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ABSTRACT. Mathematical diffraction theory is concerned with the determination
of the ditfraction iliiage of a given structure and the corresponding inverse problem
of structure determination. In recent years, the understanding of systems with co11-

tinuous and mixed spectra has improved considerably. Moreover, the phenolnenon
of homometry shows various unexpected new facets. This is particularly so when
systems with stochastic components are taken into account.

After a brief introduction and a summary of pure point spectra, we discuss
classic deterlninistic examples with singular or absolutely continuous spectra. In
particular, we present an isospectral family of structures with continuously varying
entropy. We augment this with morc recent results on the diffraction of dynalnical
systems of algebraic origin and various further systems of stochastic nature. A
systematic approach is mentioned via the theory of stochastic processes.
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1. INTRODUCTION TO DIFFRACTION THEORY

The distribution of matter in Euclidean d-space is described by a measure $\omega$ on
$\mathbb{R}^{d}$ , where we assulne an infinite system that is homogeneous and in equilibrium. In
most cases, $\omega$ will be translation bounded, which means that, for any compact set
$K\subset \mathbb{R}^{d}$ , we have

$\sup_{t\in \mathbb{R}^{d}}|\omega|(t+K)<\infty$
.

Moreover, we assume an amenability property of $\omega$ , namely the existence of its au-
tocorrelation measure

$\gamma=\gamma_{\omega}=\omega O\tilde{\omega}:=\lim_{Rarrow\infty}\frac{\omega|_{R}*\overline{\omega|_{R}}}{vo1(B_{R})}$,

where $B_{R}$ denotes the open ball of radius $R$ around $0\in \mathbb{R}^{d}$ and $\omega|_{R}$ the restriction
of $\omega$ to $B_{R}$ . Given a measure $\mu$ , its ‘flipped-over’ version $\tilde{\mu}$ is defined via $\tilde{\mu}(g)=\overline{\mu(\gamma g}$

for $g\in C_{c}(\mathbb{R}^{d})$ , the space of continuous (complex-valued) functions $g$ of compact
support, where $\tilde{g}(x)=\overline{g(-x)}$ . The volume-averaged (or Eberlein) convolution $0$ is
needed because $\omega$ itself is an unbounded measure, so the direct convolution is not
defined. Not, $e$ that different measures $\omega$ can share the same autocorrelation $\gamma$ .

By construction, the measure $\gamma$ is positive definite, which $IrleaIls’\gamma(g*\tilde{g})\geq 0$

for all $g\in C_{c}(\mathbb{R}^{d})$ . As a consequence, $\gamma$ is Fourier transformable by general results
[22]. The Fourier transform $\hat{\gamma}$ exists and is a positive measure, called the diffraction
measure of $\omega$ . It describes the outcome of kinelnatic diffraction by $\omega$ in the sense
that $\hat{\gamma}$ quantifies how $1\iota iuc1_{1}$ scattering intensity reaches a given volume in d-space.
By the Lebesgue decomposition theorem, relative to Lebesgue measure $\lambda$ , there is a
unique splitting

$\hat{\gamma}=\hat{\gamma}_{pp}+\hat{\gamma}_{sc}+\hat{\gamma}_{ac}$

of $\hat{\gamma}$ into its pure point part (the Bragg peaks, of which there are at most countably
many), its absolutely continuous part (the diffuse scattering with locally integrable
density relative to $\lambda$ ) and its singular continuous part (which is whatever remains).
The last contribution, if present, is described by a measure that gives no weight to
single points, but is still concentrated to a set of zero Lebesgue measure.

Systems with $\hat{\gamma}=\hat{\gamma}_{pp}$ are called pure point diffmctive. Important examples are
perfect crystals and quasicrystals, such as the icosahedrally symmetric AIMnPd alloy
that produces the diffraction image of Figure 1. Mathematical examples of all spectral
types will be discussed below. For general background, we refer to [18], and to [8]
in particular. The increasing need for a better understanding of diffuse scattering is
evident from [48] and references therein.

It is clear that the diffraction measure is a unique attribute of the structure de-
scribed by $\omega$ (under the mild assumption that $\gamma$ exists, which is a realistic assumption
from the physical point of view). In contrast, the inverse problem of determining $\omega$
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FIGURE 1. Experimental diffraction pattern of an icosahcdral AIMnPd
quasicrystal along the fivefold direction (courtesy C. Beeli).

from $\hat{\gamma}$ is generally non-unique and a hard problem to solve, both mathematically
and practically.

For simplicity, we will. whenever possible, explain the different scenarios with Dirac
combs on $\mathbb{Z}$ . This means that, given a bi-infinite sequence $w=(w_{n})_{n\in \mathbb{Z}}$ , we consider

(1)
$\omega=w\delta_{\mathbb{Z}}:=\sum_{n\in \mathbb{Z}}w(n)\delta_{n}$

,

where $\delta_{n}$ is the normalised Dirac measure located at $n$ . The weights $w(n)=u)_{n}$ are
assumed to be bounded, and we use the notations $w(n)$ and $w_{n}$ interchangeably. A
simple calculation shows that the corresponding autocorrelation (which will exist in
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all examples discussed here) is then of the form

(2)
$\gamma=\sum_{m\in \mathbb{Z}}\eta(m)\delta_{m}$

,

with the autocorrelation coefficients

(3) $\eta(m)=\lim_{Narrow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}w(n)w(n-m)$ .

In line with our previous remark, we will assume that the limit exists for all $m\in \mathbb{Z}$ ,
which is equivalent to the existence of $\gamma$ in this case.

Let us now illustrate the possible spectral types by means of important and char-
acteristic examples.

2. PURE POINT SPECTRA

The Dirac comb of a general point set $S$ is defined as $\delta_{S}$ $:= \sum_{x\in S}\delta_{x}$ , with $\delta_{x}$ tlie
normalised point measure at $x$ . If $\Gamma\subset \mathbb{R}^{d}$ is a lattice (meaning a discrete co-compact
subgroup of $\mathbb{R}^{d}$ ), the corresponding Dirac comb $\delta_{\Gamma}$ itself is Fourier transformable via
the Poisson summation fomula (PSF)

(4) $\hat{\delta_{\Gamma}}=$ dens $(\Gamma)\delta_{\Gamma^{r}}$ ,

where $\Gamma^{*}$ denotes the dual lattice of $\Gamma$ and dens $(\Gamma)$ the density of $\Gamma$ ; see [19] and
references therein for details.

