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Abstract. A collapse of a helium bubble due to its interactions with an incoming shock
wave is numerically examined. The flow is modeled using the two-dimensional
compressible Euler equations with an additional equation of motion for the propagating
interface. The solution is obtained in a two-step manner, first, the Euler’s system ofequations
is solved using Roe’s flux difference splitting scheme; second, the moving interface (a

ffinction of the specific heat ratio is used to mark the fluids interface) is captured using a
third-order WENO scheme. For both, a third-order Runge-Kutta method is used for time
integration. The solver is parallelized, allowing us to conduct fme mesh computations, and

enabling the numerical reproduction of the mechanisms observed in previous published
experiments.

1. Introduction
Early attempts to compute multi-fluid flow, consisted in incorporating a conservative form

ofthe advection equation for the material interface into the Euler system of equation [1,2,3],

and solve them using standard methods developed for the classical Euler equations.
However, it was observed that spurious oscillations develop at the material interfaces due to

differences in fluid properties at the interface, as well as, errors in the location ofthe interface.

In order to solve some ofthe problems, a quasi-conservative is proposed in [1], in which the

advection equation is decoupled $\theta om$ the Euler equations and written in non-conservative
form.

Additional modifications to the goveming equations are made in [4,5], which render the

algorithm “single-fluid” when calculating the interface fluxes at the expense of conservation,

to improve the coupling of the advection-Euler equations and to account for pressure
equilibrium across the interface.

In this paper, the quasi-conservative method described in [1,4] is implemented. Because

our interest is on high-resolution computations, this implementation is extended using MPI

(Message Passing Interface) libraries for its parallelization. As application, the interactions
between a helium bubble and a Mach 1.22 shock wave in air is studied.
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2. Equations of motion
For the problem at hand, we limit our analysis to two immiscible ideal gases,

$p=(\gamma-1)p$ , characterized by their constant ratio of specific heats, $\gamma$ . The

two-dimensional Euler equations for such multi-component flow in conservative form are

$\frac{\partial Q}{\partial t}+\frac{\partial E}{\ }+ \frac{\partial F}{\partial y}=0$ , (1)

$Q=\{\begin{array}{l}\rho\rho u\rho ve\end{array}\};E=\{\begin{array}{l}\rho upu^{2}+p\rho uv(e+p)u\end{array}\};F=\{\begin{array}{l}\rho v\rho uv\rho v^{2}+p(e+p)v\end{array}\}$

where $p$ is the density, $u$ and $v$ are the velocity components, $p$ is the pressure, and $e$ is the total
energy ofthe fluid.

The moving interface is captured using the discontinuity in the ratio of the specific heats
for the different components. Since material interfaces are advected by the flow, any
hnction of $\gamma$ obeys the advection equation [1],

$\frac{\partial f(\gamma)}{\partial t}+u\frac{\partial f(\gamma)}{\ }+v \frac{\partial f(\gamma)}{\Phi}=0$ , . $\cdot$ . $f( \gamma)=\frac{1}{\gamma-1}$ (2)

Spatial discretization of (1) is done using Roe’s flux difference splitting scheme. The
numerical flux is given by:

$E_{i+1/2}=E(Q_{L},Q_{R})= \frac{1}{2}[E(Q_{L})+E(Q_{R})]-\frac{1}{2}|A|[Q_{R}-Q_{L}]$ , where $A= \frac{\partial E}{\partial Q}$ (3)

$A$ is the Jacobian matrix based on Roe’s average of $Q_{L}$ and $Q_{R}$ . The modification introduced
in [4] consists in calculating two fluxes at the cell interface, by “freezing” the values of $\gamma$ in
either side ofthe interface:

$E_{i+1/2}^{L}=E(Q_{L},Q_{R};\gamma_{L})$

$E_{i+1/2}^{R}=E(Q_{L},Q_{R};\gamma_{R})$

Then, use $E_{i+1/2}^{L}$ to update the flux in cell $i$ and $E_{i+1/2}^{R}$ to update the flux in cell $i+l$ .

The spatial discretization of (2) is carried out using a third-order WENO scheme [6]. A
TVD third order Runge-Kutta method is used to solve both the Euler and advection equations
[6]. The equations are written as, $Q_{t}=L(u)$ , where $L(u)$ is the discretization of the spatial
derivatives, and advanced in time according to the algorithm:
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$Q^{(1)}=Q^{n}+\Delta tL(Q^{n})$

$Q^{(2)}= \frac{3}{4}Q^{n}+\frac{1}{4}Q^{(1)}+\frac{1}{4}\Delta tL(Q^{(1)})$

$Q^{n+1}= \frac{1}{3}Q^{n}+\frac{2}{3}Q^{(2)}+\frac{2}{3}\Delta tL(Q^{(2)})$

(4)

The parallelization of the code is achieved by using Domain Decomposition in
conjunction with a SPMD (Single Program Multiple Data) technique. The MPI libraries are
used to communicate between the different processors. Our system consists of 8 nodes, each
node contains of $2cpu$-IntelXeon (8 cores). The maximum number ofcores available is 64.

