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Spherical functions on U(2n)/ (U(n) x U(n)) and
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80 Introduction

For each nondegenerate hermitian matrix T of size n with respect to an unramified
quadratic extension k’'/k of non-archimedian local fileds of characteristic 0, we consider
the space Xr which is equivalent to U(2n)/(U(n) x U(n)) over the algebraic closure of k
and study spherical functions on Xr.

In §1, we construct Xt which is an homogeneous space of G = U(H,,) with stabilizer
isomorphic to U(T) x U(T) over k', and define the spherical function wz(z;z) on Xr
(x € Xr, z € C"), which means that wr(z; 2) is K-invariant and a common eigenfunction
for the action of the Hecke algebra H(G, K), K being the maximal compact subgroup of
G. By a general theory, wr(z; z) is continued to a rational function on ¢*, ..., ¢**, where
q is the cardinality of the residue class field of k.

The Weyl group W of G acts on z € C" via rational characters of the Borel group of
G, and we show functional equations with respect to W and locations of possible poles
and zeros of wr(z; 2) by giving an explicit rational function G(z) of ¢, ..., ¢* for which
G(2) - wr(z; 2) is holomorphic in z € C* and W-invariant, in §2.

Using the functional equations, we give an explicit expression of wr(z;z) at many
points in X7 in §3, define the spherical Fourier transform on the Schwartz space S(K\ Xrt)
and show the image is a free H(G, K)-module of rank 2"~! in §4. In §5, as an application,
we consider hermitian Siegel series b,(7T';t) and prove their functional equations by use of
results in §2.
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81 Spaces Xr and X7, and spherical functions wr(z; s)

Let k'/k be an unramified quadratic extension of p-adic fields with involution *, and for
each A = (ai;) € Mmn(K'), we denote by A* the matrix (a;;*) € Mpm(k'). We fix a unit
€ € Oy such that k' = k(y/€) and € — 1 € 40} (cf. [Om), 63.3 and 63.4), and set

14 /e
- Q\f | (1.1)
Then {1, £} forms an Oy-basis for Oy, and {a € O | o* = —a} = /eOy. We fix a
prime element 7 of k, and denote by v,( ) the additive value on k, by | | the normalized
absolute value on k% with |7|™' = ¢ being the cardinality of the residue class field of k.

We set

Hn={Ae M,(k')| A*=A}, HM =H,NGL,(K).
For A € H, and X € M,,,,(K'), we write
AX]|=X"-A=X*AX € H,,
and define the unitary group
U(A) = {g € GLn(K') | Alg] = A}.
In particular we set

G =U(H,) with H, = (10 10"> . U(m) = U(L).

For T € H, we set

Zr = {2 € Mynn(K') | Holz] =T} > 2r = (51::) .
Xr = %7 /U(T). (1.2)

The group G acts on X7, as well as on X7, through left multiplication, which is transitive
by Witt’s theorem for hermitian matrices (cf. [Sch], Ch.7, §9).

Lemma 1.1 The stabilizer Gy of G at zrU(T) € Xr is isomorphic to U(T) x U(T):

~ *—1 ~
U@) < U(T) = Go, () — T4 (M7 )T,
2

where

F_ (1. &T '
T = (1n _gT) € GLon(K').
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We fix the Borel subgroup B of G as

B = { (8 b*0‘1> (1(; ﬁ»)

For each element z € Xr, we denote by z, the lower half n by n block of x. We define
relative B-invariants on X7 by

b is upper triangular of size n, (1.3)
a+a =0 ' )

fri(@) = di(z2 - T7Y) = di(z:T7'23), 1<i<m, (1.4)

where d;(y) is the determinant of the upper left ¢ by 4 block of a matrix y. It is easy to
see, for b € B,

fra(bz) = % (®) fra(@),  wid) = [ M), (1.5)
j=1

where b; is the j-th diagonal component of b and N = Ny k. Hence fri(z), 1 <i < nare
relative B-invariants on X associated with the rational characters v; of B, and we may
regard them as relative B-invariants on X7, since fr;(zh) = fri(z) for any h € U(T).
We set

XP ={zx € Xr| fri(z) #0, 1 <i<n}, XF=XF/UT). (1.6)

Remark 1.2 Though we may realize above objects as the sets of k-rational points of
algebraic sets defined over k and develop the arguments, we take down to earth way for
simplicity of notations. We only note here that X7¥ (resp. X7) becomes a Zariski open
B-orbit in X7 (resp. B x U(T)-orbit in X7) over the algebraic closure of .