2.1. Crystallographic systems. A perfect $(i_{l1}finite)$ crystal with $\Gamma$ as its lattice
of periods can be described by the measure $\omega=\mu*\delta_{\Gamma}$ , where $\mu$ is a suitable finite
measure. A convenient (though not unique) choice for $\mu$ is the restriction of $\omega$ to a
fundamental domain of $\Gamma$ . A simple calculation leads to the autocorrelation

$\gamma=$ dens $(\Gamma)(\mu*\tilde{\mu})*\delta_{\Gamma}$

because $\tilde{\delta_{\Gamma}}=\delta_{\Gamma}$ and $\delta_{\Gamma}O\delta_{\Gamma}=$ dens $(\Gamma)\delta_{\Gamma}$ . The Fourier transform of $\gamma$ exists and
reads

$\hat{\gamma}=$ $($dens $(\Gamma))^{2}|\hat{\mu}|^{2}\delta_{\Gamma}$ .
by an application of the convolution theorem together with the PSF (4). Note that
$|\hat{l^{l}}|^{2}$ is a uniformly continuous and bounded function that is evaluated only at points
of the dual lattice 1’ $*$ . Different admissible choices for tho $mea_{A}\backslash \iota ire\mu$ lead to different
such functions that agree on all points of $\Gamma^{*}$ . The measure $\hat{\gamma}$ is a pure point measure,
as one expects for lattice periodic measures $\omega$ .
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FIGURE 2. The silver mean point set $\Lambda$ of Equation (5) as a projection
of a strip-shaped subset of the lattice $\Gamma=\{(x, x’)|x\in \mathbb{Z}[\sqrt{2}]\}$ . The
shading marks the endpoints of a-type (light grey) and b-type (dark
grey) intervals.

2.2. Model sets. Lattice periodic point sets form a special case of the larger class of
regular model sets [39, 43], which also lead to pure point diffraction measures. One
of the simplest non-periodic examples in one dimension emerges from the silver mean
substitution rule

$a\mapsto aba$

$\rho$ :
$b\mapsto a$

which has inflation multiplier $\sigma=1+\sqrt{2}$ . The latter is known as the silver mean
and is the Perron-Frobenius eigenvalue of the corresponding substitution matrix $(_{11}^{21})$ .
Note that $\sigma$ is a Pisot-Vijayaraghavan (PV) number.

The natural geometric realisation of this system, starting from a bi-infinite fixed
point of $\rho$ with legal seed $a|a$ , is built via two intervals of length ratio $\sigma$ . If $a$ represents
an interval of length $\sigma$ and $b$ one of length 1, their left endpoints constitute the silver
mean point set

(5) $\Lambda=\{x\in \mathbb{Z}[\sqrt{2}]|x’\in[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}]\}$ ,

the proof of which is not entirely trivial; it is spelled out in detail in [13]. Here, / de-
notes algebraic conjugation in the quadratic field $\mathbb{Q}(\sqrt{2})$ , as defined by $\sqrt{2}\mapsto-\sqrt{2}$ .
Equation (5) has a distinctive geometric meaning which is illustrated in Figure 2.
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The algebraic aspects cire encoded in a cut and project scheme (CPS), which we
state for the general Euclidean case as follows:

$\mathbb{R}^{d}$ $arrow^{\pi}$ $\mathbb{R}^{d}\cross \mathbb{R}^{m}arrow^{\pi_{int}}$
$\mathbb{R}^{m}$

$\cup$ $\cup$ $\cup$ dense

(6) $\pi(\mathcal{L})$ $arrow$ $\mathcal{L}$ $arrow$ $\pi_{int}(\mathcal{L})$
1-1

$\Vert$
$\Vert$

$L$ $\underline{\star}$ $L^{\star}$

Here, $\mathcal{L}$ is a lattice in $\mathbb{R}^{d+m}$ with certain properties that are expressed via the images
under the canonical projections $\pi$ and $\pi_{int}$ . In particular, $L=\pi(\mathcal{L})$ is a bijective
image of $\mathcal{L}$ , while $L^{\star}=\pi_{int}(\mathcal{L})$ is dense in internal space $\mathbb{R}^{m}$ . Due to these properties,
the $\star$ -map $x\mapsto x^{\star}$ is well-defined on $L$ ; see [39] for more. In the silver mean example,
we have a CPS with $d=m=1,$ $L=L^{\star}=\mathbb{Z}[\sqrt{2}]$ , and the $\star$ -map is given by algebraic
conjugation, as mentioned above.

In general, a model set for a given CPS is a set of the form

(7) $\Lambda=\{x\in L|x^{\star}\in W\}$

where $W$ is a relatively compact subset of $\mathbb{R}^{m}$ ; see Equation (5) for the silver mean
case. A model set $\Lambda$ is regular when the boundary $\partial W$ of the window $W$ has zero
Lebesgue measure. The entire setting generalises, without significant complications,
to locally compact Abelian groups as internal spaces [39, 43]. We will refer to this
freedom later on, where the internal space will be based on the 2-adic numbers.

Regular lnodel sets are pure point diffractive [31, 43, 19]. This is a substantial
theorcln for $whic1_{1}t1$ 1 $I^{\cdot}ec^{1}$ diffcrcnt types of proofs arc kllOWll. The most common
one is based on the connection to dynamical systems theory [31, 43], another on a
reformulation via almost periodic measures [19, 28]. An even simpler approach follows
a suggestion by Lagarias and is based on the PSF for the embedding lattice together
with Weyl $s$ lemma on uniform distribution [13]. The theorem is also constructive
in the sense that it provides an explicit and computable formula for the diffraction
measure of $\delta_{1}\wedge$ , namely

$\hat{\gamma}=\sum_{k\in L^{\circ}}|A(k)|^{2}\delta_{k}$

with Fourier module $L^{O}=\pi(\mathcal{L}^{*})$ and amplitudes

$A(k)= \frac{dens(\Lambda)}{vo1(W)}\hat{1_{W}}(-k^{\star})$ ,

where $1_{W}$ is the characteristic function of the window $W$ . This formula has several
generalisations [43, 19], which we olnit for simplicity.

Model sets are widely used to describe and analyse diffraction images such as that
shown in Figure 1. Although real world quasicrystals will usually not be pure point
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$\xi^{2}$

$\xi^{2^{\star}}$

FIGURE 3. Action of the $\mathbb{Z}$-linear $\star$ -map on the generating elements
of the eightfold module $L=\mathbb{Z}[e^{2\pi i/8}]$ .

diffractive, their average structuro is well captured by this approach. In this regard,
quasicrystals behave pretty much like ordinary crystals.

