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THE FORMAL DEGREE OF DISCRETE SERIES
REPRESENTATIONS OF GLy

(GLy DEERIIZRR OB RHIREUC DUV T)
KAZUTOSHI KARIYAMA (A|LLFI{8)

INTRODUCTION

Let G be a connected reductive group defined over a non-Archimedean
local field F, and G = G(F'). It is important to determine the for-
mal degrees of the discrete series representations of G for the explicit
Plancherel measure for G. In Aubert and Plymen [1], the explicit
Plancherel measure for G = GLn(D) is derived via the work of Sil-
berger and Zink [13], where D is a division algebra over F.

For GLy(F'), there are many works, e.g., [16], [8], [4], and [13] of
computing formal degrees of discrete series representations. Indeed, the
general formal degree formula of the discrete series representations are
given in [4], and the explicit values of the formal degrees are computed
in [8] in the tame case, and in [13] in the general case.

In this article, we improve the method of [13] by using the results
of [4], and compute the values of the formal degrees of the discrete
series representations of GLy(F') (Teorem 1.4), which are expressed
in terms of critical exponents (see 1.1 below). These expressions are
implicit in the formula of [13, Theorem 1.1]. Thus, our formulas are
not essentially new. But our improved method remains valid for some
other classical groups. In fact, we obtained analogous results for a
symplectic group Spy(F') and for a unramified unitary group U(V, h),
where N is an even integer > 4 and h is a non-degenerate Hermitian
form of an N-dimensional F-vector space.

The contents of this article are summarized as follows: In Section 1,
we give the improvement of the method of Silberger and Zink [13] for
GLN(F), and in Sectin 2, we present results (Theorem 2.7) obtained
using the recent works on Hecke algebras of self-dual simple types of
Kariyama and Miyauchi [11] (cf. [10]) for the unramified unitary group
U(V,h). '

1. AN IMPROVEMENT ON THE METHOD OF SILBERGER-ZINK

1.1. Preliminaries. Let F' be a non-Archimedean local field. Let of
be the ring of integers of F, pr its maximal ideal, and kr = or/pr the
residue field. We denote by g = |kp| the cardinality of kp.

Let N be an integer > 2, and V an N-dimensional vector space over
F. We set A = Endr(V) and denote by G = A* the multiplicative
group of A. By an appropriate F-basis of V, we identify A = My(F)
and G = GLn(F).



We use the notations of Bushnell-Kutzko [4]. Let 2 be a hereditary
or-order in A with Jacobson radical 8 = rad(). We define a subgroup
Ka of G by Ko = {g € G|g2g~' = A}. For an element 3 in A, the
integer ko(8,2) is defined in [4, (1.4.5), (1.4.6)].

Following [4, (1.5)], a stratum in A is a 4-tuple (A, n,r, 5], where
is as above, n, r are integers such that n > r, and 8 € A with 8 € ™.

Definition 1.1. ([4, (1.5.5)]) A stratum [, n,r, 8] is called pure, if
the following conditions are satisfied:

(1) the algebra E = F[3] is a field,
(2) EX C Kq,
(3) Be PP

It is called simple if, in addition,

(4) r < —ko(B, ).

Thus, for a simple stratum [, n,0, 8] in A, the integer ko(5,2) sat-
isfies ko(8, %) = —min{r € Z : [A, n,r, ] in not simple} of 15, (3.6)],
and it is called the critical exponent.

1.2. Simple types. Hereafter, we assume that the hereditary op-order
2 in a simple stratum [?A, n,0, 8] in A is always principal, that is, there
exists an element z in A such that P = 22 = Az.

Let eg = e(™U|or) be the op-period of 2, that is, P = pr2A, and set

fo = N/e().

Then each element z of A has the block form z = (z4)1<ij<e, With
Zij € Mfo(OF) if 1 < B and T € Mjo(pp) otherwise.

Let B be the A-centralizer of 3, and B = A N B. Then it follows
from Definition 1.1(2) that B is a hereditary og-order in B. Let e; =
e(B|og) be the og-period of B, defined as is eg above, where og is the
maximal ideal of E.

