0000000000
017250 20110 152-174 152

Substitutions from Rauzy induction on 4-interval
exchange transformations and Quasi-periodic tilings

Pierre ARNOUX? Maki FURUKADO! Shunji ITO?
Jun. 2010

This is a survey that focuses on the 2-dimensional quasi-periodic tilings by using
the non-Pisot hyperbolic substitution generated by the Rauzy induction on exchanges
of four intervals.
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1 Introduction

The dynamics of interval exchange transformations (denoted by IET for short in the
rest of the paper) has been an object of intensive studies for more than 30 years. One
of the main tools of this study is the Rauzy induction, which associates with an IET
its first return map on the largest admissible map containing 0. To any minimal IET,
one can associate an infinite paths in the so-called Rauzy induction diagram (henceforth
denoted by RID for short; it is sometimes also called the Rauzy graph on permutations),
whose vertices are given by the permutation on the order of the intervals, and whose
edges are given by the induction.

The natural partition in intervals allows us to define a symbolic system associated
with the given map, and the properties of these symbolic systems are well-known. In
particular, they are examples of S-adic systems, that is, symbolic systems defined by an
infinite sequence of substitutions belonging to a finite set of substitutions.-

The special case of periodic induction is very interesting for a number of reasons (they
correspond to invariant foliations of pseudo-Anosov automorphisms); the corresponding
symbolic system is generated by a primitive substitution. Much energy has been devoted
to the study of substitution dynamical systems (see [Q], [Fo}, [L]), and among them to
the so-called Pisot substitutions, where all eigenvalues except one have modulus strictly
smaller than 1. Substitutions associated with IETs are in some sense the opposite: for
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geometric reasons, the characteristic polynomial of the matrix is reciprocal, hence the
set of eigenvalues is stable by inversion. In particular, there is, by Perron-Frobenius, a
largest eigenvalue which is real, hence, by the reciprocity property, there is a smallest
eigenvalue in modulus which is also real.

One easily proves that the original IET can be recovered from the substitution by
the following method. Consider any infinite periodic point of the substitution (the
set of such periodic points is finite and nonempty). Next, consider the subset of Z¢
(where d is the number of continuity intervals of the map, and the number of letters
of the substitution) defined as the abelianizations of the prefixes of this periodic point.
Project these points on the eigenline corresponding to the smallest eigenvalue, along the
hyperplane generated by all the other eigenvectors. This is obviously an bounded set
which satisfies a self-similarity relation given by the substitution; one can show that the
closure of this set is an interval with a natural partition corresponding to the final letter
of the prefix, and the shift on the infinite word induces a map which is (conjugate to)
the initial IET.

In this paper, we enlarge this picture, by showing on an example that we can associate
to the substitution not only an IET on a subset of the contracting eigenline, but also
a self-similar tiling of the contracting plane (and of the expanding plane). In this way,
we obtain an R*-action on a tiling space, where k is the dimension of the contracting
(or expanding) space. It is well-known that Pisot substitutions are finite extensions of
rotations on a compact group, and it is conjectured that this finite extension is almost
everywhere 1-to-1; there is a natural way to build a suspension to obtain a flow on
the torus of dimension d. The flow on a tiling space that we exhibit here could be the
counterpart of this toral flow for non-Pisot examples.

The construction of the tiling is given in the last section of the paper. We follow
the construction given in [S-A-I], [E], [F-I-Rob], but there is something subtle here.
Indeed, the matrix we are led to consider (antisymmetric tensor square of the matrix
of the substitution) is positive in a suitable basis, but the geometric map corresponding
to the substitution is not, its image containing negatively oriented parallelogram. We
are led to change the images of the basic parallelogram by a retiling method to define
the invariant tiling. The general condition under which this is possible is unclear at the
moment, and it would be interesting to know.