Let us expand on the diffractio11 formula for the vertex set of the planar Ammann-
Beenker (or octagonal) tiling [3]. This point set is a regular model set with $L=\mathbb{Z}[\xi]$ ,
where $\xi=\exp(2\pi i/8)$ is a primitive eighth root of unity. The $\star$ -map (illustrated in
Figure 3) is defined by $\xi\mapsto\xi^{3}$ , which is an automorphism of the cyclotomic field $\mathbb{Q}(\xi)$ ,
so that $L^{\star}=L$ . The lattice $\mathcal{L}=\{(x, x^{\star})|x\in \mathbb{Z}[\xi]\}$ is the Minkowski embedding of
$L$ , which is a scaled copy of $\mathbb{Z}^{4}$ in this case. The standard window is a regular octagon
$O$ of edge length 1, centred at the origin. The model set construction produces the
point set

$\Lambda_{AB}=\{x\in \mathbb{Z}1+\mathbb{Z}\xi+\mathbb{Z}\xi^{2}+\mathbb{Z}\xi^{3}|x^{\star}\in O\}$

and its $\star$ -image $\Lambda_{AB}^{\star}$ of Figure 4. The corresponding tiling emerges by connecting all
vertices of distance 1 in $\Lambda_{AB}$ .

The diffraction measure is calculated via the Fourier transform of the characteristic
function $1_{O}$ . This leads to a dense (but countable) set of Bragg peaks whose intensities
are locally summable. This means that, in any compact region, there are only finitely
many peaks above any given positive threshold. A precise explicit calculation can
easily be performed by one of the standard computer algebra packages. Figure 5
shows the result for a central patch of the Ammann-Beenker diffraction, with cutoff
at 1/1000 of the central intensity. Here, a Bragg peak is represented by a small disk
whose area is proportional to the intensity and whose centre is the position of the
Bragg peak.

A related and very interesting question concerns the spectral type of systems that
are defined by substitutions; soo [41] for background. More recently, practically useful
tests for pure pointedness of substitution systems have been developed, compare [2]
and references given there, but the famous Pisot substitution conjecture and its
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FIGURE 4. Patch of the Ammann-Beenker tiling and point set $\Lambda_{AB}$

(left) and its lift to internal space (right).

higher dimensional generalisations still remain a mystery. We will not discuss this
point of view in what follows, even though many of our examples will be defined by
substitutions rules.

Let us close the paragraph with a brief general comment. A translation bounded
measure $\omega$ also defines a dynarnical system under the translation $a()tioIl$ of $\mathbb{R}^{d}$ ; see
[43, 16, 17] for background. If $\omega$ is pure point diffractive, the corresponding dynamical
spectrum is pure point as well (the converse also being true). This equivalence is well
understood by now [36, 43, 16, 37], but does not extend to general systems with
continuous spectral components [25, 7], as we will see later on.

2.3. Homometry. As lllelltioned previously, different measures may possess the
same autocorrelation and hence the same diffraction. This phenomenon is called
homometry [40]. Clearly, $\delta_{t}*\omega$ (with $t\in \mathbb{R}^{d}$ ) as well as di $1_{1}$ ave the samc diffractiori
as $\omega$ , but non-uniqueness is generally not exhausted by this. Let us illustrate how it
appears already among pure point diffractive systems.

The simplest situation emerges for periodic Dirac combs on $\mathbb{Z}$ with rational weights.
As an example, Gr\"unbaum and Moore [30] constructed homometric Dirac combs of
the form

(8) $\omega=\delta_{6\mathbb{Z}}*\sum_{j=0}^{5}c_{j}\delta_{j}$
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FIGURE 5. $C$ diffraction imagc of tlic AInmann-Beenker point
set $\Lambda_{AB}$ ; see text for details.

with integer weights $c_{j}$ , which are thus 6-periodic. The two choices of Table 1 lead
to the same autocorrelation. Even worse, these two cases have the same correlation
functions up to 5th order, and differ only in higher orders. Nevertheless, the two
Dirac combs are substantially different. Note that the diffraction measure, which is
supported on $\mathbb{Z}/6$ , shows systematic extinction (the intensity vanishes on all points

TABLE 1. Integer weights $c_{j}$ for the two homometric Dirac combs built
from Equation (8); see [30] for details.
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FIGURE 6. Two polyominoes (left) and their common covariogram
(right). The small dots mark the origin, see text for further details.

of the form $k=\ell/6$ with $k\equiv 2,3$ or 4 $mod 6$). Such extinctions are always an
indication for non-trivial homometry of pure point diffractive systems.

Let us go one step beyond by showing a pair of homometric model sets. We use the
CPS of the Ammann-Beenker tiling from above, but replace the octagonal window
by one of the two polyominoes shown in Figure 6, where we follow [9]. The Dirac
comb $\delta_{\Lambda}$ of the corresponding model set $\Lambda$ with window $W$ has an autocorrelation of
the form

(9) $\gamma_{\Lambda}=\sum_{z\in\Lambda-\Lambda}\eta(z)\delta_{z}$
,

where $\Lambda-\Lambda$ is locally finite because $\Lambda$ is a model set. The autocorrelation coefficients
in (9) are given by

(10) $\eta(z)=$ dens $( \Lambda)\frac{vol(W\cap(W-z^{\star}))}{vo1(W)}=$ dens $(\mathcal{L})$ cvg$w(z^{\star})$ .

Here, cvg$w$ is the covariogmm of $W$ , defincd by

cvg$w(x)=vol(W\cap(x+W))=(1_{W}*1_{-W})(x)$ .

This function is symmetric nnder reflection in the origin, and one also has the relations
cvg$t+W=$ cvg$w$ for arbitrary $t\in \mathbb{R}^{d}$ as well as cvg$(-W)=$ cvg$w$ . The covariogram for
our two polyominoes is illustrated as a contour plot in Figure 6. The polyominoes
in the same figure are show11 with a shifted overlay structure, which can be used by
the reader to check the claimed homometry (for the displayed shift) on the basis of
Equations (9) and (10).

The two lrlodel sets $cor$1$st$ ltlcted this way differ 011 positions of positive density.
Depending on the length scale of the windows, they may or may not be locally equiv-
alent via a $mntu_{c}d$ local derivation (MLD) rule [4], but they are always homometric.
Further details are discussed in [9, 29]. If one has access to correlation functions of
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FIGURE 7. Illustration of the construction of the middle-thirds Cantor
set $C$ (inlay) and the distribution function $F$ for the corresponding
probability measure on $C$ .

higher order, a distinction is possible. A rather general result in this direction was
recently derived in [24].