Associated with a simple stratum [, n, 0, 8] in A, the following three
compact open subgroups

H'=H'(8,2)cJ' =J'(8,A) CJ=J(B2)

of G are defined in [4, (3.1)]. Via these groups, a simple type in G,
denoted by (J, A), is constructed as follows: Take a simple character
6 of H! (see [4, (3.2)] for the definition). Then it is known that there
exists a unique irreducible representation n = n(6) of J! containing 6.
We obtain an extension, k, of  to J, which is called a 3-eztension.
Write Gg = B*. Then GE is isomorphic to GLy/(g:.r)(E). Set

fi=N/([E : Fle,).

For U(B) = B> D> U'(B) = 1 + rad(B), it follows from [4, (3.1.15))
that J = U(®B)J! and that

J/J* = U(B)/UN(B) ~ GLy, (k)"
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where kg denotes the residue field of E. Then J/J! is isomorphic to
a Levi subgroup of Gn/z.rj(kg). Let oo be an irreducible cuspidal
representation of GLy, (kg), and o the inflation of the representation
o = 00 ® -+ ® 0p (e1-times) of J/J' to J. Now the simple type
(J,A) in G is defined hy

A=KQ®o,

in (4, (5.5.10)(a)].

In particular, a simple type (J, A) in G of level zero is defined in [4,
(5.5.10)(b)]. This is a special case of [4, (5.5.10)(a)], by setting E = F,
B =2A J' =UA)(t = 0,1), and 8,7, s all trivial. Thus, J/J* is
isomorphic to GLy/., (kr)® for e; = e(A]or), and A is the inflation of
a representation o§°', where we set f; = N/e; and oy is an irreducible
cuspidal representation of GLy, (kr), as above.

A simple type (J, A) in G is called mazimal, if e; = e(Ajog) = 1.

1.3. Discrete series representations of G = GLy(F). Let e; be a
positive integer dividing NV, and p an irreducible supercuspidal repre-
sentation of G’ = G L/, (F'). Then there exists a maximal simple type
(Jo, M) in G’ containing Ay by [4, (8.4.1)].

Let M be a Levi subgroup of G = GLN(F) that is isomorphic to
G*® =G' X -+ x G’ (e;-times), and P = M N a parabolic subgroup of
G with Levi factor M and with unipotent radical N. Then p®* is an
irreducible supercuspidal representation of M ~ G™. Set Jy = Jg!,
and Ay = A¥®'. Then (Ju,Ay) is a [M, p®]py-type in the sense
of [5, (8.1)], and by [6, Proposition 1.4], there exists an irreducible
representation Ap of a compact open subgroup Jp of G associated with
the parabolic subgroup P such that (Jp, Ap) is a G-cover of (Jpr, Anr)-
Thus, (Jp, Ap) is a [M, p®©]g-type. The pair (Jp, Ap) is derived, as in
[4, (7.2.17)], from a simple type (J,A) in G associated with a simple
stratum [, n,0, 8] in A as in Section 1.2, and satisfies Indjp)\p ~ )\

By [17], the induced representation

Ind§(| det |1™*2p ® ... @ | det |2~1)/2p)

contains a unique irreducible discrete series representation, say (, V),
of G. Hence, by [4, (7.3.14)], (7, V) contains (J, ) and so (Jp, Ap).

1.4. A formal degree formula. Let (7, V) be the irreducible discrete
series representation of G in the previous section that contains a simple
type (J, A) in G associated with a simple stratum [, n,0, 8] in A with
E = F[f] as in Section 1.2. Let B be the A-centralizer of 8, and
B=BNA

Let e; = e(Blog) and f; = N/([E : Fle;) be as in Section 1.2. Let
K/E be an unramified extension of degree f;, and set C* = GL,, (K).
Let 7 be an Iwahori subgroup of C'*, and 17 the trivial representation
of Z. Then the Hecke algebras H(G, A\) and H(C*,1z) for (J, ) and
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(Z,1z), respectively, are obtained (cf. [4, Section 4]). It follows from
[4, (5.5.16), (5.6.6)] that there exists a support-preserving isomorphism

U :H(G,)) ~H(C*,11)
(cf. [4, (7.6.18)]). Via this isomorphism ¥, the equivalence class of
the irreducible discrete series representation (m,V) of G corresponds

to that of an unramified twist ¢ - Stox of the Steinberg representation
Stox of C* (cf. [13, p.13]). In the notation of (4, (7.7.1)], we have

T~ le\p(d) . Stcx)

where A0y is defined as in [4, (7.6.21)]. Denote by Stg the Steinberg
representation of G, and by deg(Stg, dz) the formal degree of St¢ rela-
tive to a Haar measure dz on G. Since the formal degrees of Stgx and
¢ - Stox are the same, by [4, (7.7.11)], we obtain the following result.

