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Abstract

In this paper, we develop an algorithm for minimizing the $L_{p}$ norm of a vector whose
components are linear Ractional fimctions, where $p$ is an arbitraly positive integer. The
problem is included in the sum-of-ratios problem, and often occurs in computer vision.
In that case, it is characterized by a large number of ratios and a small number of vari-
ables. The algorithm we propose exploits those special stmctures and generates a globally
optimal solution in a practical amount of computational time.

Key words: Global optimization, ffactional programming, sum-of-ratios, branch-and-
bound, computer vision, multiview $geome\ddagger ly$.

1 Introduction

Fractional optimization problems have been studied in order to achieve optimal economic per-
formance, as evidenced by the fact that a time rate of eamings or profit is usually represented
by a ffactional hnction. Sum-of-ratios optimization, i.e., optimization of a sum of ffactional
functions, arises in problems of stochastic nature, where the objective is to maximize the
expectation of economic performance (see e.g., [1, 10, 11]). Recently, however, ffactional
optimization has attracted much attention in multiview geometly of computer vision, with-
out any direct relation to economic perfonnance. Since multiview geometry is developed in
projective spaces, fractional ffinctions play an essential mle there. A variety of problems,
e.g., tnangulation, camera resectioning, homography estimation, and so forth (see e.g., [7, 9]),
are formulated into a class of sum-of-ratios optimization problems, where the objective is to
minimize a norm of a vector oflinear fractional functions. Problems ofthis class are also char-
acterized by a small number of variables but a large number of ratios in the objective fimction.
Unformnately, however, existing algorithms are not adequate to solve such a kind ofproblems
because those were designed for problems with only a few ratios [2, 3, 12, 13]. The purpose
of this paper is to propose a deterministic algorithm for solving sum-of-ratios optimization
problems with these features in a practical amount of computational time.
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In the next section, we gives a formal definition of the target problem, and illustrate how
it arises in computer vision, in Section 3. In Section 4, we develop a convergent branch-
and-bound algorithm to generate a globally optimal solution, and report numerical results in
Section 5.

2 Sum-of-ratios optimization

The problem considered in this paper is a class of fractional optimization problems:

minimize $\sum_{i=1}^{q}|\frac{d^{i}x+\delta^{i}}{c^{i}x+\gamma}|^{p}$

(1)
subject to Ax $\geq b$ , $0\leq x\leq u$ ,

where $A\in R^{m\cross n},$ $b\in R^{m},$ $c^{i},d^{i},u\in R^{n},\dot{\oint},$ $\delta^{i}\in R^{1}$ , and $p$ is a positive integer. Let

$D=\{x\in R^{n}| Ax\geq b, 0\leq x\leq u\}$ ,

and assume through the paper that

$c^{i}x+\gamma^{i}>0$ , $i=1,$ $\ldots,q$ , $\forall x\in D$ . (2)

If $q=1$ , then (1) is a linear sum-of-ratios problem, for which branch-and-bound algorithms
have been proposed in [12, 13]. When $q=2$ , problem (1) is a special case of nonlinear sum-
of-ratios problem:

minimize $\sum_{i=1}^{q}\frac{d_{i}(x)}{c_{i}(x)}$

(3)
subject to $x\in D$ ,

where $d_{i}:R^{n}arrow R^{1}$ is a convex ffinction, $c_{i}:R^{n}arrow R^{1}$ is a concave and positive valued
function. As shown in [9], these conditions are satisfied ifwe set

$c_{i}( x)=c^{i_{X}}+\oint$ , $d_{i}( x)=\frac{(d^{i}x+\delta^{i})^{2}}{c^{i}x+\gamma}$ , $i=1,$ $\ldots,q$ .

For (3), branch-and-bound algorithms similar to the one in [12] have also been developed in
[2, 3]. The number $q$ of ratios that can be handled by those existing algorithms is limited
to only around ten. The difficulty of (1) is attributed to the sum of ratios, not due to ratios
themselves. To see this, consider the simplest case where $p=1$ . It is known that a linear ratio
is a quasiconvex and quasiconcave ffinction on the domain where the denominator is positive
(see e.g., [14]). However, the sum of quasiconvex ffinctions is not in general quasiconvex, and
the sum of quasiconcave hnctions is not quasiconcave. This implies that the sum of linear
ratios is neither quasiconvex nor quasiconcave. As a result, (1) has multiple local minima
which are not globally optimal, even when $p=1$ . From the viewpoint of computational
complexity, (1) is also known to be $\Lambda’\mathscr{P}$-hard [5, 15].
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Figure 1: Geometry of a pinhole camera.