3. SINGULAR CONTINUOUS SPECTRA

The probably best known singular continuous measure is the one that emerges from
the middle-thirds Cantor set construction. Its distribution function $F$ is shown in
Figure 7, which is widely known as the Devil’s staircase. This function is continuous
and non-decreasing, but constant almost everywhere. More precisely, the underlying
measure $\mu=dF$ is concentrated on the Cantor set $C$ , which is an uncountable set
of zero Lebesgue measure. The (positive) measure $l^{l}$ is singular continuous, with
$\mu(\{x\})=0$ for all $x\in[0,1]$ and $\mu(C)=1$ .

3.1. Thue-Morse sequence. Let us now discuss a classic example from the theory
of substitution systems that leads to a singular continuous diffraction measure with
rather distinctive features in comparison with the Cantor measure. This example has
a long history, which can be extracted from [47, 38, 33, 1]. We confine ourselves to a
brief summary of the results, and refer to [10] and references therein for proofs and
details.
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The classic Thue-Morse (TM) sequence can be defined via the one-sided fixed point
$v=v_{0}v_{1}v_{2}\ldots$ with $v_{0}=1$ of the primitive substitution rule

$\rho$ : $\frac{1}{1}\mapsto\overline{1}\mapsto\frac{1}{1}1$

on the binary alphabet $\{$ 1, $i\}$ . It is the limit (in the obvious product topology) of
the iteration sequence

1 $\underline{\rho}1i\underline{\rho}1ii1\mapsto^{\rho}1iili11i\mapsto^{\rho}$ . . . $arrow v=\rho(v)=v_{0}v_{1}v_{2}v_{3}\ldots$

and has a number of distinctive properties [1, 41], for instance
$\bullet v_{i}=(-1)$ sum of the binary digits of $i$

$\bullet$

$v_{2i}=v_{i}$ and $v_{2i+1}=\overline{v}_{i}$

$\bullet$

$v=v_{0}v_{2}v_{4}\ldots$ and $\overline{v}=v_{1}v_{3}v_{5}\ldots$

$\bullet$ $v$ is (strongly) cube-free.
A two-sided sequence $w$ can be defined by

$w_{i}=\{\begin{array}{ll}v_{i}, for i\geq 0,v_{-i-1}, for i<0,\end{array}$

which is a fixed point of $\rho^{2}$ , because the seed $w_{-1}|w_{0}=1|1$ is a legal word (it occurs
in $\rho^{3}(1))$ and $w=\rho^{2}(w)$ . The (discrete) hull X $=X_{TM}$ of the TM substitution is
the closure of the orbit of $w$ under the shift action, which is compact. The orbit of
any of its members is dense in X. We thus have a topological dynamical system
$(X, \mathbb{Z})$ that is minimal. When equipped with the standard Borel $\sigma$-algebra, the
system admits a unique shift-invariant probability measure, so that the corresponding
measure theoretic dynamical system is strictly ergodic [33, 41].

Any given $w\in X$ is mapped to a signed Dirac comb (and hence to a translation
bounded measure) $\omega$ via

$\omega=\sum_{n\in \mathbb{Z}}w_{n}\delta_{n}$
.

We inherit unique ergodicity, and thus obtain an autocorrelation of the form (2) with
coefficients $\eta(m)$ as in (3). Due to the nature of the fixed point $w$ , an alternative way
to express the coefficicnts is

$\eta(m)=\lim_{Narrow\infty}\frac{1}{N}\sum_{n=0}^{N-1}v_{n}v_{n+m}$

for $m\geq 0$ together with $\eta(-m)=\eta(m)$ . It is clear that $\eta(0)=1$ , and the scaling
relations of $v$ lead to the recursions

(11) $\eta(2m)=\eta(m)$ and $\eta(2m+1)=-\frac{1}{2}(\eta(m)+\eta(m+1))$

which are valid for all $m\in \mathbb{Z}$ . In particular, the second relation, used with $m=0$ ,
implies $\eta(1)=-\frac{1}{3}$ , which can also be calculated directly.
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Since $\omega$ is supported on $\mathbb{Z}$ , the diffraction $11le\mathfrak{X}ure\hat{\gamma}$ is of the form $\hat{\gamma}=\mu*\delta_{\mathbb{Z}}$ by
an application of [5, Thm. 1], where

$\mu=\hat{\gamma}|_{[0,1)}$ together with $\eta(m)=\int_{0}^{1}e^{2\pi imy}d\mu(y)$ ,

the latter due to the Herglotz-Bochner theorem. One can now analyse the spec-
tral type of $\hat{\gamma}$ via that of the $fi_{11}ite$ measure $\mu,$

$w1_{1}ere$ we follow [33]. Defining
$\Sigma(N)=\sum_{m=-N}^{N}(\eta(m))^{2}$ , a two-step calculation with the recursion (11) establishes
the inequality $\Sigma(4N)\leq\frac{3}{2}\Sigma(2N)$ for all $N\in \mathbb{N}$ . This implies $\lim_{Narrow\infty}\Sigma(N)/N=0$ ,
wherefore Wiener $s$ criterion [47] tells us that $\mu$ is a continuous measure, so that $\hat{\gamma}$

cannot have any pure point component.
Let us now define the distribution function $F$ by $F(x)=\mu([0, x])$ for $x\in[0,1]$ ,

wliich is a continuous $f\cdot uI$lctio11that dcfincs a RicInann-Sticltjes measure, so that
$dF=\mu$ . The recursion relation for $\eta$ now implies [33] the functional relations

$dF(\frac{x}{2})\pm dF(\frac{x+1}{2})=\{_{-\cos(\pi x)}1\}dF(x)$ ,

which have to be satisfied by the ac and sc parts of $F$ separately, because $\mu_{ac}\perp\mu_{sc}$

ill the measure theoretic sellse. Therefore, defining

$\eta_{ac}(m)=\int_{0}^{1}e^{2\pi imx}dF_{ac}(x)$ ,

we know that the coefficients $\eta_{ac}(m)$ must satisfy the same recursions (11) as $77(m)$ ,
possibly with a different $iI$1 $iti_{c}\backslash 1$ condition $7)_{ac}(0)$ . The Riemann-Lebesgue lemma states
$\lim_{marrow\pm\infty}\eta_{ac}(m)=0$ , with is only compatible with $\eta_{ac}(0)=0$ , and hence $\eta_{ac}\equiv 0$ .
This means $F_{ac}=0$ by the Fourier uniqueness theorem, wherefore $\mu$ and hence $\hat{\gamma}$

(neither of which is the zero measure) are purely singular continuous. The resulting
distribution function is illustrated in Figure 8. It was calculated by means of the
quickly converging Volterra iteration

$F_{n+1}(x)= \frac{1}{2}\int_{0}^{2x}(1-\cos(\pi y))F_{n}^{f}(y)dy$ with $F_{0}(x)=x$ .