Theorem 1.2. (cf. [13, Proposition 3.6]) Let notations and assump-
tions be as above. Then for arbitrary measures dr on G and dy on
cx,

(1.1)

dim() N y ) )

__e(EIF)VOI(K T/K*,dy) deg(Stex, dy) = vol(F*J/F*,dz) deg(m, dz),
where e(E|F) denotes the indez of ramification of E/F.

1.5. A deformation of the formal degree formula. There exists
a hereditary op-order ,, in A such that U(2,,) = ), is an Iwahori
subgroup of G that is contained in the parahoric subgroup U (). Now,
we first normalize dz on G so that vol(F*U(2y,)/F>,dz) = 1. Then

vol(F*U(A)/F*,dz) = (U():U(™Am))vol(F*U(Am)/F*,dz)
= (U®A) : U(Am)),
and by [3, Proposition 5.3], the formal degree of the Steinberg repre-
sentation Stg of G is given by

1~ -
N-WAN—I(q 1) la

where WAN_I(t) is the Poincaré series of type Anx—1 (see [12]). Thus,.
we obtain Macdonald’s formula:

deg(Stg,dz) =

vol(FXU(R)/F™, dz) deg(Stg, dz) = %/—(U(Ql) U () Way_, (@)

which is the same as that of [13, 3.7]. This formula holds for any Haar
measure dz on G. We again normalize dz on G so that

deg(Stg, dx) = 1.
Then

vol(FXU(Q)/F*, dz) = —]%[-(U(Ql) LU (2m)) Wy, (g7
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On the other hand, for C* = GL,, (K), set
f = f(K|F) = [kK . kF],
where kg is the residue field of K. Then, from Macdonald’s formula
for Stox, we also obtain

1 o~
vol(K*T /K>, dy) deg(Stox , dy) = E;WA,:I_l (g™

Hence, since N/e; = [K : F| = fe(E|F) and
vol(F*J/F*,dz) = vol(FXU()/F*,dz)(U®) : J)7%,
we obtain
(1.2)
deg(Stox, dy) vol(K*T/K*,dy) _  Way,(@") (U@ :J)
e(E|F)  vol(FXJ/Fx,dz) Wa., (¢~ (U@ : Uy))
Since J = U(B)J* and J! C U'(¥), we moreover obtain
@) U())
(U(B) : U(B))

Lemma 1.3. Let notations and assumptions be as above. Then the
formal degree deg(m, dz) is equal to

(v %——%;%) ) @) gy oy )

x ((U1 (@) : JY) dim(n)> .

Proof. By definition, dim()\) = dim(n)dim(c). Thus, the lemma fol-
lows from Egs. (1.1) to (1.3).

(1.3) U@ :J)= Ur) - JhH.

1.6. Calculation of the factors of deg(m,dz). By the definition in
[12],

Waya(a7) _ s 1 (gf - 1)
Wa,a(g™f) " aMe—1(a—-1)%
where we set e = e(E|F).

Since U(2)/U(A) ~ GLy,(kr)® in Section 1.2, the quotient group
U()/U* () is isomorphic to the product of eg-copies of a Borel sub-
group Bg of GLy,(kr). Hence,

(15)  (U(n): U@) = [Bo|* = {(g - 1)°gsPo}.

By the definition of oy,

(1.4) f

fi—1
dim(c) = (dim(oo))® = [ (/" - 1),

i=1



and (U(B) : U(B)) = |GLy, (kg)|**. Hence,

dlm(O') q‘%f(EIF)Elfl(ﬁ—l)

L9 @) @) @ - D"

1.7. Calculation of the factor (U'(2) : J!)dim(z). Since by defini-
tion UN(A) =1+P D J'=1+3' D H! =1+ H, it follows from [4,
(5.1.1)] that the last factor (U!(2) : J*) dim(n) is equal to

(B )VITTH) = ($:3)@ 9
(m . 31)1/2(;3 : ﬁl)lﬂ-

This amounts to dim wé in (13, 7.1]. We compute this similarly to as
done in [13].