The paper is organized as follows: In Section 2, we fix the notations and recall the
basic facts about the Rauzy induction and the related substitutions. In Section 3, we
define the particular example under study and give its main properties (substitution,
matrix, eigenvalues and invariant spaces), and we study the bounded sets obtained by
projection of the contracting space (see Figure 12). In Section 4, we give the construction
of the polygonal quasi-self-similar tiling and of the limit self-similar tiling associated with
the substitution.
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2 A Rauzy induction on 4-IET's

In the following, we will use the Kerckhoff coding for IET (sce [K]); this coding, by two
permutations instead of one, allows to give the same name to intervals which are not
changed by induction, even if their relative position in the interval is changed. This
coding might look more complicated than the usual one by the ordering of intervals,
but as we will see, the resulting permutations and matrices are obtained in this way are
elementary, hence simpler.

Let A be the alphabet given by A = {4, B,C, D} and let us consider seven 2 x 4
matrices as follows:

[4aBc¢D] ,_[ACDB]  _[ADBC]

=lpcBal "|pcBal M |DcBal

[ADBC [ABCcD) ., [ABCD]

IV—[DCAB}’V— pBAC|" '5|Dac B
ABDC

=153 ¢ 5]

For each J € {I,II,--- , VII}, let us define the two bijections ym : A — {1,2,3,4} and
7t A—{1,2,3,4} by

jmo = the location of a € A in the first row vector of J,
jmp = the location of a € A in the second row vector of J.
. A C D B .
For example, if J =11 = [ DCB A ] , then we obtain
( JTo (A); J7o (B)) JTo (C) JTo (D)) (114)2a3)’
(am (A), ym (B), J7T1 (C), i m (D)) = (4,3,2,1),
( 371'0_1 (l)v J7T6_1 (2)’ JTrO ( )) J7r0 (4)) = (A,C,D,B),
(st (1), gt (2), mr ' (3), 9m' (4)) = (D,C,B,A).

For each J, let us consider the 4-IET R;, J € {I,1I,..., VII} with the subintervals
{Ia} e 4 of [0,1) as follows [Y] (see Figure 2).

Let (Aa),cq be the length data of the intervals I, satisfying 3 ., Ao = 1. Then,
the transformation R; : [0,1) — [0, 1) is explicitly given by

5 (z) —a:~Z Ay )+Z Mmepy itz € L.

370 (ﬁ) <J mo (@) gm (B) <J m (@)
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Figure 1: The 4-IETs R;.

For example, if J = [

T+ Ap+Ac+ A if z€ly
T—Aa+ Ap+ Ac if ze€lg
CC—(/\A-}—)\B)-I—)\D if z€lec
x—()\A—!—/\B—}—)\C) if ze€lp

RI (:L‘) =

(see Figure 2).

or LA |IB| )1
/k/l‘\ _/'\

Figure 2: The 4-JET R; given by the length data (Aa),c4-

For each J € {I,1I,...
of Ry where ¢ is given by

e 0 A s > A
' 1 if A
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, VII}, let us consider the induced transformation (Ry)q z: ()
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and A\’ (J) is given by
)\: (J) =1 —min {)\on—l(‘l), /\Jﬂfl(‘l)} .

Then, for J and ¢, there exists J' such that the mduced transformation (Rj)g () 18
isomorphic to Ry by the isomorphism cp(J)( T) = 337 from 0, A2 (J)) to [0,1). For

example, if J = I, the induced transformations (Ry)(y »:(5), € € {0,1} are following (see
Figure 3):

£=0 if Ap > A, e=1 if Ap < A,

or A ] B l C l. . D )l Or A | B | C l?)l
t 1 I L 1 I
R, R, c B
g b, C | BiA [D L (B,oA
i i 1 | I | >
A, B, C | ijaou) -1 r A ;D B, Cajm=1-1
| { 1 d r 1 =1
(R, e : Ry ..
(0, A5 M) H 0. A7 6)
A S BN ! E_,D_ICJBI A S
i i | i . >
1 i 1 1
Agh  1-Ax M 1-ip
LTI A yDyBL Co
| | 1 8 1 | J
. D A, C B Rin D c B, A
L. : e o) [m L Ll N
L I 1 1 J I [ T J