In contrast to the Devil $s$ staircase, the TM function is strictly increasing, which
means that there is no plateau (which would indicate a gap in the support of $\hat{\gamma}$); see
[10] and references therein for details and further properties of $F$ .

Despite the above result, the TM sequence is closely related to the period doubling
sequence, via the (continuous) block map

(12) $\phi$ : $1i$ , il $\mapsto a$ , 11, ii $\mapsto b$ ,

which defines an exact 2-to-l surjection from the hull $X_{TM}$ to $X_{pd}$ , where the latter
is the hull of the period doubling substitution defined by

(13) $\rho_{pd}$ : $a\mapsto ab$ , $b\mapsto aa$ .
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$0$ 0.5 1

FIGURE 8. The strictly increasing distribution function $F$ of the Thue-
Morse diffraction measure o11 tlie $tlIlit$ interval.

Viewed as topological dynamical systems, this means that $(X_{pd}, \mathbb{Z})$ is a factor of
$(X_{TM}, \mathbb{Z})$ . Since both are strictly ergodic, this extends to the corresponding measure
theoretic dynamical systems. The period doubling sequence can be described as
a regular model set with a 2-adic internal space [20, 19] and is thus pure point
diffractive. This pairing also explains a phenomenon observed in [25], as the missing
part of the dynamical spectrum of the TM system is recovered via the diffmction
measure of $X_{pd}$ .

3.2. Generalised Morse sequences. The above example can be generalised to the
family

$\rho$ : $\frac{1}{1}\mapsto^{k}1^{\ell}\mapsto^{k}\overline{1}^{\ell}\frac{1}{1}$
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$0$ 0.5 1 $0$ 0.5 1

FIGURE 9. The continuous and strictly increasing distribution func-
tions of for the generalised Morse sequences with parameters (2, 1)
(left) and (5, 1) (right).

with $k,$ $l\in \mathbb{N}$ , inspired by [34]. Tliey define a class of systexns wliich we will refer
to as the $gTM$ systems. All display purely singular continuous diffraction, which
follows from completely analogous arguments [12]. The entire analysis is based on
the structure of the autocorrelation, which reads $\gamma=\eta\delta_{\mathbb{Z}}$ with $\eta(0)=1$ and the
recursion relations

$\eta((k+\ell)m+r)=\frac{1}{k+\ell}(\alpha_{k,l,r}\eta(m)+\alpha_{k,l,k+\ell-r}\eta(m+1))$ ,

with $\alpha_{k,\ell,r}=k+P-r-2\min(k, \ell, r, k+\ell-r)$ . They are valid for all $m\in \mathbb{Z}$ and
$0\leq r<k+\ell$ . In particular, one has $\eta((k+\ell)m)=\eta(m)$ for $m\in \mathbb{Z}$ .

Given $k,$ $\ell\in \mathbb{Z}$ , the distribution function $F$ is defined by $F(x)=\hat{\gamma}([0, x])$ for
$0\leq x<1$ , which extends to $x\in \mathbb{R}$ via $F(x+1)=1+F(x)$ . It is also skew-

$continuousfunctionsymmetric(F(-x)=-F(x))andthussatisfiesF(q)=qfora11q\in\frac{1}{2[}\mathbb{Z}Fpossessestheuniform1yconvergingseriesexpar1sion12]$
The

$F(x)=x+ \sum_{m\geq 1}\frac{\eta(m)}{m\pi}\sin(2\pi mx)$ .

Two further examples are shown in Figure 9.
Another analogy with the TM system is that the block map $\phi$ of Equation (12) can

still be used to induce a matching family of generalised period doubling sequences.
They are defined by the primitive substitution rules

$a\mapsto b^{k-1}ab^{\ell-1}b$

$\rho’$ :
$b\mapsto b^{k-1}ab^{\ell}$ a
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that are all pure point diffractive. The latter claim can most easily be seen from the
letter coincidence (in the sense of Dekking [23]) at the kth position of the images.
As before, this factor explores the pure point part of the dynamical spectrum of the
$gTM$ sequence.

4. ABSOLUTELY CONTINUOUS SPECTRA

The appearance of absolutely continuous diffraction spectra is usually seen as
an indicator for randomness in the structure. Though this is perhaps generically
true, there are also prominent deterministic sequences with such spectra, such as the
Rudin-Shapiro sequence. In general, within the realm of random structures, one can
only expect almost sure convergence results. In other words, most statements become
measure theoretic in nature, though they are still completely rigorous.

4.1. Coin tossing sequence. The simplest example emerges from repeated coin
tossing. Here, one obtains sequences $w\in\{\pm 1\}^{\mathbb{Z}}$ (for instance with 1 for ‘head’ and
$-1$ for (tail’) which may be considered as the outcome of an eternal coin tosser. In
more modern (and slightly more general) terminology, one considers a family $(W_{n})_{n\in \mathbb{Z}}$

of independent and identically distributed $(i.i.d.)$ random variables with values in
$\{\pm 1\}$ and probabilities $p$ (for 1) and $1-p$ (for $-1$ ). The ensemble of all possible
realisations is $X_{B}=\{\pm 1\}^{\mathbb{Z}}$ , which is equipped with a probability measure $l^{\iota_{B}}$ that
emerges from the elementary probabilities via independence. This gives a measure
theoretic dynamical system that is called the Bemoulli shift [46]. It has (metric)
entropy $H(p)=-p\log(p)-(1-p)\log(1-p)$ .

A random sequence $W$ leads to a Dirac comb $\omega=W\delta_{\mathbb{Z}}$ , which is now a translation
bounded random measure with support $\mathbb{Z}$ . Its autocorrelation, if it exists, is of the
form $\gamma_{B}=7|_{B}\delta_{\mathbb{Z}}$ with

$\eta_{B}(m):=\lim_{Narrow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}W_{n}W_{n+m}^{(a}=^{s.)}\{\begin{array}{ll}1, m=0,(2p-1)^{2}, m\neq 0.\end{array}$

Here, the convergence is almost sure by the strong law of large numbers (SLLN) [26],
which means that this is the result for $\mu_{B}$-almost all elements of $\{\pm 1\}^{\mathbb{Z}}$ . Note that
the use of the SLLN can also be replaced by an application of Birkhoff $s$ ergodic
theorem, because the Bernoulli shift is ergodic [46]. The corresponding diffraction
measure reads

$\hat{\gamma_{B}}(a.s)=.(2p-1)^{2}\delta_{\mathbb{Z}}+4p(1-p)\lambda$ ,

which follows from $\gamma_{B}$ by an application of the PSF (4) together with $\overline{\hat{\delta_{0}}}=\lambda$ . For
the fair coin $(p= \frac{1}{2})$ , this simplifies to $\hat{\gamma_{B}}=\lambda$ , which is thus our first example of a
purely absolutely continuous diffraction lneasure.