For the simple stratum [, n, 0, 8] in A, [, n,r, B8] with r = —ko(5,2)
is a pure stratum, and it determines a family [A,n,7;,7%],0 < i < s
of simple strata that satisfy the conditions [4, (2.4.2)]. This family is
called a defining sequence for the pure stratum [, n,r,5]. Hence we
get a family of pairs (74,7i),0 < ¢ < s, such that

(1) [&,n,7i, 7] is simple, 0 <7 < 55

(2) [, n, 70, %] ~ [, n,r,B];

B 0<r=rg<r < <71y <Tep1 =n;

(4) riv1 = —ko(vi,U), and for 0 < ¢ < s -1,

[Ql, n,Tiy1, 7i+1] ~ [Ql, N, Tit1, 7’&']’

(5) —ko(vs,A) = n or oo.

These conditions include all the conditions in (4, (2.4.2)] except condi-
tion (vi). .

Denote by A, the A-centralizer of v;. Then by using the family
(ri,%),0 < i < s, we define J = J(8) = J(B,9) and H = H(B) =
$5(8,2) inductively as follows:

I(%) = AN Ay, + J(yi41) N PLn+ DA,
f)(7t) =AN A'y,' + ﬁ(7i+1) N ;p[rg+1/2]+1,
for —1 < i < s, where we set v_; = 3 and J(Vs+1) = H(Vs+1) = U, (see

4, (3.1.7), (3.1.8)]).
For a real number r, set

F=[r/2+1, r=((r+1)/2]

where [z] denotes the greatest integer < z, for a real number z. From
a filtration

P=P+IOPL+J OP2+J' > OPe+J OP2+J =7
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in P O I}, we get

TT Bz + 3" : presr + 3
i=—1

I & BEC R

- ,El (P=NJ: P=LNY)
fr (g

= gera, p=nay

Il

(B:3)

i=-—1

where we set 7_; = 1. The last line follows from [4, (3.1.8), (3.1.10)].
For —1 <i < s, set

di = Tit1 — T
Since P is principal,
(B2 i) = (2 ) = Mg ) [ = V7%
Set /= f(F[4l|F), ¢ = e(Flx|F), and
| mi = (N/[F[v] : F1)/(eo/€;) = fo/ f;.
Then
(PN A, PrinA,) = ‘Mmi(kF[%])l(eo/e’i)di = gV fodi/[FIWI-F],

Hence,

(PB:3)=¢* u=>_ Nfo(1—[F[v]: F] ).

i=-1

Similarly, setting d, = 7;71 — 7, we get

(B:9) =¢; W= Nfo(l-I[Flv]: FI ).

i=—1

Finally, we obtain (9 : 31)Y/2(P : $!)/2 = ¢*/2 with

(1.7) v="> Nfo(l = [F[]: F]"")(rser —13).

i=~1

1.8. Main Theorem for GLy(F). We are now ready to determine
the explicit formal degree formula for an irreducible discrete series rep-
resentation (7, V) of G as in Section 1.3.

Theorem 1.4. ([13, Theorem 1.1]) Let (w,V) be an irreducible dis-
crete series representation of G that contains a simple type (J,\) in G
associated with a simple stratum [A,n,0, 5] in A as in Section 1.3. Let



dz be a Haar measure on G such that deg(Stg,dz) = 1. For a family
(ri,%), 0<i <8, asin Section 1.7, set

Z Fll - FI™) (e —74)

Q‘lDF)

where we reset (r_1,7-1) = (0,8) and rey1 = n. Then this positive
rational number A does not depend on the choice of defining sequence,
and

-1

deg(7r, d.’L') f—m——l

where f = f(K|F) and e = e(K|F) = e(E|F).

Proof. Denote by deg(m, dz), the p-prime part of deg(w,dx)/f. From
Lemma 1.3 and from Egs. (1.4) to (1.6), it follows immediately that

N_1
f - deg(m,dz)y = f 1

Since the g-power of (1.5) x (1.6) is equal to

%eofo(fo -1) - %f(EIF)elfl(fl - 1)

1.1 1 1

the sum of this value and the value v of (1.7) is reduced to the g-power
of the right-hand side of the formula in the assertion.
It follows directly from [4, (2.1.4)] that A does not depend on the

choice of defining sequence. The proof is complete.

