Some applications for subordination principle

Kazuo Kuroki and Shigeyoshi Owa

Abstract

By considering some subordinations for a more general linear transformation, an extension of the Briot-Bouquet differential subordination relations given by S. S. Miller and P. T. Mocanu (Pure and Applied Mathematics 225, Marcel Dekker, 2000) for certain linear transformations are discussed.

1 Introduction

Let \mathcal{H} denote the class of functions $f(z)$ which are analytic in the open unit disk $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1 \}$. For a positive integer n and a complex number a, let $\mathcal{H}[a, n]$ be the class of functions $f(z) \in \mathcal{H}$ of the form

$$f(z) = a + \sum_{k=n}^{\infty} a_k z^k.$$

Also, let \mathcal{A}_n denote the class of functions $f(z) \in \mathcal{H}$ of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$$

with $\mathcal{A}_1 = \mathcal{A}$. If $f(z) \in \mathcal{A}$ satisfies the following inequality

$$\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha \quad (z \in U)$$

for some real number α with $0 \leq \alpha < 1$, then $f(z)$ is said to be starlike of order α in U. This class is denoted by $S^*(\alpha)$. Similarly, we say that $f(z)$ belongs to the class $\mathcal{K}(\alpha)$ of convex functions of order α in U if $f(z) \in \mathcal{A}$ satisfies the following inequality

$$\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \quad (z \in U)$$

for some real number α with $0 \leq \alpha < 1$.

2000 Mathematics Subject Classification: Primary 30C45.

Keywords and Phrases: Differential subordination, Briot-Bouquet differential equation, convex function, linear transformation.
For some real numbers A and B with $-1 \leq B < A \leq 1$, Janowski [1] has investigated the following linear transformation

$$p(z) = \frac{1 + Az}{1 + Bz} \quad (z \in \mathbb{U})$$

which is analytic and univalent in \mathbb{U}. This function $p(z)$ is called the Janowski function. Moreover, as a generalization of the Janowski functions, Kuroki and Owa [2] have discussed the Janowski functions for some complex parameters A and B which satisfy

$$A \neq B, \quad |B| \leq 1 \quad \text{and} \quad |A - B| + |A + B| \leq 2.$$

Note that the Janowski function defined by the conditions (1.1) is analytic and univalent in \mathbb{U} and has a positive real part in \mathbb{U} (see [2]).

We next introduce the familiar principle of differential subordinations between analytic functions. Let $p(z)$ and $q(z)$ be members of the class \mathcal{H}. Then the function $p(z)$ is said to be subordinate to $q(z)$ in \mathbb{U}, written by

(1.2) \quad p(z) \prec q(z) \quad (z \in \mathbb{U}),

if there exists a function $w(z)$ which is analytic in \mathbb{U} with $w(0) = 0$ and $|w(z)| < 1 \quad (z \in \mathbb{U})$, and such that $p(z) = q(w(z)) \quad (z \in \mathbb{U})$. From the definition of the subordinations, it is easy to show that the subordination (1.2) implies that

(1.3) \quad p(0) = q(0) \quad \text{and} \quad p(\mathbb{U}) \subset q(\mathbb{U}).

In particular, if $q(z)$ is univalent in \mathbb{U}, then the subordination (1.2) is equivalent to the condition (1.3).

Miller and Mocanu [4] developed the definitive result concerning the Briot-Bouquet differential subordinations as follows.

Lemma 1.1 Let n be a positive integer, and let β and γ be complex numbers with $\beta \neq 0$. Also, let $h(z)$ be convex and univalent in \mathbb{U} with $h(0) = a$, and suppose that

(1.4) \quad \text{Re}(\beta h(z) + \gamma) > 0 \quad (z \in \mathbb{U})

with $\text{Re}(\beta a + \gamma) > 0$. If $p(z) \in \mathcal{H}[a, n]$ with $p(z) \neq a$ satisfies the differential subordination