3 Example in computer vision

The sum-of-ratios problem (1), although difficult to solve, has a wide variety of applications
within computer vision dealin$g$ with geometric relations between the $3D$ world and its pro-
jection onto a $2D$ image plane. In this section, we take triangulation as a typical example of
application and show how it can be formulated into (1). The basis for this formulation is the
pinhole camera model.

PINHOLE CAMERA MODEL

The pinhole camera model describes the relationship between the coordinates of a $3D$ point
and its projection onto the image plane of an ideal pinhole camera, where the camera aperture
is a pinhole and no lenses are used to focus light. The geometry related to the mapping
of a pinhole camera is illustrated in Figure 1. Let us denote the subject of this camera by
$x’=(x_{1}’,x_{2}’,x_{3}’)^{T}$ in the $3D$ coordinate system with its origin at the camera aperture $0$ . Light
emanating ffom $x’$ passes through $0$ and projects an inverted image $y’=(\sqrt{1},y_{2}’)^{T}$ on the image
plane, which is parallel to the $x_{1}-x_{2}$ plane and located at the focal length $f$ ffom $0$ in the
negative direction of the $x_{3}$ axis. Let $u=(0,0,x_{3}’)^{T},$ $v=(\sqrt{1},y_{2}’, -f)^{T}$ and $w=(0,0, -f)^{T}$ .
Since the triangle connecting three points $0,x’$ and $u$ is similar to that connecting $0,v$ and $w$,
we have $(\sqrt{1},y_{2}’)^{T}=(f/_{3})(x_{1}’,x_{2}’)^{T}$ , or equivalently

$\{\begin{array}{l}y_{1}’y_{2}’1\end{array}\}=\frac{f}{x_{3}}\{\begin{array}{l}x_{1}’_{2}x_{3}’/f\end{array}\}$
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in homogeneous coordinates. It should also be noted that the image $y’$ is invariant under
scaling of the subject $x’$ . We denote this by

$\{\begin{array}{l}y_{l}^{f}y_{2}’1\end{array}\}\sim\{\begin{array}{l}x_{l}’_{2}x_{3}’/f\end{array}\}=\{\begin{array}{llll}1 0 0 00 1 0 00 0 l/f 0\end{array}\}\{\begin{array}{l}x_{1}’\sqrt{2}x_{3}1\end{array}\}$ , (4)

and say that $(\sqrt{1},y_{2}’,1)^{T}$ is equivalent, or proportional, to $(x_{1}’,x_{2}’,x_{3}’/f)^{T}$ . The $3\cross 4$ matrix in
(4) is called the camera matrix.

TRIANGULATION

Triangulation is the process of detemlining the $3D$ coordinates of $x’$ given its projections onto
two, or more, image planes. In theory, the triangulation problem is trivial. Each image $y’$ of
$x’$ corresponds to a line in the $3D$ space such that all points on the line are projected to $y’$ .
Therefore, $x’$ must lie on the intersection of those lines, and we must be able to compute it
analytically from a pair of different images. In practice, however, various types of noise, such
as geometnic noise from lens distortion or interest point detection elror, lead to inaccuracies in
the measured image coordinates. As a result, the lines associated with the images of $x’$ do not
always intersect in the $3D$ space.

Suppose that $x’=(_{1},x_{2}’,x_{3}’)^{T}$ is in an arbitrary $3D$ coordinate system, and that there are
$N$ images $y^{k}=\mathscr{K}_{1}^{k},y_{2}^{k})^{T}$ of $x’$ captured by cameras $k=1,$ $\ldots,N$ . Let us denote the kth camera
matrix by

$C_{0}^{k}=\{\begin{array}{llll}1 0 0 00 1 0 00 0 1/f^{k} 0\end{array}\}$ ,

where $f^{k}$ is the focal length of camera $k$. Note that $x’$ is denoted as $R^{k}x’+t^{k}$ for some rotation
matrix $R^{k}$ and translation vector $t^{k}$ in the $3D$ coordinate system with the origin at the focal
point of camera $k$. Hence, from (4), we have

$\{\begin{array}{l}y^{k}l\end{array}\}\sim C_{0}^{k}\{\begin{array}{ll}R^{k} t^{k}0 1\end{array}\}\{\begin{array}{l}x’1\end{array}\}$ , $k=1,$ $\ldots,N$ .