%[NZA—N(l—-l/e)],

In Theorem 1.4, if e; = e(Blog) = 1, the irreducible discrete se-
ries representation (m,V) of G is supercuspidal. Thus, Theorem 1.4
contains the formal degree formula for an irreducible supercuspidal
representation of G containing a maximal simple type (J, A) as follows:

Corollary 1.5. Let (m, V) be an irreducible supercuspidal representa-
tion of G containing a mazimal simple type (J,A) in G, and {(i, %) :
0 <1< s} a family as in Theorem 1.3. Then

-1 N(-1/e
deg(r, dz) = f",w—e:“iqllNzA N(-1/e)]

for a Haar measure dz on G with deg(Stg,dx) = 1, where

A= 0-F F) e ).

1,——1

Remarks 1.6. (i) It is shown by [4, (6.2.2)] that an irreducible super-
cuspidal representation (7, V) of G containing a maximal simple type
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(J,A) in G of positive level is equivalent to c-Ind$, ;A for an extension
A of A. From this fact, we obtain

dim(\)
vol(E* J/F*,dzx)
for any Haar measure dz on G, (cf. [7, 5.9]), independently from The-
orem 1.2, and can similarly show Corollary 1.5.

(ii) In Theorem 1.4, the level zero case is implicit. In this case,
E=F%8=2J =U!A)(t =0,1) and 7 is trivial, as in Section 1.2.
Thus, in the formula for deg(w,dz) of Lemma 1.3, we have (U*(2) :
JY) dim(n) = 1, and can get |

deg(m,dz) = N/e(A|oF)

similarly to as done in Section 1.6, for such a Haar measure dz on G
as above.

(ili) This formula follows also from Theorem 1.4, by setting e =
I, A=0and A = A, since E = F, J = U() and so the defining
sequence is empty. Hence, by Theorem 1.4, the formal degrees of all
discrete series representations of GLy(F') are computed.

deg(m,dx) =

2. AN APPLICATION TO UNRAMIFIED p-ADIC UNITARY GROUPS

2.1. Unramified unitary groups. Let F' be a non-Archimedean lo-
cal field of odd residual characteristic, with a non-trivial galois involu-
tion z — T with fixed field Fy. Let N be an even integer > 4, and V an
N-dimensional F'-vector space equipped with a non-degenerate F'/Fg-
Hermitian form h with anisotropic part (0). Let G = U(V,h) be the
unitary group of (V, h). Hereafter, we assume that F'/Fy is unramified.
Recently, in [9], we defined a self-dual simple type (J, \) in G associ-
ated with a certain skew simple stratum [, n,0,3] in A , and, in [11],
we prgved that the Hecke algebra H(G, A) is the affine Hecke algebra of
type C), for some positive integer m > 2, and determined the parame-
ters of the Hecke algebra completely. Thanks to these results on G, we
can apply the improved method of the previous section for GLy(F) to
the unramified unitary group G, and we obtain analogous results for
the group G. Here we present a part of these results without proofs.

2.2. Self-dual simple types. We also denote by z — T the adjoint
(anti-)involution on A = Endr(V) induced by the Hermitian form h.

A simple stratum [2,n,0,] in A, defined in Section 1.1, is called
skew if 2 is defined by a self-dual strict op-lattice sequence A in V (cf.
[14, 1.2]) and 3 is skew in A, i.e., § = —3. Assume that [2,7,0,0] is a
skew simple stratum in A with E = F[3]. Write Ey = {z € E: T = z}.
Then there exists a non-degenerate E/Fy-Hermitian form hg on the
E-vector space V such that, setting L# = {v € V : hg(v,L) C pg}, for
an og-lattice L in V, we have L* = {v € V : h(v, L) C pr} (cf. [15,
Section 2]).
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Definition 2.1. Following [9], we say that a skew simple stratum
[%,7n,0,0] in A is good if the following conditions are satisfied:

(1) E/E, is an unramified quadratic extension;

(2) R =dimg(V) is even,;

(3) there exists an og-lattice L in {A(n) : n € Z} such that L* =
wgL. where A is as above and wg is a uniformizer of E.