Figure 3: The induced transformations (RI)[O’ ay Of R, e=0,1 and the renormalized
transformations Ry and Ry of (RI)[O, xy €=0,1

The other cases of J = II, 111, ..., VII are defined analogoulsy.
By the length A /-1, and )\ (a) Of the subintervals /| el (4) and [ rl(a) respectively,

we have a part of the dzrected gmph with the vertices {I II, . VII} and the labels
e € {0,1}. For example, if J =1, see Figure 4.

ABCD]

ij}x“=[DACB
-[aBCD
DCBA

ADBC
=1 =
€ I [DCBA]

Figure 4: The directed graph that starting vertex is I.

The other cases are defined analogously.
Then we have the following RID from the 4-IETs (see [Y]).
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1= [AcDB ABCD
DCBA \,‘ yv= DBAC
! ) ;-[AaBCD 0 0
N DCBA N
v=[ADBC]+—, _[ADBC A va ABCD] — yy-[ABDC
DCAB[—""|DCBA DACBJ «— DACB

Figure 5: RID.

Proposition 2.1 (RID). We have the following RID (see Figure 5):

Using RID, we obtain the RID-admissible path ((Jl) (J’) .- (i:) e ) of (Z:) e {L1I,...,VII}x

€1 £2
{0,1}.
Now let us introduce the family of the substitutions a3y on A* related to the induced

transformation (Ry)(q s (sy) as follows:

AB U(lll) :

0’(5) :A —» AD 0’(:) tA 5 A 0(:01) A — A - A
B - B B - B B —- B B - AB
cC - C C » C cC - C CcC - C
D - D D - AD D - D D - D
0'(1!:)1) A = AC 0'(1}1) A - A 0‘(:3/) A - A 0'(1;') A o A
B - B B —- B B -+ BC B - B
cC - C C —» AC cC - C C - BC
D - D D - D D - D D - D
ovy:A = A ovy:A — A ovy:A — A ovn:A - A
@) () (5) (1)
B - B B —- B B - BD B - B
¢ - CD CcC —» C C - C cC - C
D - D D - CD D - D D - BD
U(Vgl) A -5 A U(Vlll) A = A
B - BC B - B
cC - C C - BC’
D - D D - D

We write the incidence matrices of the above substitutions 7 (3 as M;.

Then, we have the following RID with the substitutions.

Proposition 2.2 (RID with the substitutions). We have the following RID with the
substitutions (see Figure 6):

For any RID-admissible periodic path ( gg) (g:) e (‘::) e (‘g::i)) with period k, we
have the substitution o; as follows:

g; =0(.::)00 g:ﬂ) O---oa'(i,;:i) OO’(:g O--+0C0 :::}
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(,,) : A— AB (V A=A
B—~B "B—-B
cC-C C-C
D—-D D—-CD
0 (,,) A—A v A—A 1
M B — AB BB M
CcC->C C—-CD
I ACDB D—D D—D ABCD
DCBA 1 0~ V=|DBAC
(m) A A \ / (v[) A—-A
—B 1 1= ABCD 0 B — BD
C—»AC DCBA C-C
D —D / \ D—D
m[ADBC 1 0~ _[ABCD
DCBA O'(I)ZA—’A 0{!):A—’AD DACB
"' BB *B-B
C—-C C—-C
D — AD D-D
(“I) A_’gc 0 0 O'(N] A—*A {vu} A—A l 1 (Vl] A:g
c—cC — BC g c—cC
575 ¢ e 56
ADBC ABDC
v [DCAB] Vi [DACB]
U (IV) CA : g (vn) A— gc U
1 C-vBC C—-»C 0
D—-D D—-D

Figure 6: RID with the substitutions.
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on A*. In this survey, we only consider the following RID-admissible periodic path:

(@)E)-C)-C)-(OMEE)IEE )

with period 8.

