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Abstract
Artificial aperiodic stmctures have been recently the subject of extensive and
intensive research resulting in layered quasiregular heterostmctures as well as
photonic and phononic metamaterials with possible applications as optical and
acoustic bandpassfilters and much more. Our main interest focuses on ffindamental
questions about detenninism, order vs. disorder, their possible quantification,
complexity and entropy and beyond. We construct a two-dimensional instance of the
Prouhet-Thue-Morse system and compute its line complexity; it is at most
polynomial and hence the entropy vanishes. We point out that the perfectly
deterministic Champemowne sequence has entropy $\ln 2$ and hence entropy cannot
serve as an unqualified measure of disorder. Thus there remain many unanswered
questions.

1. Introduction

The motivation of our research is twofold: (1) Artificial aperiodic stmctures, such
as layered quasiregular heterostructures, have been the subject of intensive research
activities. Considerable progress has been achieved in recent years, where some of the
most promising physical realizations of structures are photonic or phononic
metamaterials, mainly being applied as optical and acoustical bandpassfilters. The
fabrication of such structures is mostly govemed by algorithms based on substitution
sequences (cf. [1, 2]).

(2) Our main interest focuses on hndamental questions about determinism, order
vs. disorder, complexity, entropy and beyond. The commonplace notions of “ordert
and “disorder“ are heavily context-dependent and rather subjective. Even though in
most cases their meaning might be more or less clear, they are, in fact, not defined at
all. In order to gain more insight into these fundamental issues, we undertook a study
of double-sided substitution sequences and their multidimensional generalizations.
The main topic of our analysis is their degrees of order vs. disorder. A rough measure
is the topologica/entropy, but better insight might be provided by the symbolic
complexity. While in for the standard one-dimensional sequences these hnctions are
well known, little is known about their multidimensional counterparts (cf [3-5]).

Here we present a generic instance of the two-dimensional Prouhet-Thue-Morse
system (PTM) and compute its line complexity. It $mms$ out to be at most polynomial
and hence its entropy vanishes. We also briefly mention the more general notions of
rectangle as well as lattice-animals (polyominoes) complexity. For comparison we
also show a periodic example of $2D$ PTM.
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2. The algorithm
To construct our multidimensional sequences we essentially apply a recursive

algorithm put forward by Barb\’e and von Haeseler [6] but we significantly simplify it.
The recurrence equations for the one-dimensional double-sided PTM sequence

with the alphabet $\{1, -1\}$ are
$t(-2x)=t(x)$ ,

(1) $t(-2x+1)=-t(x),$ $x\in Z$ ,

$t(O)=-1,$ $t(1)=1$ .
These equations can be readily generalized to $n$ dimensions. For a start (and for a

current experiment) we stay in 2D. We choose an expanding matrix $M$ , a shift vector
$s$ and an entry $x\in$ Z. The recurrence equations then are

$t(Mx)=t(x)$ ,

(2) $t(Mx+s)=t(\chi),$ $x\in Z^{2}$

$t(0,0)=-1$ .
The particular instance of the sequence thus produced depends on the matrix M. For
the present example we choose

(3) $M=(\begin{array}{l}-1-11-l\end{array})$ .

After 13 iterations this produces a patch shown in Fig. 1. It contains $2^{13}=8192$

points. It is chiral and anorthotropic; it should be noted that this is the generic case.
The patch is also fractal; that is intrinsic to the algorithm which jumps back and forth
and leaves holes to be filled in later stages.
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Fig. 1. Patch of $2D$ PTM after 13 iterations containing $2^{13}=8192$ points.
This example is generic, anorthotropic and fractal.
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To construct a periodic $2D$ PTM stmcture just change the matrix $M$ to

(4) $M=(\begin{array}{l}0-2l-1\end{array})$ .

After 13 iterations this produces a patch shown in Fig.2. It contains $2^{13}=8192$

points. It is also chiral and anorthotropic and ffactal..
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Fig.2. Patch of $2D$ PTM after 13 iterations containing $2^{13}=8192$ points.
This example is periodic, anorthotropic and fractal.

As an illustration of the possibility to generalize to higher dimensions we show in
Fig.3 a three-dimensional example.

Fig.3. A $3D$ example of PTM.
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3. Determinism, order and disorder

Physicists, chemists and material scientists often loosely speak of “order“ and
ttdisorderlt. In most cases it is more or less clear what is meant. Yet, these terms,
while being rather intuitive, are strongly context-dependent and, in fact, not defined at
all. They somewhat resemble the notions of $\dagger\dagger hot^{\dagger t}$ and “cold\dagger \dagger . Yet hot electrons are
quite different from hot tea or a hot onsen (with apologies for the double adjective).
Cold atoms are not the same as cold weather, and even that is different in
Ouagadougou, Kyoto and Oymekon. Hence, \dagger \dagger cold and $hot^{\uparrow\uparrow}$ have been quantified
long ago. They can be given a precise meaning by defining temperature, which, of
course, can be equivalently measured in units of energy, frequency or wave number.