Let

$C^{k}=[c_{3}^{k}c_{2}^{k}c^{k}\iota$ $\oint_{3}^{\oint_{1}\oint_{2}}]=C_{0}^{k}\{\begin{array}{ll}R^{k} t^{k}0 1\end{array}\}$ ,

which is referred to as the normalized camem matrix. The coordinates ofthe image $y^{k}$ is then
given as

$y_{1}^{k}= \frac{c_{1}^{k}x’+\oint_{1}}{c_{3}^{k}x’+p_{3}}$ , $y_{2}^{k}= \frac{c_{2}^{k}x’+\oint_{2}}{c_{3}^{k}x’+\oint_{3}}$ ,

ifthere is no noise. As mentioned above, however, this is not the case in practice, and we need

115



to determine the coordinates $(x_{1},x_{2},x_{3})^{T}$ of $x’$ so as to minimize the reprojection residual,
defined below, between each $y^{k}$ and the $measurement\overline{y}^{k}$ :

$r_{j}^{k}( x)=|\frac{c_{j}^{k}x+\gamma_{j}^{k}}{c_{3}^{k}x+\oint_{3}}-\oint_{j}|$ , $j=1,2;k=1,$ $\ldots,N$ .

Ifwe adopt the $L^{1}$ or $L^{2}$ norm criterion, the problem to be solved is as follows:

minimize $\sum_{k=1}^{N}\sum_{j=1}^{2}(r_{j}^{k}(x))^{p}$

(5)

subject to $c_{3}^{k}x+\oint_{3}\geq 0$ , $k=1,$ $\ldots,N$ ,

where $p=1$ or 2, depending on the adopted norm. Since

$\sum_{k=1}^{N}\sum_{j=1}^{2}(r_{j}^{k}(x))^{p}=\sum_{k=1}^{N}\sum_{j=1}^{2}|\frac{(c_{j}^{k}-\overline{y}_{j}^{k}c_{3}^{k})x+\oint_{j}-\overline{y}_{j}^{k})_{3}^{fi}}{c_{3}^{k}x+)_{3}^{fl}}|^{p}$ ,

problem (5) is a special case of our target (1). Besides this triangulation, there are a number of
problems formulated into (1), in computer vision, especially in connection with multiple view
$geome\ddagger ly$ . For more details, see e.g. [7, 9].

4 Practical but rigorous algorithm

The problem (1) arising in computer vision is characterized generally by a large number of
ratios and a small number ofvariables. Exploiting this special structure, we develop a practical
branch-and-bound algorithm for generating a globally optimal solution. First, we will derive
a relaxation of (1), which is solved iteratively for the bounding operation.

LP RELAXATION

Let us apply the Chames-Cooper transfonnation [4] to (1) by introducing auxiliary variables:

$y_{i}=\eta_{i}x$ , $\eta_{i}=\frac{1}{c^{i}x+\gamma}$ , $i=1,$ $\ldots,q$ .

Then we have

minimize $\sum_{i=1}^{q}|d^{i}y_{i}+\delta^{i}\eta_{i}|^{p}$

subject to Ay$i^{-b\eta_{i}}\geq 0$

$c^{i}y_{i}+\gamma\eta_{i}=1$ (6)
$i=1,$ $\ldots,q$

$y_{i}=\eta_{i^{X}}$

$y_{i}\geq 0$ , $\eta_{i}\geq 0$

$0\leq x\leq u$ ,
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which is equivalent to (1) in the following sense. If $x^{*}$ is an optimal solution of (1), then
$(x^{*},y^{*}, \eta^{*})$ with $y_{i}^{*}=\eta_{i}^{*}x^{*}$ and $\eta_{i}^{*}=1/(c^{i}x^{*}+\oint)$ is an optimal solution of (6). Conversely,
if $(x^{*},y^{*}, \eta^{*})$ is an optimal solution of (6). then $x^{*}$ is an optimal solution of (1).