We introduce a spherical function wr(z;s) on Xr as well as on Xy = X7/U(T). For
z € X1 and s € C™, set

or(@is) = @is) = [ nlka)|"* k. (17)

where K = GN GL2,(Ok), dk is the normalized Haar measure on K and k runs over the
set {k € K | kz € X},

Ty =1 TV -1
logg '~ logg

\fr(z))® = H | fra(z)]* .

1
e=c¢ep+( ), eo=(—1,...,—1,—§)e(C",

The right hand side of (1.7) is absolutely convergent if Re(s;) > 1, 1 <i < n—1, and
Re(s,) > 1, and continued to a rational function of ¢*,...,¢**. We note here that

() (= H Iwi(p)lm") = 62(p),
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where ¢ is the modulus character on B (i.e., d(pp') = 6(p')~1d(p)).

We denote by C*(K\X7) the space of left K-invariant functions on Xz, which can
be identified with the space C*°(K\Xr/U(T)) of left K-invariant right U(T)-invariant
functions on Xr. The function wr(z; z) can be regarded as a function in C*°(K\ Xr) and
becomes a common eigenfunction for the action of the Hecke algebra H(G, K) (cf. [H2] §1,
or [H4] §1). In detail, the Hecke algebra H(G, K) is the commutative C-algebra consisting
of compactly supported two-sided K-invariant functions on G, acting on C*°(K\Xr) by
the convolution product

(6% 0)(z) = /G p(9)U(g2)dg, (¢ € H(G,K), ¥ e C(K\Xr)),  (L8)

and we see
(6 *wr(9)) (2) = A(@wr(zis), (6 € H(G,K)) (1.9)
where ), is the C-algebra homomorphism defined by
As : H(G,K) — C(g™, ..., "),
o= [ S@ WG, (WO = ),

with dp being the left invariant measure on B normalized by /, xnpdp = 1.
We introduce a new variable z which is related to s by
si=—zi+zp (1<i<n—1), sp=—2 (1.10)

and write wr(z; z) = wr(z;s). The Weyl group W of G relative to the maximal k-split
torus in B acts on rational characters of B as usual (i.e., o(¥)(b) = ¥(n;'bn,) by taking
a representative n, of o), so W acts on z € C™ and on s € C" as well. We will determine
the functional equations of wr(x; s) with respect to this Weyl group action. The group W
is isomorphic to S, x C%, S, acts on z by permutation of indices, and W is generated by
Spand 7: (21,...,2,) = (21,...,2n-1, —2,). Keeping the relation (1.10), we also write
Az(@) = As(@); then A, gives a C-algebra isomorphism (Satake isomorphism)

A ¢ H(G,K) = Clg**,..., ¢ ", (1.11)

n

¢ —> /B o) [T ING)I™™ &% (p)dp,

i=1

where p; is the i-th diagonal component of p € B.

Proposition 1.3 Set U = (Z/2Z)"! and
T — v —1

u= ( oy Up—1 ,O)E(Cn, u=(u1,....un_1)EU.
logq log g

Then wr(z; z +u), u € U, are linearly independent for generic z € C* and correspond to
the same eigenvalue through X, : H(G, K) — C.
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Proof. The set X% is decomposed into the disjoint union of B-orbits as follows:

xop = LJ xT,u’
ueld
Xru={z € XP| v (fri(z)) =wr + - +u; (mod2), 1<i<n—1}.
We consider finer spherical functions

lfriy)|"™ ify € X
wra(z;s) = /K ko) dk, |yl = (112)

0 otherwise ,

then {wr.(z;s) | u € U} are linearly independent for generic s associated with the same
As. For each character x of U, we have

Y x(wwru(z; s) = wr(z; s + ),

ueld

for some v € U, and the result follows from this. ]

We note here the relation between wr(z; s) and wr(y; s) when T and T” are equivalent
under the action of GL, (k’), which is easy to see.

Proposition 1.4 For T € H™ and h € GL,(k'), we set T' = T[h] (= h*Th). Then
X = (Xr)h, Xp=Xrh/U(T") and fri(zh) = friz) (z€ Xr),
and
wr(zh; 8) = wr(z; s), (x € X7).
By use of some results on spherical functions on the space H" of hermitian forms, we
obtain the following.