The substitution o will be sometimes written by
o(a) = Wl(a)Wé“) e W'l(aa) = P,g“)Wéa)Séa)

where P{* (resp. S®) is the prefix (resp. suffix) of the letter W .

3 On an example
Let us consider the following substitution o as an example:

g = 0(101) o 0’(111) o U((I)) o 0(\61) o) 0’(\1/) o U(X) o O'G) o O'(Iil)

generated by a RID-admissible periodic path with period 8 (see Figure 7).

(6) () (o) (9) (1) (0) () (T)

Figure 7: An example of a RID-admissible periodic path with period 8.
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The substitution o is explicitly given by

— ABD

— ABBD

— ABDCCD’
— ABDCD

g .

Qe

and its incidence matrix M, and its characteristic polynomial ®, (z) are given by

M, = , P () =2 -T2 +1322 - Tz +1

— O
—_ O N
D) CO =
D =

respectively. Then, we see that the root of ®, (x) is distributed by Figure 8.

1N

- A4A3 A2 Al

Figure 8: The distribution of the roots of ®, (z).

Therefore we have the Perron-Frobenius eigenvector v, satisfying

v1="[A4,A8,Ac; Ap], Aa >0, and > g =1

acA

where *M means the transpose of the matrix M.
Starting from o, we obtian the following 4-IET Ry; let us define the partition
{lo |a € A} of [0,1) by

Ia=1[0,M4), I =[Aa,2a+Ac), Ic =[Ma+ A, da+ e+ Ap),
ID'——'[)\A'*‘)\C'*'AD,I)

(see Figure 9).
A C

D B
L | |
0 E I - I,_.“a 1
A Artds Nat A+ A

Figure 9: The partition of [0, 1).
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From the definition, Ry is explicitly given by

TH+Ap+Ac+Ag if xz€ly

. T —As+ Ap if zelg
RH(x)-_ CU"()\A'*")\C) if zelp *
T —Ag if zelg

Then, Ry (z) by Ap > A4 and the induced transformation (Rn) 051D of Ry is isomor-
phic to Ry by the isomorphism P (z) = Y(m from [0, A4 (IT)) to [0,1) (see Figure
.~ 10).

e=0 if Ag > A,

0A, C D B!
— ! I —
R :
r D . € B A
C | ! %
A C D Braw=r12,
— | ™~
Ry 12y ;
[ D L C |B| A\
L | N
1 - 1
Apn s
A, c b A
i | o
R
r D | C B A~
iy | - —

Figure 10: The induced transformation (RH)[O’ A3(D) of Ryy.

Let W be the fixed point of o, that is,

W =258...8...= le o™ (A).
Let
L (v1,v9,v3,v4) i= L (v1) & L (v2) & L (v3) & L (vy)

and let us define the projection m; and m;; by

U E(U1,U2,U3,’U4) — E(’Ui)
T - E('Ul,'UQ,'U;g,’U;;) — E(’Ui,’vj)
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where v;, i = 1,2, 3,4 are the eigenvectors associated to the eigenvalues );, 1 = 1,2,3,4
of M, satisfying A\; > Ay > 1 > A3 > Ay > 0 respectively.
Moreover, let us define the homomorphism f : A* — Z* by

f(A)=ey, f(B) =€y, f(C):=es f(D):=es f(0):=0
f(W1W2Wk) S=f(W1)+f(W2)+"'+f(Wk).

On the above notation, we have firstly the following proposition.

Proposition 3.1. Let us define the set X,, X, X as follows:

X, = the closure of my{f (s182...8k-1) | Sk =a,k=1,2,...} ,a€ A
X! = the closure of m4 {f (s182...8%) |sk=a,k=12,...},a€ A
X = the closure of mg{f (s182...8k-1) | k=1,2,...}.