Consider a subproblem of (6):

$P(s,t)$

minimize $\sum_{i=1}^{q}|d^{i}y_{i}+\delta^{i}\eta_{i}|^{p}$

subject to $Ay_{i}-b\eta_{i}\geq 0$

$c^{i}y_{i}+\oint\eta_{i}=1$

$i=1,$ $\ldots,q$

$y_{i}=\eta_{i^{X}}$

$y_{i}\geq 0$ , $\eta_{i}\geq 0$

$s\leq x\leq t$ ,

where $0\leq s\leq t\leq u$ . The feasible set of this problem is not convex, but can be relaxed into a
convex one:

minimize $\sum_{i=1}^{q}|d^{i}y_{i}+\delta^{i}\eta_{i}|^{p}$

$\overline{P}(s,t)$
subject to $Ay_{i}-b\eta_{i}\geq 0$

$c^{i}y_{i}+\gamma\eta_{i}=1$

$i=1,$ $\ldots,q$ .
$s\eta_{i}\leq y_{i}\leq t\eta_{i}$

$y_{i}\geq 0$ , $\eta_{i}\geq 0$

Proposition 4.1. $IfP$(s,t) has an optimal solution $(x^{*},y^{*}, \eta^{*})$ , then $\overline{P}$(s,t) also has an optimal
solution $(\overline{y},\overline{\eta})$ , which satisfies

$\sum_{i=1}^{q}|d^{i}\overline{y}_{i}+\delta^{i}\overline{\eta}_{i}|^{p}\leq|d^{i}y_{i}^{*}+\delta^{i}\eta_{i}^{*}|^{p}$

In addition, $\iota f(\overline{y},\overline{\eta})$ satisfies

$\overline{y}_{1j}/\overline{\eta}_{1}=\cdots=\overline{y}_{qj}/\overline{\eta}_{q}$ , $j=1,$ $\ldots,n$ ,

then $(\overline{x},\overline{y},\overline{\eta})$ with $\overline{x}_{j}=\overline{y}_{1j}/\overline{\eta}_{1}$ is an optimal solution $ofP(s,t)$ .

One more thing to be noted on $\overline{P}(s,t)$ is that it is decomposable into $q$ problems, each of
which is of the form:

minimize $|d^{i}y_{i}+\delta^{i}\eta_{i}|^{p}$

subject to Ay$i^{-b\eta_{i}}\geq 0$

$c^{i}y_{i}+\gamma\eta_{i}=1$ (7)
$s\eta_{i}\leq y_{i}\leq t\eta_{i}$

$y_{i}\geq 0$ , $\eta_{i}\geq 0$ .
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Introducing another auxiliary vaniable $\zeta_{i}=|d^{i}y_{i}+\delta^{i}\eta_{i}|$ , we can rewrite (7) into

minimize $\zeta_{i}^{p}$

subject to $-\zeta_{i}\leq d^{j}y_{i}+\delta^{i}\eta_{i}\leq\zeta_{i}$

$Ay_{i}-b\eta_{i}\geq 0$

$c^{i}y_{i}+\gamma\eta_{i}=1$

$s\eta_{i}\leq y_{i}\leq t\eta_{i}$

$y_{i}\geq 0$ , $\eta_{i}\geq 0$ , $\zeta_{i}\geq 0$ .

To minimize $\zeta_{i}^{p}$ , we only need to minimize $\zeta_{i}$ , despite the magnitude of $p$ , because $\zeta_{i}$ is a
nonnegative variable. We can therefore solve (7) by solving a linear programming problem:

minimize $\zeta_{i}$

subject to $-\zeta_{i}\leq d^{i}y_{i}+\delta^{i}\eta_{i}\leq\zeta_{i}$

$Ay_{i}-b\eta_{i}\geq 0$

(8)
$c^{i}y_{i}+\oint\eta_{i}=1$

$s\eta_{i}\leq y_{i}\leq t\eta_{i}$

$y_{i}\geq 0$ , $\eta_{i}\geq 0$ , $\zeta_{i}\geq 0$ .

Proposition 4.2. The relaxation $\overline{P}(s,t)$ has an optimal solution $(\overline{y},\overline{\eta})\iota fand$ only $\iota f(8)$ has an
optimal solution $(\overline{y}_{i},\overline{\eta}_{i},\overline{\zeta}_{i})$ for each $i=1,$ $\ldots,q$ .

Thus, we can see whether $P(s,t)$ is worth solving or not, by solving $q$ linear programming
problems with $(n+2)$ variables. If $\sum_{i=1}^{q}\overline{\zeta}_{i}^{p}\geq z^{*}$ holds for the value $z^{*}$ of the best feasible
solution obtained so far, we can discard $P$ (s,t)ffom ffirther consideration. Otherwise, we
have to examine subproblems of $P(s,t)$ in mm.

SUBDIVISION RULE

One way to generate subproblems of $P$ (s,t) is the subdivision of $[s,t]=\{x\in R^{n}s\leq x\leq t\}$

into a set of subrectangles. Ifwe divide $[s,t]$ along $x_{k}=(s_{k}+t_{k})/2$ for $k\in$ argmax$\{t_{j}-s_{j}|j=$

$1,$ $\ldots,n\}$ , the algorithm is guaranteed to be convergent. Instead of such an exhaustive method,
we will propose here a more sophisticated subdivision rule.