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z) \quad (z \in \mathbb{U}),$$

then $p(z) \prec q(z) \prec h(z) \quad (z \in \mathbb{U})$, where $q(z)$ with $q(0) = a$ is the univalent solution of the differential equation

$$q(z) + \frac{nq'(z)}{\beta q(z) + \gamma} = h(z) \quad (z \in \mathbb{U}).$$

As applications of Lemma 1.1, Miller and Mocanu [4] derived some subordination relation for certain linear transformations.
Lemma 1.2 Let n be a positive integer. Also, let β, γ and A be complex numbers with $\text{Re}(\beta + \gamma) > 0$, and let B be a real number with $-1 \leq B \leq 0$. If β, γ, A and B satisfy either

$$\text{Re}(\beta(1 + AB) + \gamma(1 + B^2)) \geq |\beta A + \overline{\beta} B + 2B\text{Re}\gamma| \quad (-1 < B \leq 0)$$

or

$$\beta(1 + A) > 0 \quad \text{and} \quad \text{Re}(\beta(1 + A) + 2\gamma) \geq 0 \quad (B = -1),$$

then $p(z) \in \mathcal{H}[1, n]$ with $p(z) \neq 1$ satisfies the following subordination relation

$$(1.5) \quad p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} < \frac{1 + Az}{1 + Bz} \quad \text{implies} \quad p(z) < q(z) < \frac{1 + Az}{1 + Bz}$$

for $z \in U$, where $q(z)$ with $q(0) = a$ is the univalent solution of the differential equation

$$(1.6) \quad q(z) + \frac{nq'(z)}{\beta q(z) + \gamma} = \frac{1 + Az}{1 + Bz} \quad (z \in U).$$

In the present paper, applying the theory of subordinations, we will try to determine the best conditions for complex numbers β, γ, A and B to satisfy the condition (1.4) as

$$h(z) = \frac{1 + Az}{1 + Bz} \quad (z \in U)$$

in Lemma 1.1, and deduce an extension of Lemma 1.2.

2 Some subordinations for certain linear transformations

By using the method of a certain generalization of the Janowski functions given by Kuroki and Owa [2], we first consider a certain subordination for a more general linear transformation.

Theorem 2.1 Let a, A, B, C and D be complex numbers with $A \neq aB$ and $C \neq aD$. If a, A, B, C and D satisfy $|B| \leq 1$, $|D| \leq 1$ and

$$(2.1) \quad |A - aB| + |AD - BC| \leq |C - aD|,$$

then

$$(2.2) \quad \frac{a + Az}{1 + Bz} < \frac{a + Cz}{1 + Dz} \quad (z \in U).$$

Proof. From $A \neq aB$ and the inequality (2.1), it is clear that

$$(2.3) \quad |C - aD| - |AD - BC| > 0.$$
If we define the function $w(z)$ by
\begin{equation}
(2.4) \quad w(z) = \frac{(A-aB)z}{C-aD-(AD-BC)z} \quad (z \in \mathbb{U}),
\end{equation}
then from the inequality (2.3), $w(z)$ is analytic in \mathbb{U} with $w(0) = 0$, and that
\[
\frac{a+Az}{1+Bz} = \frac{a+Cw(z)}{1+Dw(z)} \quad (z \in \mathbb{U}).
\]

Further, noting the inequality (2.3), a simple calculation yields
\[
\left| w(z) - \frac{(A-aB)(\overline{AD-BC})}{|C-aD|^2-|AD-BC|^2} \right| < \frac{|A-aB||C-aD|}{|C-aD|^2-|AD-BC|^2} \quad (z \in \mathbb{U}).
\]

Since the inequality (2.1) shows that
\[
\frac{|A-aB|}{|C-aD|-|AD-BC|} \leqq 1,
\]
we see that $w(z)$ defined by (2.4) satisfies $|w(z)| < 1 \quad (z \in \mathbb{U})$. Therefore, from the definition of the subordinations, we conclude that the subordination (2.2) holds, which completes the proof of Theorem 2.1.

In particular, letting $A = b$, $C = \overline{a}e^{i\theta}$ and $D = -e^{i\theta}$

for a complex number a with $\text{Re} a > 0$ and for some θ with $0 \leqq \theta < 2\pi$ in Theorem 2.1, we find the following assertion.

Corollary 2.2 Let a be a complex number with $\text{Re} a > 0$. For some complex numbers a, b and B with
\[
b \neq aB, \quad |B| \leqq 1 \quad \text{and} \quad |b-aB| + |b+\overline{a}B| \leqq 2\text{Re} a,
\]
we have
\[
\frac{a+bz}{1+Bz} \prec \frac{a+\overline{a}e^{i\theta}z}{1-e^{i\theta}z} \quad (z \in \mathbb{U}),
\]
where $0 \leqq \theta < 2\pi$. This subordination means the following inequality
\[
\text{Re} \left(\frac{a+bz}{1+Bz} \right) > 0 \quad (z \in \mathbb{U}).
\]

Remark 2.3 Taking $a = 1$ and $b = A$ in Corollary 2.2, we find the conditions in (1.1) as the conditions for complex numbers A and B to satisfy
\[
\text{Re} \left(\frac{1+Az}{1+Bz} \right) > 0 \quad (z \in \mathbb{U}).
\]
3 The Briot-Bouquet differential subordinations for certain linear transformations

By using the discussion in the previous section, and applying Lemma 1.1, we deduce an improvement of Lemma 1.2 below.