Theorem 1.5 For any T € H™, the function

23 Zi
I (_]z_t_q__ % wp(z: 2)

z; qz.‘—l
1<i<j<n

s holomorphic for any z in C" and S,-invariant. In particular it is an element in
Clg*=, ..., ¢*=]5".

Outline of a proof. By the embedding
~ h*-1 0
Ky=GL,(Oy) — K, h+——> h= 0o n)

we obtain

wr(z; 2) = /K dn /K ‘ fT(Ekx)l”Edk: /K ¢ (D(kz); s)dk.
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Here D(kz) = (kz), - T7! € H,, (™(y; s) is a spherical function on H" defined by

¢ (y;s / T] 1k - 9)**dh, (h-y = hyh),
Ko

i=1
and we have already known (cf. [H1], or [H3]) that
“ +g% n z Zn]on
[I 2 () e Cl®, ... g,
1<icien O 7T

the result follows from this. ]

Remark 1.6 For the transposition 7; = (1 1+ 1) € W, 1 <1 < n — 1, the following
functional equation holds by Theorem 1.5

1— qli‘zi+1‘1

wr(z; 2) = X wr(z;1:(2), 1<i<n-1. (1.13)

qz,‘ —Zip1l — q—l

On the other hand, one may obtain (1.13) directly in the similar way to the case of 7 in
§ 2, where the sufficient condition in [H4]-§3 for having a functional equation with respect
to 7; is satisfied and the Gamma factor in (1.13) is essentially the same to that of the
zeta function of prehomogeneous vector space (U x GL,(k’), (k')?), where U = U(2) or

U( 10 ). Then Theorem 1.5 follows from (1.13).
0 m

§2 Functional equations of wy(z; z)

We calculate the functional equation for 7 € W, and give the functional equations with
respect to the whole W.

2.1.
Theorem 2.1 For any T € H™, the spherical function satisfies
wr(z; 2) = wr(z; 7(2)),

where T(21,...,2n) = (21, ., Zn_1, —2n).

For n = 1, we have the following by a direct calculation, where we set K; = U(H;) N
GL2(0kl).
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Proposition 2.2 (i) The set
1+ 4/€ )

{xe=(€::_e) eeZ,2e§t}, (g: .

~ forms a set of complete representatives of Ky\Xt for T = t.
(ii) For z, € X1 with T = 7* as in (i), one has

(_l)tqe—%t y q(t—2e+1)s(1 _ q—2s—1) _ q—(t—2e+1)s(1 _ q2s—1)

(1)
Te; S
( e ) 1 q_.l qs q_s

(ili) For any T € H, wT (x s) is holomorphic for all s € C and satisfies the functional
equation
(x s) = wT )(z;—s).

Until the end of this subsection we assume n > 2. The parabolic subgroup P attached
to 7, in the sense of [Bo] §21.11, is given as follows:

P=BUBw,B
q 1n._1 (8%
a b 1 L, P
= *—1 —IB 0 € G
q 111—1 ] 1
c d —a* 1 "

q is upper triangular in GL,_,(k'),
@ 3) cU(L1), a8 € Myrs(K), §, (2.1)
Y€ Mn-—l(k,)s Yy+9*=0

- where each empty place in the above expression means zero-entry.
Since it suffices to show Theorem 2.1 for diagonal T”s (cf. Proposition 1.4), we fix a
diagonal T € H?® and write f;(z) = fr(z) for simplicity of notations. We consider the

following action of P = P x GL; on X7 = X7 x V with V = My (¥'):
(p,7) * (z,v) = (pz, p(P)or™Y),  (p,7) € P, (z,0) € Zr,

where p(p) = (CCL 2) is given by the decomposition of p € P as in (2.1). We define

g(z,v) = det K In-1 i ) (f;) -T‘l] , (z,v) € Xr, (2.2)

where x5 is the lower half n by n block of z (the same before) and y is the n-th row of z.
Then we have

Lemma 2.3 (i) g(z,v) is a relative P-invariant on X associated with character 1;

¥(p,7) = Yacr(WN(r)Y, (p,7) € P= P x GLy,
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where Yn_1 is given in (1.5) and well-defined on P, and satisfies

9(@,v0) = fa(z), w0 = ((1)) ev

(ii) g(z,v) is expressed as

g9(z,v) = D(z)[v], (2.3)
with some hermitian matriz
_ (9@ @Y ) e . |
D@ = (50 4D) (el d@) € b, Ble) € ), (2.4

such that det(D(x)) = 0 and Tr(B(x)) = — fao-1(z), where Tt is the trace Try k.