Hereafter, we assume that [, n,0, 3] is a good skew simple stratum
in A with E = F|[(]. Let B be the A-centralizer of 3, B = BN,
e1 = e(*Blog), and f; = N/([E : Fle1), as before.

Similarly, we have compact open subgroups H'(3,2%) C J'(8,9) C
J(B,9) of G. Denote simply by H* ¢ J' C J these subgroups. As
in Section 1.2, we begin with a skew simple character § of H!, and
there exists a unique irreducible representation n of J! containing 8.
Moreover, we also have a (-extension & of 1 to J by [15, 4.2]. Set

m = [e1/2].
It follows from the conditions of Definition 2.1 that the quotient group
J/J! is isomorphic to
GLy, (kg)™ if e; is even,

U(B8)/U(B) ~ {GLfl(kE)m x Up (ke/kg,) if e, is odd,

where by Definition 2.1(2), f; is even and Uy, (kg/kg,) denotes the
unitary group of a non-degenerate kg/kg,-Hermitian form on an f;-
dimensional kg-vector space. Let oy and o; be irreducible cuspidal
representations of GLy, (kg) and Uy, (kg/kg,), respectively. Let o be
the inflation of o§™ to J if e; is even, and that of o™ ® o, if e; is
odd. A simple type (J,A) in G (of positive level) is defined similarly by
A = k® 0. By [15, p.334], on each factor GLy, (kg) of U(B)/U*(B),
a certain Weyl group element of Gg = B N G induces an involution
g—g

Definition 2.2. ([11, Definition 5.2]) A simple type (J,A) in G is
called self-dual if o9 is equivalent to the representation g — 0o(g).

2.3. A formal degree formula for unramified U(V,h). Recently,
by [10] and [11], we determined the structure of the Hecke algebra
H(G, A) for such a self-dual simple type (J, ) above as follows:

Proposition 2.3. Let [A,n,0,8] be a good skew simple stratum in A
with E = F[B], and (J,\) a self-dual simple type in G associated with
[A,n,0,8] in A. Let B be the A-centralizer of 3, e1 = e(*Blog), and
m = [e1/2]. Assume that m > 2. Then the Hecke algebra H(G, \) for
(J, ) is an affine Hecke algebra of type Crn, with parameter (qy, gz, g3) =
(q=N/eo g=N/2e0 q=N/2e0) yhere eq = e(A|or) as in Section 1.1.

Let K/Ey be a field extension such that KX D E, K D Ky D Ey,
e(K|Ep) =1, and [K : E] = [Ko : Eo] = fi. Let C* be the unitary
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group of type Cy, defined by a non-degenerate K/Kjy-Hermitian form,
and 7 an Iwahori subgroup of C*. Immediately, |kx| = |kg| =
qV/®, and so the Iwahori-Hecke algebra H(C*,1z) turns out to be
also the affine Hecke algebra of type C,, with parameter (qi,¢2,q3) =
(g=N/eo, g=N/2e0 q=N/2e0) provided that m > 2.

When m = [e;/2] = 1, again by [11], H(G, \) is isomorphic to the
affine Hecke algebra with parameter |kg,| = ¢™/? over the infinite
dihedral group, and so is the Iwahori-Hecke algebra H(C*, 1z) of un-
ramified C* = U(1,1)(Kpy) relative to 17 as well (cf. [2, 3.d]). Hence,
we obtain the following:

Proposition 2.4. Let notations and assumptions be as above. In par-
ticular, let m > 1. Then there exists a canonical isomorphism

v H(G, )\) >~ H(Cx, 11'),
that is support-preserving.
Theorem 2.5. Via the Hecke isomorphism U in Proposition 2.4, the
Steinberg representation Stgx of C* corresponds to the equivalence

class of an irreducible square-integrable representation, say (m,V), of
G that contains the self-dual simple type (J,)) in G as above.

Proof. This is the analogue of [5, (7.7.1)] for GLy(F). The method of
proof remains valid for unramified G.

Corollary 2.6. Let notations and assumptions be as in Theorem 2.5.

