotient group
$J/J^{1}$ is isomorphic to

$U(\mathfrak{B})/U^{1}(\mathfrak{B})\simeq\{\begin{array}{ll}GL_{f_{1}}(k_{E})^{m} if e_{1} is even,GL_{f_{1}}(k_{E})^{m}\cross U_{f_{1}}(k_{E}/k_{E_{0}}) if e_{1} is odd,\end{array}$

where by Definition 2.1(2), $f_{1}$ is even and $U_{f_{1}}(k_{E}/k_{E_{0}})$ denotes the
unitary group of a non-degenerate $k_{E}/k_{E_{0}}$ -Hermitian form on an $f_{1^{-}}$

dimensional $k_{E}$-vector space. Let $\sigma_{0}$ and $\sigma_{1}$ be irreducible cuspidal
representations of $GL_{f1}(k_{E})$ and $U_{f_{1}}(k_{E}/k_{E_{0}})$ , respectively. Let $\sigma$ be
the infiation of $\sigma_{0}^{\otimes m}$ to $J$ if $e_{1}$ is even, and that of $\sigma_{0}^{\otimes m}\otimes\sigma_{1}$ if $e_{1}$ is
odd. A simple type $(J, \lambda)$ in $G$ (of positive level) is defined similarly by
$\lambda=\kappa\otimes\sigma$ . By [15, p.334], on each factor $GL_{f_{1}}(k_{E})$ of $U(\mathfrak{B})/U^{1}(\mathfrak{B})$ ,
a certain Weyl group element of $G_{E}=B\cap G$ induces an involution
$g\mapsto\overline{g}$ .
Definition 2.2. ([11, Definition 5.2]) A simple type $(J, \lambda)$ in $G$ is
called self-dual if $\sigma_{0}$ is equivalent to the representation $g\mapsto\sigma_{0}(\overline{g})$ .

2.3. A formal degree formula for unramified $U(V, h)$ . Recently,
by [10] and [11], we determined the structure of the Hecke algebra
$\mathcal{H}(G, \lambda)$ for such a self-dual simple type $(J, \lambda)$ above as follows:

Proposition 2.3. Let $[\mathfrak{U}, n, 0, \beta]$ be a good skew simple stmtum in $A$

with $E=F[\beta]$ , and $(J, \lambda)$ a self-dual simple type in $G$ associated with
$[\mathfrak{U}, n, 0, \beta]$ in A. Let $B$ be the A-centmlizer of $\beta,$ $e_{1}=e(\mathfrak{B}|0_{E})$ , and
$m=[e_{1}/2]$ . Assume that $m\geq 2$ . Then the Hecke algebm $\mathcal{H}(G, \lambda)$ for
$(J, \lambda)$ is an affine Hecke algebm of type $C_{m}$ with parameter $(q_{1}, q_{2}, q_{3})=$

$(q^{-N/e_{0}}, q^{-N/2e_{0}}, q^{-N/2e_{0}})$ , where $e_{0}=e(\mathfrak{U}|0_{F})$ as in Section 1.1.

Let $K/E_{0}$ be a field extension such that $K\supset E,$ $K\supset K_{0}\supset E_{0}$ ,
$e(K|E_{0})=1$ , and $[K:E]=[K_{0}:E_{0}]=f_{1}$ . Let $C^{\cross}$ be the unitary
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group of type $C_{m}$ defined by a non-degenerate $K/K_{0}$-Hermitian form,
and $\mathcal{I}$ an Iwahori subgroup of $C^{\cross}$ . Immediately, $|k_{K}|=|k_{E}|^{f1}=$

$q^{N/e_{0}}$ , and so the Iwahori-Hecke algebra $\mathcal{H}(C^{\cross}, 1_{\mathcal{I}})$ turns out to be
also the affine Hecke algebra of type $\tilde{C}_{m}$ with parameter $(q_{1}, q_{2}, q_{3})=$