For A € H; and s € C, we define
Cry (A; s) = / |dy(h - A)|*"% dh,
K1

where dh is the normalized Haar measure on K, which is absolutely convergent if Re(s) >
1 and continued to the whole C. Then we obtain

Lemma 2.4 Assumez € X7 and D(z) is given by (2.3). Set m = min{v.(a(z)), v.(d(z))}
and t = v, (B(x)) — m for the expression of D(x) as in (2.4). Thent >0 and

q(t+1)s(1 _ q——Zs——l) _ q—(t+1)s(1 . q23—1).

CKl(D(x); ) 1 +q_1 |f‘n l(x)l q° —q~*
In particular, one has the functional equation
CK1( ( ) ) Ifn—l(x)lz9 : CK1 (D(LE), _3)' (25)

We give a sketch of a proof of Theorem 2.1. By the embedding

1n—1

K, — K=K,, h-——(a b)»——>ﬁ= a
c d

ln—l

we have

wr(z;s) = / dh / | (k)| dk
= [ QLA ko) Ga(Dlka)s 50 + ek

i<n i<n
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By Lemma 2.4, we see
wr{z; 8) = wr(Z; 81, -, 8n—2, Sn—1 + 28n, —Sn),
and, in variable z, we have
wr(z; 2) = wr(z; 7(2)), 7(2) = (21, -+ Zn-1, —2n).
|

2.2. In order to describe functional equations of wr(z; z) with respect to W, we prepare
some notations. We denote by X the set of roots of G with respect to the k-split torus
of G contained in B and by X% the set of positive roots with respect to B. We may
understand ¥ as a subset in Z", and set

Tt=3rus}, Si={e—ej e+e|1<i<j<n}, Tf={2]|1<i<n},
where e; is the i-th unit vector in Z", 1 <1 < n. The set
A={n=>Gi+1)eS,|1<i<n-1}U{r},
is associated with the set of simple roots and generates W. For each 0 € W, we set
THo)={aeZ}| —o(a) e T*}.

The pairing on Z™ x C"
<ts Z) = Ztizi, (t € Zn1 zZ € Cn)';
is W-invariant on ¥ x C*, i.e.,

(a, 2) = (o(a), o(2)), (e X, zeC* oceW). (2.6)

Theorem 2.5 For T € H™ and 0 € W, the spherical function wr(x;2) satisfies the
following functional equation

“)T(x; Z) = Fa(z) : wT(x; O’(Z)), (27)
where
1 — q(a,z)—l
L= Il ma—v
acZf (o)

In particular, the Gamma factor I',(z) does not depend on x nor T.
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Outline of a proof. We determine I',(z) by the equation (2.7), which is a rational
function of ¢*,...,¢*. We set for « € ¥ and z € C"

1 if o = +2¢;, (1<i<n)
fal{a, 2)) = ¢ 1 — glea)-1 .
o — otherwise

We see I',(2) for 0 € A by (1.13) and Theorem 2.1. For general o € W, we obtain the
result by cocycle relations of I';(2) and W-invariancy of the inner product (2.6). 1

We will use the following explicit value I',(2) in §5.

Corollary 2.6 Set p e W by

p(z1, ... 2n) = (—2n, —2n-1,...,—21).
Then
1— qz,~+zj—1
Fp(Z) = H qz,;-{-zj — q-—l ’
1<i<j<n

Remark 2.7 The above p gives the functional equation of the hermitian Siegel series
(cf. §5), and it is interesting that such p corresponds to the unique automorphism of the
extended Dynkin diagram of the root system of type (C,), which was pointed out by
Y. Komori.

By Theorem 1.5 and Theorem 2.5, we obtain the following theorem.
Theorem 2.8 Set
1 + q(a)z>
G(z) = ] T gaa
acxt

Then, for any T € H™, the function G(z) - wr(z; z) is holomorphic for all z in C" and
W -invariant. In particular it is an element in Clg*™, ..., ¢+ V.
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83 Explicit formula for wr(z;2)

3.1. Set

Ar={AeZ' | n2X2" (3.1)

v
>
3
I\
o
——

and, for each A € A},

A _ g A An nd _ (¢
7 = Diag(n™,..., 7)) € H%, Ty = € Xm,

wx(z; 2) = wrp(z;2) for T =7 (3.2)