Then, we have the following properties:
(1) Xo is an interval of the line L (vy4);
(2) X =UaeaXa = Uaeca Xos
(8) XaNXp (a# B), a,B € A are not overlapped;
(4) {Xa}acq sotisfies the set equation:

MXa (=M %)= U (mf (P,E’j )) + Xﬂ) ;

BeA Wk(:ﬁ)=01

(5) The IET D : X — X such that D(X,) = X, is isomorphic to R(u) where

0

A C DB

D : X — X such that D (X,) = X], is isomorphic to Ry = { DCB A ] (see

Figure 11).

Moreover, we have the following theorem.

Theorem 3.2. (¢f. [F-I-Rao]) Let us define

)?a = the closure of maq {f (s152...8k-1) | Sk =0,k=1,2,...}
)?; = the closure of mq {f (s152...8k) | sk=0,k=1,2,...}
X = the closure of mag {f (5182...8k—1) | k=1,2,...}.

Then,

(1) X = Uaca Xy = Uaca X,  (non-overlapping);
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A AR 4 ETh 8 0y 030} P .30+
; : pro——t
: 0.25f : 02s
H .
| —— 0.20 — 020
15t p 0isf
. a.10f ) .___——_——e H o.10b
H H H :
H . 1 *
H 005F ' H H 005}
13 ] . .

" 4..: N i L1 i o

08 05 04 02 08 ETIN 04 02

XB Xbp Xc Xa XA XB Xc Xp

Figure 11: X, and X.

(2) {)?a} A satisfies the set set equation:
ae

=U U (o (1 (57) 455))

PeAy B,

(3) The above set equation satisfies open set condition, that is, there exist a family of
open set Uy, a € A such that

w05 U U (o (7) £ 09)

BeA w8 _q
where the right-hand side is non-overlapping union;

(4) The domain exchange transformation D : X — X satisfying D ()?a) = Xy is
well-defined (see Figure 12).

Xa and UaG.A Xa(-

Figure 12: |

acA
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4 Quasi-periodic tiling

Starting from the hyperbolic and non-Pisot substitutions (automorphism) o of degree 4,
the generating method of quasi-periodic tiling on £ (v1,v,) and £ (v3, v4) were discussed
in [A-F-H-1], [F-I-Rob], [H-F-I]. In this section, we

show the existence of the quasi-periodic polygonal/self- — Taac4
affine tilings generated by substitution o analogously. . "

Let us observe the figure of {m34€:},_; 53,4 (see Fig- TN
ure 13). Using the projected basis {mss€:};_; 534, We Taaest
consider the proto tiles of parallelograms on L (v3, vy4)

(see Figure 14). T3ae1

T4€4

G4€i }im1 2,34

08 -09

-0.9 038
-038 34€) -0.8 €1 -08 sl
734 (0, f (B) A f (4)) 734 (0, f(C) A f (4)) 734 (0, f (A) A f (D))
0.5 { e 0.5
M34€2
-0.9 e, 08 -09 bl 0.8 -09 08
-0t €l -0.8 Tuér -0.8 Taaél
734 (0, f (B) A f (C)) m34 (0, f (D) A f (B)) 734 (0, f (D) A f (C))

Figure 14: The proto tiles on L (v3, v4) generated by f (A) = ey, f (B) = ez, f (C) = es,
f (D) = €4.

Using the automorphism 6 :=0~! (see [E]):
6(A) = AD'CD'AB7'A
6 (B) AD 'CD'BA'DC-1DA-!
6(C) = AD™'CD™! ’
(D) = DC™'DA?
we try to consider the 2-dim extension of the automorphisms 6 as follows:
Ey () (0,anB) = (0,6(x)AE(B))

= ¥ (f (R-(“)) +f<}31gﬁ)),m<a),\wjgﬂ>)

1<i<la
1<5<!g
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(see Figure 15). Attention that we find the negative oriented parallelograms in
E5 () (0, A B) which is characterized as the strong colored parallelograms in Figure
15.