3. Problem Definition
Our focus is on the dynamics ofthe interaction ofa Mach 1.22 shock and a helium bubble,

as presented in [7,8]. The initial conditions for this problem are given in Fig. 1, the upper
and lower boundaries are considered solid walls, the inflow is $fi\cdot om$ the right and properties
are specified, at outflow (left) a zero gradient is imposed. A uniform grid with spatial
resolution of 0.05 mm is used for the present computation, resulting in a grid size of
712lxl781. It takes approximately $12 hr30\min$ to obtain a 528 ps sample (time step:
$3.3333x10^{-8}s)$ using 32 processors.

4. Computational Results
Figure 2 shows a sequence of idealized Schlieren images [8], showing the overall wave

stmcture. At 24 ps, Figure $2a$ shows a reffacted shock inside of the bubble, moving faster
than incident shock, since the helium has a higher sound speed than the air. Upstream ofthe
bubble, a reflected wave is shown moving away $\theta om$ the bubble. At 36 ps, Figure $2b$ shows
a four-shock configuration which it is usually termed twin regular reflection-reffaction (TRR),

also shown in Figure 3. At 48 ps, Figure $2c$ shows the re$\theta acted$ wave emerging $\theta om$ the
bubble and becoming the transmitted wave, also two cusps appear in the left-side of the
bubble indicating intemally reflected waves that converge toward the axis of the bubble
(Figure $2d,$ $56$ ps). At 64 ps, Figure $2e$ shows the intemal reflected waves diverging after
crossing, and the two branches ofthe transmitted shock cross downstream ofthe bubble. At
88 ps, Figure 2fthe initial reflected shock has reflected from the upper and bottom walls. At
larger times (228 ps), Figures $2g$ shows that the bubble has ffirther deformed into a kidney
shaped object. Finally, Figures $2h$ and $2i$ show an induced jet of air along the axis of the
bubble, resulting in the development oftwo vortical structures.

Figure 3 shows the enlargement of the twin regular reflection-refraction (TRR) shock
configuration as well as the locations used to compare the shock waves velocities. Table 1
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shows the comparison of the present computation wave velocities with the experiment of

Hass and Sturtevant [7] and Quick and Kami [8] computation. Overall agreement is
excellent, except for the values of the reflected and upstream velocities; this disagreement is
due to the existence of bubble contamination which affects the values of its physical

properties.
Figure 4 uses the density, vorticity and density gradient ffinction to visualize the flow.

Clearly, the bulk of the vorticity is produced along the bubble interface [9], following the

progress of the reffacted shock inside the bubble. This is consistent with the source term

$(S \equiv\frac{\nabla p\cross\nabla p}{\rho^{2}})$ appearing in vorticity equation ofan inviscid fluid. The motion produced by

the generation ofvorticity is the driven force inducing the jet along the axis ofthe bubble.

5. Conclusions
The goal of simulating high resolution compressible multi-fluid flow was achieved. A

quasi-conservative method is successffilly implemented in a parallel environment to model
the interactions between a helium bubble and a shock wave. The main features ofthe flow
are captured, and compare quite well with previous numerical and experimental results.

Further investigation will be aimed to consider flows with more stiff conditions.
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(a) Initial Conditions (356mm,89mm)

$t\dot{m}\text{\’{e}} 000000\triangleleft p0\mathfrak{g}ld’ 121x179t$

Figure 1. Computational domain and initial parameters.
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(d) $56ps$ (g) $228\mu s$

(e) $64ps$ (h) $412ps$
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Figure 2. Idealized Schlieren images generated following the methodology outlined in [8]

(using the magnitude ofthe gradient ofthe density). a) 24 ps, b) 36 ps, c) 48 ps, d) 56 ps, e)

64 ps, f) 88 ps, g) 228 ps, h) 412 ps, i) 464 ps. Times are estimates after the shock impact
into the bubble.
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Figure 3. Twin regular reflection-reffaction (TRR) shock configuration as well as the
locations used to compare the shock waves velocities. $V_{S}$ : velocity ofincident shock. $V_{R}$ :
velocity of refracted shock. $V_{T}$ : velocity of transmitted shock. $V_{ui}$ : velocity of upstream
edge of bubble, initial times. $V_{di}$ : velocity of downstream edge of bubble, initial times.
$V_{j}$ : velocity ofjet head.

Table 1. Comparison of shock waves velocities
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Figure 4 (a-1). For caption see next page.
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Figure 4. Flow visualization. Density, Vorticity and Density Function.
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