Theorem 3.1 Let \(n \) be a positive integer, and let \(\beta, \gamma, A \) and \(B \) be complex numbers with \(\text{Re}(\beta + \gamma) > 0 \), \(A \neq B \) and \(|B| \leq 1 \). If \(\beta, \gamma, A \) and \(B \) satisfy

\[
|\beta(A - B)| + |\beta(A - B) + 2B\text{Re}(\beta + \gamma)| \leq 2\text{Re}(\beta + \gamma),
\]

then \(p(z) \in \mathcal{H}[1, n] \) with \(p(z) \neq 1 \) satisfies the subordination relation (1.5), where \(q(z) \) with \(q(0) = 1 \) is the solution of the differential equation (1.6).

Proof. If we let

\[
a = \beta + \gamma, \quad b = \beta A + \gamma B \quad \text{and} \quad h(z) = \frac{1 + Az}{1 + Bz} \quad (z \in \mathbb{U}),
\]

then, a simple check gives us that

\[
b - aB = (\beta A + \gamma B) - (\beta + \gamma)B = \beta(A - B) \neq 0
\]

and

\[
2\text{Re} a - (|b - aB| + |b - \overline{a}B|) = 2\text{Re} a - (|b - aB| + |b - aB + 2B\text{Re} a|)
\]

\[
= 2\text{Re}(\beta + \gamma) - (|\beta(A - B)| + |\beta(A - B) + 2B\text{Re}(\beta + \gamma)|) \geq 0.
\]

Hence by Corollary 2.2, it is easy to see that

\[
\text{Re}(\beta h(z) + \gamma) = \text{Re}\left(\frac{\beta + \gamma + (\beta A + \gamma B)z}{1 + Bz}\right) = \text{Re}\left(\frac{a + bz}{1 + Bz}\right) > 0 \quad (z \in \mathbb{U}).
\]

Therefore, since the conditions of Lemma 1.1 are satisfied, we conclude the assertion of Theorem 3.1. \(\square \)

By taking \(\beta = 1, \gamma = 0 \) and \(n = 1 \) in Theorem 3.1, and letting

\[
p(z) = \frac{zf''(z)}{f'(z)} \quad (z \in \mathbb{U})
\]

for \(f(z) \in \mathcal{A} \), we obtain the following subordination implication.

Corollary 3.2 If \(f(z) \in \mathcal{A} \) satisfies

\[
1 + \frac{zf''(z)}{f'(z)} < \frac{1 + Az}{1 + Bz} \quad (z \in \mathbb{U})
\]

for some complex numbers \(A \) and \(B \) which satisfy the conditions in (1.1), then

\[
\frac{zf'(z)}{f(z)} < \begin{cases}
\frac{Az}{(1 + B)(1 - (1 + Bz)^{-\frac{1}{B}})} & (A \neq 0, B \neq 0) \\
\frac{Bz}{(1 + Bz)\log(1 + Bz)} & (A = 0, B \neq 0) \\
\frac{Aze^{Az}}{e^{Az} - 1} & (A \neq 0, B = 0)
\end{cases}
\]
for $z \in U$.

Moreover, let us consider the case that

$$A = 1 - 2\alpha \quad (0 \leq \alpha < 1) \quad \text{and} \quad B = -1$$

in Corollary 3.2. Then, from the definition of the subordinations, we find the implication that if $f(z) \in \mathcal{K}(\alpha)$, then $f(z) \in S^*(\beta)$, where

$$\beta = \beta(\alpha) = \begin{cases}
\frac{1-2\alpha}{2^{2-2\alpha}(1-2^{2\alpha-1})} & (\alpha \neq \frac{1}{2}) \\
\frac{1}{2\log 2} & (\alpha = \frac{1}{2})
\end{cases}$$

for each real number α with $0 \leq \alpha < 1$. This relationship for convex and starlike functions was proven by MacGregor [3].

References