70



MATHEMATICAL DIFFRACTION THEORY
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FIGURE 10. Illustration of the binary Rudin-Shapiro sequence.

4.2. Rudin-Shapiro sequence. Let us contrast the coin tossing sequence with a
deterministic example that derives from [42, 45]. This sequence was originally con-
structed to show that the absence of pair correlations does not imply the presence of
randomness. This has interesting consequences in diffraction theory, as pointed out
in [32]. The modern formulation of the system is based on the substitution

$\rho$ : $a\mapsto ac$ , $b\mapsto dc$ , $c\mapsto ab$ , $d\mapsto db$ .

Since $b|a$ is a legal seed (it occurs in $\rho^{2}(b)$ ), one can construct a bi-infinite sequence
$u$ by the usual iteration procedure as

$b|a\mapsto^{\rho^{2}}dbab|acab\mapsto^{\rho^{2}}$ . . . $arrow u=\rho^{2}(u)$ ,

where convergence is in the standard product topology. The hull (orbit closure) of
$u$ defincs thc quatemary Rudin-Shapiro system. Its reduction to a binary system is
achieved by the mapping

$\varphi$ : $a,$ $c\mapsto 1$ , $b,$ $d\mapsto i$ ,

and the orbit closure of $w$ $:=\varphi(u)=\ldots iili|11li\ldots$ defines the hull $X_{RS}$ of the
binary Rudin-Shapiro system. The sequence $w$ is illustrated in Figure 10. For the
equivalent description as a weighted Dirac comb on $\mathbb{Z}$ , we again use the identification
of 1 with $-1$ .

An alternative description of $w$ uses the initial conditions $w(-1)=-1,$ $w(O)=1$

together with the recursion

(14) $w(4n+P)=\{\begin{array}{ll}w(n), for p\in\{0,1\},(-1)^{n+\ell}w(n), for \ell\in\{2,3\}.\end{array}$

The autocorrelation of the corresponding weighted Dirac comb $\omega_{RS}$ exists and turns
out to be $\gamma_{RS}=\delta_{0}$ . To prove this, one defines the coefficients

$\theta(m)\eta(m)$ $;= \lim_{Narrow\infty}\frac{1}{2N+1}\sum_{n=-N}^{N}w(n)w(n+m)\{\begin{array}{l}1(-1)^{n}.\end{array}$

An application of Birkhoff) $s$ ergodic theorem to the quaternary Rudin-Shapiro sys-
tem (which is strictly ergodic [41]) establishes the existence of all these limits. Tlie
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recursion (14) for $w$ now implies the recursion relations [12]

$\eta(4m)=\frac{1+(-1)^{m}}{2}\eta(m)$ , $\eta(4m+2)=0$ ,

$\eta(4m+1)=\frac{1-(-1)^{m}}{4}\eta(m)+\frac{(-1)^{m}}{4}\theta(m)-\frac{1}{4}\theta(m+1)$ ,

$\eta(4m+3)=\frac{1+(-1)^{m}}{4}\eta(m+1)-\frac{(-1)^{m}}{4}\theta(m)+\frac{1}{4}\theta(m+1)$,

$\theta(4m)=0$ , $\theta(4m+2)=\frac{(-1)^{m}}{2}\theta(m)+\frac{1}{2}\theta(m+1)$ ,

$\theta(4m+1)=\frac{1-(-1)^{m}}{4}\eta(m)-\frac{(-1)^{m}}{4}\theta(m)+\frac{1}{4}\theta(m+1)$ ,

$\theta(4m+3)=-\frac{1+(-1)^{m}}{4}\eta(m+1)-\frac{(-1)^{m}}{4}\theta(m)+\frac{1}{4}\theta(m+1)$ .

with initial conditions $\eta(0)=1$ and $\theta(0)=0$ . This system has the unique solution
$\theta\equiv 0$ together with $\eta(m)=\delta_{m,0}$ , hence $\gamma_{RS}=\delta_{0}$ .

The diffraction measure for the binary Rudin-Shapiro systel$i_{1}$ is thus given by
$\hat{\gamma}_{RS}=\lambda$ , which coincides with that of the coin tossing sequence for $p= \frac{1}{2}$ ; see
also [32]. These two examples are thus homometric, despite the fact that one is
deterministic (with entropy $0$ ) while the other is stochastic (with entropy $\log(2)$ ); see
[11, 12] for further details and discussions.

4.3. Bernoullisation. The homometry between the Dirac combs of the Rudin-
Shapiro and the balanced coin tossing sequence raises the question how ‘bad’ the
non-uniqueness of the inverse problem in this case really is. A partial answer (to
the negative) can be given by means of the $($ Bernoullisation’ procedure which was
introduced in [29, 11].

Starting from a uniquely ergodic sequence $S\in\{\pm 1\}^{\mathbb{Z}}$ , its Dirac comb $\omega_{S}=S\delta_{\mathbb{Z}}$

possesses a unique autocorrelation $\gamma_{S}$ . Let us now consider the random Dirac comb

$\omega=\sum_{n\in \mathbb{Z}}S_{n}W_{n}\delta_{n}$
,

where $(W_{n})_{n\in \mathbb{Z}}$ is once again an i.i.d. family of random variables with values in $\{\pm 1\}$

and probabilities $p$ and $1-p$. Another application of the SLLN shows that $\omega$ almost
surely has the autocorrelation

$\gamma^{(a}=^{s.)}(2p-1)^{2}\gamma_{S}+4p(1-p)\delta_{0}^{-}$ .

If $S$ is the binary Rudin-Shapiro sequence, which is uniquely ergodic, a short calcu-
lation reveals that

$\gamma_{S}=\gamma_{RS}=\delta_{0}$

in this case, irrespective of the value of the parameter $p\in[0,1]$ . This way, we
constructed a one-parameter family of homometric (or isospectral) structures whose
entropy varies continuously between $0$ and log(2). The conclusion is that kinematic
diffraction alone cannot distinguish order froln disorder here [11J.
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5. FURTHER DIRECTIONS

After our brief discourse on the different spectral types of diffraction measures (by
means of some paradigmatic examples), this section aims at indicating some more
recent developments, which will again be explained informally by means of selected
examples.