~-2.1 3, 1.8 -2.1 1.8 =21 " 18 -2.1 1.8
738y e
EE@ Egg’)
-4.4 -44
734 (0, f (B) A f (A)) 734 (0, f (C) A £ (A4))
. Oéf Rases oéf [Tpaes . 0é5 Tpees
-2.1 n4e 18 2.1 =21 ey 13 2.1 M€y 1.8
e 48 e
Egﬁ) EE@
-44 -44 -44
734 (0, f (A) A (D)) 734 (0, £ (B) A f (C))
7 9 [ P 0.5 & n 0é5 Tpees
-2.1 T34 € 1.8 -2.1 3484 18 ~2.1 1.8
n3ey T34€y 4€)
-44 -44 -44
w34 (0, f (D) A f (B)) 734 (0, f (D) A £(C))

Figure 15: E5 (0) (0, A B).

On the example, we know that A* is positive, that is,

AAB | 17 201010
CAA 132111

. DAA M knl 2 341 21

- : = >

A= prc 111110 0
BAD 212120
DAC | ] Lo 1000 1]
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My M4
Mje Mji -

From this fact, we try to find the tiling substitution E, (0) by the retiling method in
[F-I-Rob] (see Figure 16).

-1 _
where mj, ., = det [ ] for M;* = [mij]lgi,j54'

-4 -4 -4

734 (0, £ (C) A F (A)) 7342 (8) (0, f (C) A f(A))  m34E2(8) (0, F(C) A £ (A))
‘7“2———4”':';66 -22 ”‘:,, 0.6 -22 ::,, 06
734 (0, f (B) A £ (C)) 7342 (6) (0, f (B)A f(C))  m34E2(8) (0, f (B) A f(C))

Figure 16: The retiling method from E; () to E» (9).

Theorem 4.1. Let U, be a patch generated by the following proto tiles:

U. = (2, f(B)AF(A)+(z+es—es5, f(C)NF(A)+ (2, f(A) A f(D))
+(2+es—es f(B)AF(C))+ (2, f(D)Af(B))
+(z+ e —ez f(D)A f(C))

where z = (—+5, -3, —%,0). Then, we see that U, is the seed, that is, E, (0 (U,) = U,
(see Figure 17).
Moreover,

(1) Tex = {7r34(w,f(a)Af (8)) IEE(H)3" Ue) > (=, f (@) A f (ﬂ))} is a quasi-
periodic polygonal tiling of L (v3,v4) (see Figure 18);
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s

Sk

34U,

Figure 17: w344, and a part of 7r34.75'\2 (9)3 Ue).
(2) Put .
Xang = lim w3 M E, (0)°" (0, f () A £ (B)).-

Then, {Xang} satisfies the set equations:

Mo (71'34(131; + X 1.) = z <7T34ml(ci) -+ X'Yl(ci))
k

where Us = S5, (@4,7%) and B 6) () = 5 () +17);

(8) Tea :={m3ax + Xang | maa(z, f (@) A f(B)) € Te1}. Then, Teo is a quasi-periodic
self-affine tiling of L (vs, vy) (see Figure 20).

Figure 18: The quasi-periodic polygonal tiling 7.1 of £ (v3, v4).
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e~
€4

6
Z (m3gx; + X ;) M,y (m34; + X”h')

1=1

6
maalde = m3q (i, %)

=1

Figure 19: w34l and the proto-tiles of the quasi-periodic self-affine tiling 7. o.

Figure 20: The quasi-periodic self-affine tiling 7o of £ (v3,vs).
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By the analogous discussion, we can construct the quasi-periodic polygonal/self-
affine tiling from the ”tiling substitution £, (0)” on the expanding plane L (v, v3).