The concept of entropy as a measure of disorder was invented in the 19th century
by Clausius and interpreted in statistical terms by Boltzmann and later introduced into
the mathematical literature by Kolmogorov. We note in passing that there are several
slightly different definitions of entropy. Strictly speaking, here we deal with
topological entropy. Again, instead of entropy one might use the concept of
information equivalent to negentropy invented by Shannon.

Unfortunately, it turns out that entropy is insufficient to characterize the structures
in question. More revealing and detailed is symbolic complexity, a function $p_{S}(n)$

counting the number ofwords of length $n$ in a given sequence $S[7-10]$ .
In terms of complexity the entropy is defined as

(4) $H(S):=|im^{\underline{\ln p_{\nabla}(n)}}$

$narrow\infty$ $n$

Let us quote a few simple examples of sequences with low complexity. For the
sequences 1010... (abbreviated to 10), Fibonacci (F) and Golay-Rudin-Shapiro (GRS)
we, respectively, have:
(5) $p_{1010}\ldots(n)=2$ for all $n$ ,

(6) $p_{F}=n+1$ for all $n$ ,

(7) $P_{GRS}=8(n-1)$ for $n\geq 8$ .

On the other hand, the perfectly deterministic Champernowne (Ch) sequence has
complexity

(8) $p_{Ch}=2^{\prime l}$ for all $n$ ,

the same as fair Bernoulli and hence the entropy ofboth is $H(B)=H(Ch)=\ln 2$ . This
seems to be a paradox. It was explained by Baake: the structure of Ch is by
constmction such that all permutations of any length $n$ must appear in it [11]. The
Champernowne number, i.e. the sequence Ch interpreted as the representation of a
number is a norrnal number that is one where (in the given representation) all digits
are uniformly distributed [12, 13]. The notion of a nolmal number is by itself
somewhat paradoxical: a generic real number is supposed to be normal but it is hard
to find one.

Thus we are confronted with a number of challenging questions. Is deterninism
equivalent to order and in what sense? In crystallography, according to the current
consensus, long range order of structure is defined as the presence of a pure point part
in the diffraction spectmm which reflects the existence of a non-vanishing two-point
autocorrelation. In our opinion, this definition is not general enough. It excludes, for
instance, the PTM case (cf. [14]).
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On the other hand, we see that entropy cannot distinguish between genuine
stochastic disorder and deterministic deviation from uniformity, at least in some cases.
Moreover, entropy is blind to dimension; for instance, all Bemoulli stmctures on any
$\mathbb{Z}^{d}$ have the same entropy ln2. Thus we need a more revealing global measure of
deviation from uniformity as well as clear-cut measure of stochasticity versus
determinism.

4. Complexity of PTM–an example
Eventually we computed the symbolic complexity of the generic example shown

in Fig. 1. We started by exploring lattice animals (alias polyominoes) on the structure.
We quickly leamed a few things. Already some animals of low order appeared only
in one enantiomer $and/or$ either in horizontal or vertical position. Thus the pattem
was indeed proven to be chiral and anorthotropic.

However, the numeric effort to find animals of higher order proved to be quite
disproportional. Thus we compromised and restricted our search to the complexity
$p(m, n)$ of rectangles of size $N=mxn[15,16]$ . Moreover, to gain rapid insight we
focused on the complexity of lines $p_{t}(N)$ , i.e. rows $p_{r}(N, 1)$ and columns $p_{c}(1,N)$ .
The computed results again confirmed the anorthotropy of the pattem. The recursion
makes the pattem fractal. The computed complexity up to $N=20$ is shown in the
Table. The complexity turns out to be approximately quadratic and thus polynomial
at most; hence the entropy vanishes.

The result again raises some questions. Does the complexity depend on the
particular instance of $2D$ PTM? The answer seems to be positive. If so, how does it
depend on the particular class of realizations (cf. [6]), or else, on the choice of the
generating matrix $M$ ? Is there a canonical instance of $2D$ PTM?
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Table–Symbolic complexity of $2D$ PTM.

$*)$ The entries for $N=1$ are exceptional since rows and columns are the same: (1,1).

4. Conclusions and outlook
The symbolic complexity of the two-dimensional Prouhet-Thue-Morse stmcture is

at most polynomial. This is probably so in higher dimensions as well. Hence the
entropy of $2D$ PTM vanishes and we conjecture that this is also true for $nD$ PTM.
We are presently working on other instances of PTM, other $2D$ sequences and try to
extend the study to higher dimensions. And, of course, we intend to extend the
computation of complexity to higher $N$ and non-trivial rectangles. We will also try
other algorithms, mainly direct substitution.

Our study raises more questions than answers. Can one find put forward a
canonical instance of $2D$ PTM (or any other multidimensional substitution system) ?
If so, can we find a formula for the complexity? And most important of all: improve
our understanding of determinism, order, disorder, stochasticity and their proper
quantification.
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