5.1. Ledrappier‘s model. Let us consider a prominent example of algebraic origin
in the plane which is due to Ledrappier [35]. It is defined as

$X_{L}=\{w\in\{\pm 1\}^{\mathbb{Z}^{2}}|w_{x}w_{x+e_{1}}w_{x+e_{2}}=1$ for all $x\in \mathbb{Z}^{2}\}$ ,

where $e_{1}$ and $e_{2}$ denote the standard Euclidean basis vectors in the plane. $X_{L}$ is
a closed subset of the full shift $\{\pm 1\}^{\mathbb{Z}^{2}}$ and hence compact. It is also an Abelian
group (under pointwise multiplication in our formulation, which follows [21]). As
a dynamical system, it is thus equipped with the corresponding Haar measure $\mu_{L}$ ,
which is positive and normalised so that $\mu_{L}(X_{L})=1$ . Obviously, the system has no
entropy, because the knowledgc of a configuration along onc horizontal line determines
everything above it. However, it is clearly not deterministic. In fact, essentially along
any given lattice direction, it looks like a one-dimensional Bernoulli system [35]. It
is thus said to have rank 1 entropy, which means that the number of circular patches
of a given size grows exponentially with its diameter, but not with its area.

Given an element $w\in X_{L}$ , the corresponding Dirac comb

$\omega=\sum_{x\in \mathbb{Z}^{2}}w_{x}\delta_{x}$

possesses $\mu_{L}$-almost surely the autocorrelation $\gamma$ and the diffraction measure $\hat{\gamma}$ given
by [21]

$\gamma=\delta_{0}$ and $\hat{\gamma}=\lambda$ .

The system is thus homometric with the two-dimensional Bernoulli system with $p= \frac{1}{2}$

(coin tossing on $\mathbb{Z}^{2}$ ), and also with the direct product of two binary Rudin-Shapiro
sequences. The similarity with the Bernoulli system goes a lot further, in the sense
that also other correlation functions agree, although the systelns differ for certain
3-point correlations; see [21] for details.

This system is meant to indicate that higher-dimensional symbolic dynamics is
good for a surprise, as is well-known from [44]. It is thus clear that the inverse problem
becomes more complicated. Another famous example is the $(\cross 2, \cross 3)$ dynamical
system, which shares almost all correlation functions with a Bernoulli system with
continuous degree of freedom [21].

5.2. Random dimers on the integers. Back to onc dimension, let us briefly dc-
scribe a system that was recently suggested by van Enter. First, consider $\mathbb{Z}$ as a
close-packed arrangement of $($ dimers’ (pairs of neighbours), hence without gaps or
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overlaps. There are two possibilities to do so. Next, give each pair a random orienta-
tion by decorating it with either $(+, -)$ or $(-, +)$ , with equal probability. Identifying
$\pm$ with $\pm 1$ , this defines tlie closed (and hence compact) set

X $=\{w\in\{\pm 1\}^{\mathbb{Z}}|M(w)\subset 2\mathbb{Z} or M(w)\subset 2\mathbb{Z}+1\}$ ,

where $M(w)$ $:=\{i\in \mathbb{Z}|w_{i}=w_{i+1}\}$ . Note that $M(w)$ can be empty, which happens
precisely for the two periodic sequences. . $.+-|+-\ldots$ and. . $.-+|-+\ldots$ . One has an
invariant measure on X that emerges from the stochastic process via the probability
of the possible finite patches (which define the gcncrating cylinder sets as usual).

Turning a configuration $w\in X$ into a signed Dirac comb with weights $w_{i}\in\{\pm 1\}$

as before, another exercise with the SLLN shows that its autocorrelation almost
surely exists. It is not difficult to derive [7] that $\gamma=\delta_{0}-\frac{1}{2}(\delta_{1}+\delta_{-1})$ , so that the
corresponding diffraction measure is

$\hat{\gamma_{w}}=(1-\cos(2\pi k))\lambda$ .

This is another example of a purely absolutely continuous diffraction measure. The
Radon-Nikodym density relative to $\lambda$ is written as a function of $k$ . In contrast, the
dynamical spectrum of this system contains eigenvalues, wherefore this is an analogue
of the comparison between the Thue-Morse and period doubling systems [25], this
time in the presence of absolutely continuous spectra.

This difference can be rectified by a block map that is very $si_{1}\iota 1ilar$ to the map $\phi$

encountered in (12). Defining $u_{i}=-w_{i}w_{i+1}$ for $i\in \mathbb{Z}$ maps $w$ to a new sequence $u$ ,
which almost surely has the diffraction

$\hat{\gamma_{u}}=\frac{1}{4}\delta_{\mathbb{Z}/2}+\frac{1}{2}\lambda$

of mixed type. In particular, as in the Thue-Morse case, it displays the entire point
part of the original dynamical spectrum.

5.3. Renewal processes. A large and interesting class of processes in one dimension
can be described as a renewal process [6, 15]. Here, one starts from a probability
measure $\mu$ on $\mathbb{R}_{+}$ (the positive real line) and considers a machine that moves at
constant speed along the real line and drops a point on the line with a waiting time
that is distributed according to $\mu$ . Whenever this happens, the internal clock is reset
and the process resumes. Let us (for simplicity) assume that both the velocity of the
machine and the expectation value of $\mu$ are 1, so that we end up with realisations
that are, almost surely, point sets in $\mathbb{R}$ of density 1 (after we let the starting point of
the machine move to $-\infty$ ).

Clearly, the resulting process is stationary and can thus be analysed by considering
all realisations which contain the origin. Moreover, there is a clear (distributional)
symmetry around the origin, so that we can determine the corresponding autocor-
relation $\gamma$ of almost all realisations from studying what happens to the right of $0$ .
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Indeed, if we want to know the frequency per unit length of the occurrence of two
points at distance $x$ (or the corresponding density), we need to sum the contributions
that $x$ is the first point after $0$ , the second point, the third, and so on. In other words,
we almost surely obtain the autocorrelation

(15) $\gamma=\delta_{0}+\nu+\tilde{\nu}$

with $\nu=\mu+\mu*\mu+\mu*\mu*\mu+\ldots$ , where the proper convergence of the sum of
iterated convolutions follows from [6, Lemma 4]. Note that the point measure at $0$

simply reflects that the almost sure density of the resulting point set is 1. Indeed,
$\nu$ is a translation bounded positive lneasure, and satisfies the renewal relations (see
[27, Ch. XI.9] or [6, Prop. 1] for a proof)