Then

deg(m, dx)
dim(\)

for any Haar measures dr on G and dy on C*.

vol(J, dzx) = vol(Z, dy) deg(Stcx, dy)

2.4. A formal degree formula for unramified G. We normalize
dz on G so that the formal degree of the Steinberg representation Stg
of G is equal to 1 relative to dz. Then, as in Section 1.5, the formal
degree deg(w, dz) is rewritten as

WCN/z (7%, g/, q—1/2)
W, (qN/e0, q=N/2e0, q=N/2e0)

) (U @) : U'(30))

dim(o
x ((U(%) : (Ul)(%))) (e J') dim(n)),
where U(2l,,) is an Iwahori subgroup of G that is contained in U (%),
and, for example, Wcm (t1,t2,t3) denotes the Poincaré series of type Com
(see [12, Section 3]). We note that this also holds in the case of m = 1.
For, if we formally set m = 1 in the Poincaé series Wcm (t1,t2,t3), We
have
(1-— tl)(l + t2)(1 + t3) _ (1 + tz)(l + t3)
(1 — tl)(l - t2t3) - 1 — taots '
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This is nothing but the Poincaré series for the infinite dihedral group.

Smularly, we can easily compute the factors except for the last
(UY) : J!)dim(n) as in Section 1.6.

The calculation of this last factor is rather more laborious than that
for GLy in Section 1.7. We also have a defining sequence for the
pure stratum [, n,7, 0] in A with 7 = —ko(3,9), and get a family
{(r;,1:)|0 < i < s}, together with (r_y,7-1) = (1,08), where ~; is
skew and simple in A, by [14, Section 3], as in Section 1.7. Set d; =
[ Ti+1 +1 /2] [(’ﬁ + 1)/2] and d,: = [7’,;+1/2] — [7”,'/2], for —1 S ) _<__ S,
as before.

To present the main theorem, we need to define positive integers 4,
for —1 < i < s, as follows: set §; = 0 if eg/e(F[y]|F) is even, and
otherwise,

6 = [di/2] + [(d} + 1)/2] if 7; = 0 mod 4,
6 = [(di +1)/2] + [d}/2] if ; = 1 mod 4,
8 = [(di +1)/2] + [(d} + 1)/2] if r; = 2 mod 4,
8 = [di/2] + [d;/2] if r; = 3 mod 4.

Theorem 2.7. Let (7, V) be an irreducible square-integrable represen-
tation of G containing a self-dual simple type (J, ) in G as in The-
orem 2.5. Let {(ri,7)|0 < i < s} be a family defined as above. Let
eo = e(AU|or), e = e(E|F), and € = e(F[v]|F[vo), for 0 < i < s,
where each F[v;|o is the fized field of F[7y;] under the involution induced
by the adjoint one z — T on A in Section 2.2. Set

A= % Z (1 — m)(ri+l —T3),

i=—1
A== (-,

€o i=—1

where each 6; is the integer defined above and we reset (r_y,7y-1) =
(0,8) and 441 = n. Then these A and A’ do not depend on the choice
of defining sequence, and the formal degree deg(w, dx) is given by

(1) when eg/e = e(Blog) is even,

qi(NﬂA—N(1—1/e)+NA']

eo/2e~1 N(z’+eo/2e)/eo -1

X
11:_! (qN(z+1)/eo _ 1)(qN(z+1/2)/e0 + 1)

N/2— 1

1+1 z+1 12
‘ H )

N/2+1.— -1 ’

(2) when eg/e = e(Blog) is odd,
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qi[NQA—N(l'—l /e)+NA']

qN/260 —1
(eo/e—3)/2 qN(i+(eo/e—1)/2)/eo -1

x I (V@ D/e0 — 1)(gN@+1/2/e0 4 1)2

1=0
(g™ = 1)(g* +1)°
gN/2+i-1 _ 1 )

N/2-1
X

i=0

Remarks 2.8. (1) We also obtained analogous results for Spy (F').
This formal degree formula is more complicated than that in
Theorem 2.7 for the unramified unitary group G.

(2) In [11], it is proved that Theorem 2.5 holds for a self-dual simple
type (J, A) in G associated with not only a skew simple stratum
[, 7,0,8] in A which is not good (see Definition 2.1), but also
a skew (non-simple) semisimple stratum [A, n,0, 5] in A, that is,
B is a skew semisimple element of A (cf. [14]).

(3) We constructed a special skew semisimple stratum [A, 7,0, 8] in
A, and computed the corresponding formal degree as well.
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