Theorem 3.1 For A\ € A}, one has the following explicit expression:

wa(za; 2)
-1 EiAi(n—‘i-}-l) —Z'-_A,'(n—‘i+%) 11— —-2\n 1 ol
S il B LD DL Al (GO
-y 6@ &

where G(z) is given in Theorem 2.8 and

1 + q(ar z)-1 1-— q<a, z)—-1
H(Z) - H 1-— q(a,z) H 1-— q(a,z) :

aes? 062;

Remark 3.2 By Theorem 2.8, the main part

Hy(z) =Y o(¢*?H(2)) = Y ¢ * N H(o())

ceW oceW

of wx(z»; z) belongs to Clg**, ..., ¢**]". Further we see in a standard way that the set
{H)(z) | A € A}} forms its C-basis. On the other hand, H,(2) is a special case of P (up
to a scalar factor) introduced by Macdonald [Mac] §10 in a generous context of orthogonal
polynomials associated with root systems.

We will prove the above theorem by using a general expression formula (Theorem 2.6
in [H4] , or in [H2] ) of spherical functions on homogeneous spaces, which is based on
functional equations of finer spherical functions and some data depending only on the
group G. We explain about the proof in the next subsection.

By Theorem 3.1 and Proposition 1.4, we may have the explicit formula of wr(x; s) at
many points. For T € H™ and A € A}, it is known that T and 7* belong to the same
_GL,(k')-orbit in H" if and only if

vr(det(T)) = |A| (mod 2),

where [A| = 3", A;. Thus we obtain
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Theorem 3.3 Let T € H}* and A € A} and assume that v,(det(T)) = |A| (mod 2).
Taking hy € GLyn (k') for which n*[hy] = T, one has z\hy € X7 and
wr(zahy;z) = wa(z);2)
B e [T U PR
T2, (1= (=g71)) G(2) S

Further, each such a A gives a different K -orbit

Kz\hU(T) in K\Xz (= K\xT/U(T)).

3.2. In order to apply Theorem 2.6 in [H4], we need to check the assumptions there. Let G
be a connected reductive linear algebraic group and X be an affine algebraic variety which
is G-homogeneous, where everything is assumed to be defined over a p-adic field k. For
an algebraic set, we use the same ordinary letter to indicate the set of k-rational points.
Let K be a maximal compact open subgroup of G, and B a minimal parabolic subgroup
of G defined over k satisfying G = KB = BK. We denote by X(B) the group of rational
character of B defined over k and by Xy(B) the subgroup consisting of those characters
associated with some relative B-invariant on X defined over k. In these situation, the
assumptions are the following:

(A1) X has only a finite number of B-orbits.

(A2) A basic set of relative B-invariants on X defined over k can be taken by regular
functions on X.

(A3) For y € X not contained in the open orbit, there exists some % in X¥o(B) whose
restriction to the identity component of the stabilizer H, of G at y is not trivial.

(A4) The rank of Xo(B) coincides with that of X(B).

In the present situation, as is noted in Remark 1.2, we may understand G = U(H,,)
defined over k, G = G(k), B = B(k) for the Borel subgroup defined over k, and X = Xr
as the set of k-rational points of the affine algebraic variety X = X7/U(T'), and we recall
that relative invariants fr;(z) and the spherical function wr(z;s) can be regarded as
functions on Xr.

It is easy to see the present (X,B) satisfies the conditions (A1), (A2) and (A4) (cf.
Lemma 1.1, (1.4) and (1.5) ), in particular, the unique Zariski open B-orbit is given by
X? ={zeX| fri(z) #0, 1 <i<n} (cf. (1.6)).

First we give an outline of a proof of Theorem 3.1, admitting the condition (A3).
By Theorem 2.5, we obtain vector-wise functional equations for finer spherical functions
wrw(T;2), w €U = (Z/2Z)"! (cf. (1.12))

(Wru(®;2))yey = A7 G(0,2) - 0 A - (wru (7 0(2))) yeys ogeW, (3.3)
where

A= (@) A= (00)W)xa € CLn1(Z),
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X runs over characters of U, u € U, and G(o, 2) is the diagonal matrix of size 2"~ whose
(X, x)-component is I',(z,). Here I',(2) is given in Theorem 2.5 and z, is determined by
the identity

Z x(w)wru(z; 2) = wr(z; 2y).

ueU

We denote by U the Iwahori subgroup of K compatible with B, take the normalized Haar
measure du on U, and set

arnz) = [ Ifrluonli du
U

(_1)Z.~ Mi(n—it+l) g= 3 ,\,-(n—i+§)q—</\,z> ifzy € Xry
0 otherwise.