An optimal solution $(\overline{y},\overline{\eta})$ of $\overline{P}(s,t)$ naturally satisfies

$s\overline{\eta}_{i}\leq\overline{y}_{i}\leq t\overline{\eta}_{i}$ , $i=1,$ $\ldots,q$ .

Let
$\omega=\frac{1}{q}\sum_{i=1}^{q}\frac{1}{\overline,\eta_{i}}\overline{y}_{i}$ . (9)

Then $\omega$ is a point in the rectangle $[s,t]$ We can use this point $\omega$ like the subdivision point of
the usual $\omega$-subdivision mle for the rectangular branch-and-bound algorithm. Let

$\delta_{j}=\min\{t_{j}-\omega_{j}, \omega_{j}-s_{j}\}$ , $j=1,$ $\ldots,n$ , (10)
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and let
$J^{\sqrt{}}\in$ $\{\delta_{j}|j=1, \ldots,n\}$ . (11)

We may divide $[s,t]$ into $[s’,t]$ and $[s,t’]$ , where

$s_{j}’=\{$
$\omega_{j}$ , ifj $=j^{f}$

$t_{j}’=\{$

$s_{j}$ , otherwise,
$\omega_{j}$ , ifj $=j’$

$t_{j}$ , otherwise.

Then a sequence $\{k\}$ will be generated and satisfy

$s^{k}\leq s^{k+1}\leq\omega^{k+1}\leq t^{k+1}\leq t^{k}$ , $k=1,2,$ $\ldots$ , (12)

where $s_{j^{k}}^{k+1}=\omega_{j^{k}}^{k}$ and $t_{j^{k}}^{k+1}=\omega_{j^{k}}^{k}$ .

Lemma 4.3. There exist somepoints $s^{0}\leq t^{0}$ such that

$s^{k}arrow s^{0}$ , $t^{k}arrow t^{0}$ , as $karrow+\infty$ ,

and $\{\omega^{k}\}$ accumulates at a corner ofthe rectangle $[s^{0},t^{0}]$ .

Proof. We see from (12) that for each $j$ the sequences $\{s_{j}^{k}\}$ and $\{t_{j}^{k}\}$ are monotonic, bounded,
and hence have limits $s_{j}^{0}$ and $t_{j}^{0}$ , respectively. Since $\{$ 1, $\ldots$ , $n\}$ is a finite set, there is a sub-
sequence $\{k_{\ell}\}$ such that $j^{k_{\ell}}=r\in\{1, \ldots,n\}$ for every $p$ . We can also assume that $0\}^{k_{\ell}}\in$

$\{s_{r}^{k_{\ell}+1},t_{r}^{k_{\ell}+1}\}$ . Hence, we have $\omega_{r}^{k_{\ell}}arrow\omega_{r}^{0}\in\{s_{r}^{0},t_{r}^{0}\}$ , as $\ellarrow+\infty$ , by taking a hrther sub-
sequence if necessary. For each $\ell$ in this subsequence, we can assume from (10) and (11)
that

$\min\{t_{r}^{k_{\ell}}-\omega_{r}^{k_{\ell}}, \omega_{r}^{k\ell}-s_{r}^{k_{l}}\}\geq m\dot{m}\{t_{j}^{k_{l}}-\omega_{j}^{k_{\ell}}, \omega_{j}^{k_{\ell}}-s_{j}^{k_{\ell}}\}$, $j=1,$ $\ldots,n$ .

The left-hand side converges to zero, and so does the right-hand side. This implies that a
comer of $[s^{0},t^{0}]$ is an accumulation point of $\{a)^{k}\}$ . $\square$

Lemma 4.4. Let $\{k_{\ell}\}$ be a subsequence such that $\{\omega^{k_{\ell}}\}$ converges to a corner of $[s^{0},t^{0}]$ . Then,
as $\ellarrow+\infty$,

$\rho((1/\overline{\eta}_{i}^{k_{l}})\overline{y}_{i}^{k_{\ell}},$ $\omega^{k_{\ell}})arrow 0$ , $i=1,$ $\ldots,q$ ,

where $p(\cdot,$ $\cdot)$ represents the distance between the two points.