$(q^{-N/e_{0}}, q^{-N/2e_{0}}, q^{-N/2e_{0}})$ provided that $m\geq 2$ .
When $m=[e_{1}/2]=1$ , again by [11], $\mathcal{H}(G, \lambda)$ is isomorphic to the

affine Hecke algebra with parameter $|k_{K_{0}}|=q^{N/2e_{0}}$ over the infinite
dihedral group, and so is the Iwahori-Hecke algebra $\mathcal{H}(C^{\cross}, 1_{\mathcal{I}})$ of un-
ramified $C^{\cross}=U(1,1)(K_{0})$ relative to $1_{\mathcal{I}}$ as well (cf. [2, 3. $d]$ ). Hence,
we obtain the following:
Proposition 2.4. Let notations and assumptions be as above. In par-
ticular, let $m\geq 1$ . Then there exists a canonical isomorphism

$\Psi:\mathcal{H}(G, \lambda)\simeq \mathcal{H}(C^{\cross}, 1_{\mathcal{I}})$ ,
that is support-preserving.
Theorem 2.5. Via the Hecke isomorphism $\Psi$ in Proposition 2.4, the
Steinberg representation $St_{C^{\cross}}$ of $C^{\cross}$ corresponds to the equivalence
class of an irreducible square-integmble representation, say $(\pi, \mathcal{V})_{f}\backslash$ of
$G$ that contains the self-dual simple type $(J, \lambda)$ in $G$ as above.
Proof. This is the analogue of [5, (7.7.1)] for $GL_{N}(F)$ . The method of
proof remains valid for unramified $G$ .
Corollary 2.6. Let notations and assumptions be as in Theorem 2.5.
Then

$vol(J, dx)\frac{\deg(\pi,dx)}{\dim(\lambda)}=vol(\mathcal{I}, dy)\deg(St_{C^{x}}, dy)$

for any Haar measures $dx$ on $G$ and $dy$ on $C^{\cross}$ .
2.4. A formal degree formula for unramified $G$ . We normalize
$dx$ on $G$ so that the formal degree of the Steinberg representation $St_{G}$

of $G$ is equal to 1 relative to $dx$ . Then, as in Section 1.5, the formal
degree $\deg(\pi, dx)$ is rewritten as

$( \frac{\overline{W}_{C_{N/2}}(q^{-1},q^{-1/2},q^{-1/2})}{\overline{W}_{C_{m}}(q,q,q)})(U(\mathfrak{U}_{m}):U^{1}(\mathfrak{U}))$

$\cross(\frac{\dim(\sigma)}{(U(\mathfrak{B})\cdot U^{1}(\mathfrak{B}))}I((U^{1}(\mathfrak{U}):J^{1})\dim(\eta))$ ,

where $U(\mathfrak{U}_{m})$ is an Iwahori subgroup of $G$ that is contained in $U(\mathfrak{U})$ ,
and, for example, $\overline{W}_{C_{m}}(t_{1}, t_{2}, t_{3})$ denotes the Poincar\’e series of type $\tilde{C}_{m}$

(see [12, Section 3]). We note that this also holds in the case of $m=1$ .
For, if we formally set $m=1$ in the Poinca\’e series $\overline{W}_{C_{m}}(t_{1}, t_{2}, t_{3})$ , we
have

$\frac{(1-t_{1})(1+t_{2})(1+t_{3})}{(1-t_{1})(1-t_{2}t_{3})}=\frac{(1+t_{2})(1+t_{3})}{1-t_{2}t_{3}}$ .
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This is nothing but the Poincar\’e series for the infinite dihedral group.
Similarly, we can easily compute the factors except for the last

$(U^{1}(\mathfrak{U}):J^{1})\dim(\eta)$ as in Section 1.6.
The calculation of this last factor is rather more laborious than that

for $GL_{N}$ in Section 1.7. We also have a defining sequence for the
pure stratum $[\mathfrak{U}, n, r, \beta]$ in $A$ with $r=-k_{0}(\beta, \mathfrak{U})$ , and get a family
$\{(r_{i}, \gamma_{i})|0\leq i\leq s\}$ , together with $(r_{-1}, \gamma_{-1})=(1, \beta)$ , where $\gamma_{i}$ is
skew and simple in $A$ , by [14, Section 3], as in Section 1.7. Set $d_{i}=$

$[(r_{i+1}+1)/2]-[(r_{i}+1)/2]$ and $d_{i}’=[r_{i+1}/2]-[r_{i}/2]$ , for-l $\leq i\leq s$ ,
as before.