Applying Theorem 2.6 in [H4] to our present case, we obtain

(wTu(x)\vz) ueld Q Z 7(0(2)) A L. ( ’z) 'UA) (5u($/\’o'(z)))ueu) : (3'4)

ocEW

where

Q= Z [UoU : U™t = H (1 -~ (- 1)tq—t) /(1 —q ),

oceW =1

— A2, z)-2
1) = [T e 11

1 — g2 2)
aex?t 1 ae_)lj'

1 - q(a)z) 1
1-— q(o‘vz> ’

Since wr(z;2) = D,y 1(u)wy(zy; 2), we obtain the explicit formula for wy(zy; z) from
(3.4). ]

Now we explain about the condition (A3). We consider the action of G x U(T) on X
by (g,h) oz = gzh~!. Then, the stabilizer B, of B at yU(T) € Xr coincides with the
image B, of the projection to B of the stabilizer (B x U(T)), at y € X7 to B. Hence,
in our case, the condition (A3) is equivalent to the following:

(C) : For each y € X7 not contained in X7, there exists 1 € X(B) whose restriction to
the identity component of B(,) is not trivial.

It suffices to prove the condition (A3) (or (C)) over the algebraic closure k of k, hence

we may assume that T = 1,; for simplicity of notation, we write  fi(z) instead of fr(z).

Until the end of this subsection, we consider algebraic sets over k, extend the involution

* on k' to k, indicate it by —, and write T = (Z3;) € My (k) for z = (i;) € Mum (k).
Then, our situation is the following;:

X =%, ={2 € Myn| Halz] = 1.},
(U(Hn) xU(1a)) x £ — X, ((g,h),2) — (g, h) oz = gzh ™",
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and B is the Borel subgroup of U(H,) (as in (1.3)). We introduce a (GLay, X GL,)-set X
as follows:

X={(2,9) € Manpn ® Moo | ‘yHoz = 1, - (35)
(9,h) * (z,y) = (9zh™ ', gy*h),  ((9,h) € GLyn x Gy, § = H,tg™'H,),

and we write an element of X as (z,y) = ((21) , (zl)) with z;,v; € M,. We take the
2 2

Borel subgroup P of GL,, by

P={(€ ;) € GLo,

where B, is the Borel subgroup of GL,, consisting of the upper triangular matrices. The
involution g — g = H,'¢g~'H, on GL,, induces an involution on P :

p r 7t 0 1, =\ /1, O
(O q) — ( A 1n) (0 (e L) (3.6)
The embedding ¢ : X — X, z — (z,Z) is compatible with action, i.e., we have the
commutative diagram

p, 'q € By, reMn},

o

(UH,) xU(1,)) x X — X
lind. :Lb ®) lb
(GLyy xGL,) x ¥ 5 X
For (z,y) € ¥ and p € P, set
ﬁ(z’y) d ($2 y2 'L H pJ pn+g, (1 S 1 S n)’ (37)

where p; is the j-th diagonal component of p. Then f,(x y)’s are basic relative P-invariants
on X associated with characters Ui, fi(z,T) = fi(z) for x € %, and ¥i|p = ¥;. We set

Hfi(x,y)=0}~

For a = (z,y) € %, we denote by H, the stabilizer of P x GL, at «, and by P, the
identity component of the image of H, by the projection to P. In order to prove the
condition (C), it is sufficient to show the following:

S = {(x,y) EXN(PxGL)*xX

(C) : For each o € S, there exists some ¥ € (; | 1 < i < n) whose restriction to P, is
not trivial.

We have only to consider (C) for representatives under the action of P x GL,. In the
following we consider the case n > 2, since X7 = X7 for n = 1 and there is nothing to
prove. We denote by d;(a) € GL, the diagonal matrix whose j-th entry is 1 except the
i-th which is a € GL,. We show (5’) according to the type of a € S.
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The case a = (z,y) € S with det(z;) # 0: Under (P x GLy,)-action, we may assume

that
o= (2) ()

where h = 1, L h;, 0 <7 < n, and h; is a hermitian matrix such that

the first row and column are zero, or
for some 4, (1 <4 < n—r), each entry in the first row and column or in the i-th

row and column is 0 except at (1,1) or (¢,1) which are 1.
Then H, contains the following elements, according to the above type of h;,

((5r+1(a) 1n)’1n> N <(5’“(“){a,+,.<a)>’5r+*(“)> (e € GL),

and we see Jr+1 #%1lon P,.
The case o = (z,y) € S with det(y2) # 0 is reduced to the case det(z;) # 0.