Proof. Assume on the contrary that there exist indices $r,$ $j$ and a positive number $\epsilon$ such that,
for infinitely many $\ell$ ,

$|\overline{y}_{rj}^{k_{\ell}}/\overline{\eta}_{r}^{k_{\ell}}-\omega_{j}^{k_{\ell}}|>\epsilon$ . (13)

If $\omega_{j}^{k_{\ell}}arrow s_{j}^{0}$ , then we have

$\omega_{j}^{k_{\ell}}-s_{j}^{k_{\ell}}=\frac{1}{q}\sum_{i=1}^{q}(y_{ij}^{\tau\ell}\lrcorner/\overline{\eta}_{i}^{k_{\ell}}-s_{j}^{k\ell})\geq\frac{1}{q}(\overline{y}_{rj}^{k_{\ell}}/\overline{\eta}_{r}^{k_{\ell}}-s_{j}^{k_{\ell}})\geq 0$ ,

because $s_{j}^{k_{\ell}}\overline{\eta}_{i}^{k_{l}}\leq\overline{y}_{ij}^{k_{\ell}}$ holds for each $i$ . Hence, $\omega_{j}^{k_{\ell}}arrow s_{j}^{0}$ and $\overline{y}_{rj}^{k_{\ell}}/\overline{\eta}_{r}^{k_{\ell}}arrow s_{j}^{0}$ , which contradicts
(13). Even if $\{\omega_{j}^{k_{\ell}}\}arrow t_{j}^{0}$, we reach a similar contradiction. $\square$
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OUTLINE OF THE ALGORITHM

Starting Rom $[s^{1},t^{1}]=[0,u]$ , we solve the relaxed problem $\overline{P}(s^{k},\mu)$ recursively for $k=1,2,$ $\ldots$ .
The rectangle $[s^{k},t^{k}]$ is discarded unless the value of $\overline{P}(s^{k},t^{k})$ is less than the value of the
incumbent $x^{k}$ , the best feasible solution of (1) obtained in the course of the algorithm. Note
that $\omega^{k}\in[s^{k},t^{k}]$ determined by (9) ffom $(\overline{y}^{k},\overline{\eta}^{k})$ is feasible for (1). This feasible solution $\omega^{k}$

is also used to divide $[s^{k},t^{k}]$ into two subrectangles, according to (10) and (11). If we select
$[s^{k},t^{k}]$ with the least value of $\overline{P}(s^{k},t^{k})$ and divide it at each iteration, every accumulation point
of the sequence $\{x^{k}\}$ is an optimal solution of (1). This can be proven using Lemmas 4.3
and 4.4, but the proof is omitted here and will be presented elsewhere, together with the more
detailed description of the algorithm.

5 Numerical results

We coded the algorithm sketched in the previous section using GNU Octave (version 3.0.5)
[6], a MATLAB-like computational tool, and tested it on an AMD Opteron 256 $(3.0GHz)$

single core processor. The problem used as a benchmark is ofthe form:

minimize $\sum_{i=1}^{q}|\frac{d^{i}x+\delta^{i}}{c^{i}x+\dot{Y}}|^{2}$

(14)
subject to $c^{i}x+\oint\geq 0$ , $i=1,$ $\ldots,q$

$0\leq x_{j}\leq 10.0,$ $j=1,2,3$ ,

which simulates a triangulation problem with $q/2$ images. We generated all $c_{j}^{i},$ $\oint,$ $d_{j}^{i}$ and $\delta^{i}$

randomly in the interval $[-0.5,0.5]$ , and solved ten instances for each $q$ , ranged ffom 50 to
1, 000. As for the subdivision $mle$ , we tested the usual bisection rule as well as our proposed
one, referred to as $\omega$-subdivision.

Figure 2 depicts the variation in the average CPU seconds required by the algorithm when
$p$ was changed Rom 50 to 300 in 50 increments. Figure 3 shows the variation in the average
number ofiterations for the same set of instances. The solid lines represent the results by $\omega-$

subdivision, and the dashed lines are those by bisection. It is quite obvious that $\omega$-subdivision
is much superior to bisection. The CPU seconds under both rules increase rather moderately
as a hnction in $q$ . It should be noted, however, that the numbers of iterations show no sign
of increase. The results for instances with larger $q$ by $\omega$-subdivision is listed in Table 1. We
can conclude ffom these results that the algorithm proposed for solving (1) in this paper has
performance more than enough, at least for triangulation problems in computer vision.

Table 1: Performance of the algorithm under the proposed subdivision mle
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Figure 2: Average CPU seconds.
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Figure 3: Average numbers of iterations.
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