(16) $\nu=\mu+\mu*\nu$ and $(1-\hat{\mu})\hat{\nu}=\hat{\mu}$ .

where $\hat{\mu}$ is a uniformly continuous and bounded function on $\mathbb{R}$ . Note that the second
equation emerges from the first by Fourier transforln, but has been rearranged to
indicate why the set $S=\{k|\hat{\mu}(k)=1\}$ is important. In this setting, the measure $\gamma$

of (15) is both positive $d’Ild$ posil,ive defirlitcl.
Based on the structure of the support of the underlying probability measure $\mu$ ,

olle can determine the diffractio11 of the renewal process as follows. Let $\mu$ be a
probability measure on $\mathbb{R}_{+}$ with mean 1, and assume that a moment of $\mu$ of order
$1+\epsilon$ exists for some $\epsilon>0$ (we refer to [6] for details on this condition). Then, the
point sets obtained from the stationary renewal process based on $\mu$ almost surely
have a diffraction measure of the forln

$\hat{\gamma}=\hat{\gamma}_{pp}+(1-h)\lambda$ ,

where $h$ is a locally integrable function on $\mathbb{R}$ that is continuous except for at most
countably marly points (namely those of the set $S$ ). It is given by

$h(k)= \frac{2(|\hat{\mu}(k)|^{2}-{\rm Re}(\hat{\mu}(k)))}{|1-\hat{\mu}(k)|^{2}}$ .

Moreover, the pure point part reads

$\hat{\gamma}_{pp}=$ $\{\begin{array}{ll}\delta_{0}^{\neg}, if supp(l^{\iota)} is not a subset of a lattice,\delta_{Z/b}, if b\mathbb{Z} is the coarsest lattice that contains supp(\mu).\end{array}$

Proofs can be found in [6, 15].
The renewal process is a versatile method to produce interesting point sets on the

line. These include random tilings with finitely many intervals (which are Delone sets)
as well as the homogeneous Poisson process on the line (where $\mu$ is the exponential
distribution with mean 1); see [6, Sec. 3] for explicit examples and applications.
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5.4. Random clusters and point processes. Let us continue by considering the
influence of randomness on tlie diffraction of point sets and certain structures derived
from them in Euclidean spaces of arbitrary dimension. Here, we start from a single
point set $\Lambda\subset \mathbb{R}^{d}$ , which is then randolnly lnodified by replacing each point by a
(possibly complex) finite random cluster. This situation is still manageable (via the
SLLN) when $\Lambda$ is sufficiently $($ nice’, for instance if $\Lambda$ is of finite local complexity and
possesses an autocorrelation, which is then of the form $\gamma=\sum_{z\in\Lambda-\Lambda}\eta(z)\delta_{z}$ . More
generally, one can analyse this situation in the setting of stationary ergodic point
processes [28, 6], which treats almost all of their realisations at once and permits a
larger generality for the sets $\Lambda$ , though the clusters will then be restricted to positive
or signed measures.

Given such a point set $\Lambda$ , its (deterministic) Dirac comb $\delta_{\Lambda}$ is turned into a random
Dirac comb

$\delta_{\Lambda}^{(\Omega)}=\sum_{x\in\Lambda}\Omega_{x}*\delta_{x}$

by means of the i.i. $d$ . family of random measure $(\Omega_{x})_{x\in\Lambda}$ with common law $Q$ and
representing random variable $\Omega$ . Here, we assume that the expectation $E_{Q}(|\Omega|)$ is
a finite lncasure, and that $E_{Q}((|\Omega|(\mathbb{R}^{d}))^{2})<\infty$ . Under some mild (but somewhat
technical) conditions [6], one now obtains the autocorrelation

$\gamma^{(\Omega)}(a.s.)=(E_{Q}(\Omega)*\overline{E_{Q}(\Omega}))*\gamma$

$+$ dens $(\Lambda)(E_{Q}(\Omega*\tilde{\Omega})-E_{Q}(\Omega)*\overline{E_{Q}(\Omega}))*\delta_{0}$

alld hence the diffraction
$\hat{\gamma}^{(\Omega)}(as)=|E_{Q}(\hat{\Omega})|^{2}\cdot\hat{\gamma}+$ dens $(\Lambda)(E_{Q}(|\hat{\Omega}|^{2})-|E_{Q}(\hat{\Omega})|^{2})\cdot\lambda$ .

The diffraction of the modified structure emerges from the original one by a modula-
tion of $\hat{\gamma}$ and the addition of an absolutely continuous contribution, which in essence
is the Fourier transform of the covariance of the representing random cluster $\Omega$ .

This approach comprises a wide range of models, including the random weight
and the random displacement model as well as decorations by random clusters. The
next level of generality replaces the deterministic set $\Lambda$ by a general ergodic point
process [28]. This way, both the underlying set (core process) and the modification
(cluster process) are described in terms of stochastic processes. This point of view is
a promising starting point for further investigations.

6. CONCLUDING REMARKS

Our informal exposition was meant to demonstrate that mathematical diffraction
theory provides useful tools for the analysis of deterministic and random systems,
both for practical applications in crystallography and materials science and for the-
oretical questions in harmonic analysis and dynamical systems theory. While the
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majority of the crystallographic literature concentrates on the pure point case, we
have shown that also continuous spectra are explicitly accessible in relevant cases, and
certainly deserve more attention from this point of view. Merging methods from har-
monic analysis and dynamical systems with well-established procedures froln point
process theory might be a good path to proceed.

The inverse problem of structure determination is already a formidable problem
in the realm of pure point diffractive systems, due to the existence of non-trivially
homometric structures. As we have shown above, the inverse problem becomes signifi-
cantly more involved in the presence of disorder, including the potential insensitivity
to quantities such as entropy. Although there is quite some knowledge about this
problem in the point process community, it is fair to say that solutions to the inverse
problel$r1$ or satisfactory classifications of llolnolnetry classes are not in sight.

The setting is by no means restricted to lattice systems, which were mainly cho-
sen for ease of presentation and concreteness of results. Also extensions to higher
dimensions are possible, where one has to expect new phenomena (such as the lower
rank entropy) that further complicate the picture. Although the general theory of
point processes is highly developed, the treatment of stochastic systems with inter-
action becolnes difficult as soon as concrete results are desired, This is already the
case for equilibrium systems, as they require the full machinery of Gibbs measures.
Their analysis from the point of view of mathematical diffraction theory is still in its
infancy, although examples such as the Ising lattice gas show (see [14] and references
therein) that explicit results are possible.
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