The remaining case is o € S with det(zz) = det(yz) = 0. We set J(i1,1,...,1)
the matrix of size n x t such that 1 < 4; < i3--- < 3y < n and whose (i;,j)-entry is
1, 1 < j <, and all the other entries are 0.

Under (P x GL,)-action, we may assume that

0| J 0
a=(<72+oi))< z; 23 )), (J1,23€Mng, J2)211z2€Mnk.)i

J1=J(T1,T2,...,T[), J2=J(61,62,...,6k), 1§€,k<n, €+k=n,

where

and

the e;-th row of z; is the same as in J; and (4, j)-entry is 0 if i < e;, 1 <j <k,
the rj-th row of 2, is 0, 1 < j < ¢, (3.8)
the r;-th row of z3 is the same as in J; and (3, j)-entry is 0 ifi > r;, 1 <j <L

We see, for any a € GL,,

1| 0 ,
(( 0 61(0,) );ln)EHa lf 61>1,
5(a) | 0 _
(( l(ga) 1 ) ’6k+l(a)) S Hoz if r = 1,
(%) o eta it m=o

If e; = 1,7 > 1 and 29 # 0, we modify z-part of a to satisfy not only (3.8) but also the
following

if the i-th row of 2, is nonzero, then the i-th row of z3 is 0,
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and we still call it a. Then H, contains the following (A;, A;) for any a € GL,

a if the i-th row of 2 is 0

A1 = Diag(ay,...,a,) L1n, ;= { 1 if the i-th row of 25 is not 0,

Ay =1 Lal,.
Hence v, # 1 on P, for o € § with det(z2) = det(y2) = 0. ]

~

Thus we have shown the condition (C) is satisfied for every (z,y) € S, which shows
that our (X, B) satisfies the condition (A3) and Theorem 3.1 is established.

§4 Spherical Fourier transform on S (K\X7)

We consider the space S(K\Xr) consisting of functions in C*(K\Xr/U(T)) compactly
supported modulo U(T), which is an H(G, K)-submodule (cf. (1.8)). We define the
spherical Fourier transform Fr on S(K\Xr) as follows

Fr:S(K\Xrt) — C(¢*,...,q*™), |
£ — Fr(€)(2) = ér(2) = /X £(@)r(z; 2)dz, (4.1)

where Ur(z; 2) = G(2)-wr(z; 2) and dz is the G-invariant measure on X. By Theorem 2.8,
we see the image of Fr is contained in

R = Clg*™,...,¢=".
We decompose R as follows
R = @ sit -85 R,
ec{0,1}n
where
Ro = Clg*™, ..., ¢¥*W = C[¢* + ¢~ 2,..., g% + g 2],

and s; = s;(2) is the i-th-fundamental symmetric polynomial of {¢*% +¢~% | 1 < j < n};
R is a free Ro-module of rank 2*. We set
Reven = @ Sil T s;n ROa Rodd = @ 3;:1 e szn RO)

e:even e:odd

where e € {0,1}" is even (resp. odd) if 3., ie; is even (resp. odd), and for each
T € H?, and define
Rqr)

to be Repen Or Rogq according to the parity of v, (det(T)).
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Theorem 4.1 For each T € H™, one has a surjective H(G, K)-module homomorphism
Fr: S(K\Xt) — R1),
and a commutative diagram
H(G,K) x S(K\X7) — S(K\Xr)

zl lFT o l Fr (4.2)
Ro X R —  Rmn,

where the upper horizontal arrow is given by the action of H(G, K) on S(K\Xt), the left
end vertical isomorphism is given by Satake isomorphism (1.11)

H(G,K) > Ro, ¢— A(9),  (d(9) =a(g™")),

and the lower horizontal arrow is given by the ordinal multiplication in R.

Outline of a proof. For ¢ € H(G, K) and £ € S(K\XT), it is easy to see

Fr(¢x€)(2) = A(®)Fr()(2).