To present the main theorem, we need to define positive integers $\delta_{i}$ ,
for $-1\leq i\leq s$ , as follows: set $\delta_{i}=0$ if $e_{0}/e(F[\gamma_{i}]|F)$ is even, and
otherwise,

$\delta_{i}=[d_{i}/2]+[(d_{i}’+1)/2]$ if $r_{i}\equiv$ Omod4,
$\delta_{i}=[(d_{i}+1)/2]+[d_{i}’/2]$ if $r_{i}\equiv 1mod 4$ ,
$\delta_{i}=[(d_{i}+1)/2]+[(d_{i}’+1)/2]$ if $r_{i}\equiv 2mod 4$ ,
$\delta_{i}=[d_{i}/2]+[d_{i}^{f}/2]$ if $r_{i}\equiv 3mod 4$ .

Theorem 2.7. Let $(\pi, \mathcal{V})$ be an irreducible square-integmble represen-
tation of $G$ containing a self-dual simple type $(J, \lambda)$ in $G$ as in The-
orem 2.5. Let $\{(r_{i}, \gamma_{i})|0\leq i\leq s\}$ be a family defined as above. Let
$e_{0}=e(\mathfrak{U}|0_{F}),$ $e=e(E|F)$ , and $e_{i}^{0}=e(F[\gamma_{i}]|F[\gamma_{i}]_{0})$ , for $0\leq i\leq s$ ,
where each $F[\gamma_{i}]_{0}$ is the fixed field of $F[\gamma_{i}]$ under the involution induced
by the adjoint one $x\mapsto\overline{x}$ on $A$ in Section 2.2. Set

$\triangle=\frac{1}{e_{0}}\sum_{i=-1}^{s}(1-\frac{1}{[F[\gamma_{i}].F]})(r_{i+1}-r_{i})$ ,

$\triangle’=\frac{1}{e_{0}}\sum_{i=-1}^{s}(1-e_{i}^{0})\delta_{i}$

where each $\delta_{i}$ is the integer defined above and we reset $(r_{-1}, \gamma_{-1})=$

$(0, \beta)$ and $r_{s+1}=n$ . Then these $\triangle$ and $\triangle^{J}$ do not depend on the choice
of defining sequence, and the fomal degree $\deg(\pi, dx)$ is given by

(1) when $e_{0}/e=e(\mathfrak{B}|0_{E})$ is even,

$q^{\frac{1}{4}[N^{2}\Delta-N(1-1/e)+N\Delta’]}$

$\cross\prod_{i=0}^{e_{0}/2e-1}\frac{q^{N(i+e\circ/2e)/e_{0}}-1}{(q^{N(i+1)/e_{0}}-1)(q^{N(i+1/2)/e_{O}}+1)^{2}}$

$\cross\prod_{i=0}^{N/2-1}\frac{(q^{i+1}-1)(q^{i+1}+1)^{2}}{q^{N/2+i-1}-1}$ ,

(2) when $e_{0}/e=e(\mathfrak{B}|0_{E})$ is odd,
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$q^{\frac{1}{4}[N^{2}\Delta-N(1-1/e)+N\Delta’]}$

$\overline{q^{N/2e_{0}}-1}$

$\cross\prod_{i=0}^{(e_{0}/e-3)/2}\frac{q^{N(i+(e_{0}/e-1)/2)/e_{0}}-1}{(q^{N(i+1)/e_{0}}-1)(q^{N(i+1/2)/e_{0}}+1)^{2}}$

$\cross\prod_{i=0}^{N/2-1}\frac{(q^{i+1}-1)(q^{i+1}+1)^{2}}{q^{N/2+i-1}-1}$ .

Remarks 2.8. (1) We also obtained analogous results for $Sp_{N}(F)$ .
This formal degree formula is more complicated than that in
Theorem 2.7 for the unramified unitary group $G$ .

(2) In [11], it is proved that Theorem 2.5 holds for a self-dual simple
type $(J, \lambda)$ in $G$ associated with not only a skew simple stratum
$[\mathfrak{U}, n, 0, \beta]$ in $A$ which is not good (see Definition 2.1), but also
a skew (non-simple) semisimple stratum $[\Lambda, n, 0, \beta]$ in $A$ , that is,
$\beta$ is a skew semisimple element of $A$ (cf. [14]).

(3) We constructed a special skew semisimple stratum $[\Lambda, n, 0, \beta]$ in
$A$ , and computed the corresponding formal degree as well.
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