Let us observe the figure {leei}i=1’2’3’4 (see Figure
21) and we consider the proto tiles of parallelograms on ot
L (v1,v,) (see Figure 22). e,

maey -

12€2 €3

12€1

Y3 5
12€4 124
12€3 12€3

€ {4 ei}i=1,2,3,4-

m12 (0, f (A) A f (B)) ™12 (0, f (C) A f (4)) m2 (0, f (D) A f(4))

m2 (0, f (C) A f(B)) m2(0, f (D) A f (B)) m2 (0, f(C) A £ (D))

Figure 22: The proto tiles on £ (vy, v3) generated by f (A) = e1, f (B) = ey, f (C) = e,
f(D) =eq.

Using the automorphism o

c(A) = ABD
o(B) = ABBD
o(C) = ABDCCD
o(D) = ABDCD

we try to consider the 2-dimensional extension of the automorphisms (substitutions) o
as follows:

Ey(0)(0,aAB) = (0,0(a)Ac(B))

(see Figure 23):
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m2 (0, f (A) A f(B)) m2 (0, f(C) A f(A))

-%,——————-———- Ex(o) — T RO,
=,

m2(0, f (D) A £ (A)) m2(0,f(C) A f(B))

m12 (0, £ (D) A £ (B)) m2 (0, f(C)A f(D

Figure 23: Ey (o) (0,a A B).

On our example, we know that A* is positive, that is,

AAB T 1 100110
CAA 021211
. DAA Qns kn lor1110
N ' =lo2 1421|209
DAB 111330
CAD | | lo2121 2]

ik Oy
* _ ik il = [n..
where a},; ;o = det [ o ay J for M, = [a‘J]lsi,jg'

From this fact, we try to find the tiling substitution E‘; (o) by the retiling method
in [F-I-Rob] analogously (see Figure 24):

Theorem 4.2. Let U, be a patch generated by the following proto tiles:

U. = (y+ey , f(AANF(B))+ (y+es, fIC)ANF(A)+(y+ e f(D)A f(A))
+(y +eq, e, f(C)Af(B)) + (y, fF(D)Af(B)) + (y, f(C) A f(D)),
wherey = (&, -1 2 _18) Then, we see that U, is the seed, that is, B, (o) (U.) ~

U, (see Figure 25).
Moreover,
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@ U

mz2 (0, f (A) A f(B)) m12E2 (0) (0, f (A) A f(B))  m2E2 (o) (0, (C) A £ (A))

frey

m2 (0, f(C) A £(B)) m2E2 () (0,f(C)Af(B))  m2E2(a)(0,£(C) A f(B))

1 Eivey s
lllll ey ‘
»

m12(0, f (D) A f (B)) m2E2 (6) (0, f (D) A £(B))  m2E2 (0)(0,f (D) A f(B))
m2 (0, f (C) A £ (D)) m2E2(a) (0, f(C) A (D)) m2E2(a)(0,f(C)Af(D))

Figure 24: The retiling method from E; (o) to E, (o).
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19U, A part of o

E; (o) (Ue)

&

Figure 25: my5l, and a part of m2E, (o) (U,).

(1) T = {ma(@f@ALB) | Ba(o)™ )3 @,/ (@ATB)} is o quasi-
periodic polygonal tiling of L (v1,vs) (see Figure 26);

(2) Put .
Xang = lim m2M;*"E, ()™ (0, f () A £ (B)).-

Then, {Xang} satisfies the set equations:

M (mom; + Xs,) = ; (Trlgm,(:) + X‘s/(:))

where U, = 30, (2:,68;) and Es (0) (x;, 6;) = S, (il:f:) n 6,(:));

(3) Tea = {max+ Xong | m2 (2, f(Q)AF(B) € Ter}. Then, Tep is a quasi-
periodic self-affine tiling of L (vy,v2) (see Figure 28).
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Figure 26: The quasi-periodic polygonal tiling 7¢ 1 of £ (v1,v2).
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Figure 27: m2U. and the proto-tiles of the quasi-periodic self-affine tiling 7 o.
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Figure 28: The quasi-periodic self-affine tiling 7; 5 of £ (v1,v2).
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