We may expand wr(z; 2) in a region of absolute convergence of the integral (1.7)

wr(z;2) = ) aug®?,

Hezn

where a,, = 0 unless || (= Y1, i) = ve(det(T)) (mod 2). Further we may expand G(2)
also in terms ¢# with |v| is even. Hence we see that Im(Fr) C R(ry. On the other
hand, by Remark 3.2 and Theorem 3.3 we see

Im(Fr) D { Hx(2) | A € A, |A| = va(det(T)) (mod 2)},

and the image of Fr coincides with Rr. ]

Remark 4.2 We expect that the spherical Fourier transform Fr is injective, which is
equivalent to the identity

Xr = U Kz \h\U(T), (4.3)
AeA?
|A|=vx(det(T)) (mod 2)

where disjointness in the right hand side is known by Theorem 3.3. If it is true, then
S(K\Xr) would be a free H(G, K)-module of rank 2"~! and the set { ¥r(z; z + ) | u € U}
would form a basis of spherical functions on Xt corresponding to z € C* through A, (cf.
Proposition 1.3). This is true when n = 1 by Proposition 2.1, and we have the following.
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Proposition 4.3 Assume n = 1. Then the spherical transform Fr is injective and
S(K\Xr) is a free H(G, K)-module of rank 1, in fact the image coincides with

Clg* + ¢ %] if va(T) is even, (¢* + ¢ *)Clg* + ¢ %] if v (T) is odd.

Any spherical function on Xr corresponding to z € C through )\, is a constant multiple
of wr(z; z).

§5 Hermitian Siegel series

We recall p-adic hermitian Siegel series, and give those integral representation and a new
proof of the functional equation as an application of spherical functions.

Let v be an additive character of k of conductor Q. For T € H,(k'), the hermitian
Siegel series b,(T'; s) is defined by

ba(T; ) = /H o, V(R (T R)AR, (5.1)

where tr( ) is the trace of matrix and v, (R) is defined as follows: if the elementary divisors
of R with negative m-powers are 77,...,77%, then v (R) = ¢®**"** and v,(R) =1
otherwise (cf. [Sh]-§13). The right hand side of (5.1) is absolutely convergent if Re(t) is
sufficiently large.

In the following we assume that T is nondegenerate, since the properties of b,(T';t)
can be reduced to the nondegenerate case. We give an integral expression of b,(T;t) in
a similar argument for Siegel series in [HS]-§2. We recall the set Xp for T € H™ and
take the measure |©7| on it simultaneously as the fibre space of T by the polynomial map
Mo (k') — Ha(K'), z — Hylz).

Theorem 5.1 If Re(t) > 2n, we have
t t_p
ba(T;t) = Galk';5) ™" ></ |N(det(z2))|* " O] (),
X7 (O1)

where (,(k';t) is the zeta function of the matriz algebra M, (k')

n

_ 1—q%
/. _ t—n - —_
C(k't) = /Mn(o’d) |det(z)[,, " dz = H 1 — g-20—i+1)

i=1

and
%T(Ok') = {x € M2n,n(0k’) l Hn[:z;] = T},

Since X7 (Oy/) is compact, we obtain
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Proposition 5.2 Denote the K-orbit decomposition of Xr(Ok) as
Xr(Op) = Ui, Kx;.

Then one has
t t_n .
be(T51) = Calk's5) ™ [det(T)|T™" x }; ¢i - wr(Ti; 1),

where c; is the volume of Kx; and

s =(1,...,1 E—n+l)+(’ﬂg—_l L, ecn

9 2 logg """’ logg
Then, by Corollary 2.6, we obtain the functional equation of b (T’; ).

Theorem 5.3 For any T € HM¢, one has

n—1
n n _( 1 i —t+z
be(Tit) = xn(det(T))" ! |det(T)|"™ x 1:]0: T (1) q) ol br(T;2n — t),

where Xx(a) = (—1)*"©@ fora € k*.

Remark 5.4 The above functional equation is related to an element of the Weyl group
of U(H,), which is not the case for Siegel series when n is odd. In [HS], even n is odd,
we needed some harmonic analysis on O(H,) to establish the functional equation.

The existence of the functional equation of b.(T';t) was known in an abstract form
as functional equations of Whittaker functions of p-adic groups by Karel [Kr]. Recently
Ikeda [Ik] has given explicit functional equations on the basis of the results of Kudla-
Sweet [KS] for all quadratic extensions over Q, containing split cases. There is an error
in the range of 4 in the definition of ¢,(K/Q; X) in [Ik] p.1112, and it is better to refer the
original f¢(t) in [Sh] Theorem 13.6; if K/Q is unramified at p, t,(K/Q; X) is the product
of 1 — (—p)*X from i =0 to n — 1, and coincides with our case by taking X = p~t
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