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Abstract

In this article, solutions to the nonhomogeneous associated Lagu-
erre's equations
g, z+g-(zra++o p=f (=0)
(¢, =d’@/dz" for v>0, 9, =0 =9@), [ =f@))
are discussed by means of N-fractional calculus operator (NEFCO- Method).

By our method, some particular solutions to the above equations are
given as below for example, in fractional differintegrated forms.

Group L.
(i) = (Xm '1/[1])..(1+5) =% 1.8 > (denote)
and
¥
(i1) @ =Xy X -aep) =P 215 >
where
a+f -z oz _—(a+B+])
X[1]=(f52 e ) Yy=¢€72
Group II
_ : *
(1) @ =€ (Xp) Yo)as =P 330
and
- K
(i1) @ =EL(Y[21'X[21)Q+;3 =9 4)(a,8) ?
where

- z _~(1+f) = p ¢
Xy = (Fe)rgo @2 M) 1y Xy =72
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§0. Introduction ( Definition of Fractional Calculus ) and
§1.Preliminary
are omitted, then refer to the previous paper [ 35 ] -

§ 2. Solutions to The Nophomogeneous Associated Laguerre's
Equation by NFCO-Method
Theorem 1. Let @ €F and f EF ,then nonhormogeneous associated

Laguerre’s equation
@, z+@ (~z+a+\)+ef=f (z=0) (1)
(9, =d'9/d" for v>0, g, =0 =0). f=f@))
has particular solutions of the forms (fractional differintegrated form );

Group L

(1) ? =Xy Y)-cem) =P )y - (demote) (2)
(i1) ¢ =My &) -gep) =P 12100 (3)
where
Xy =(fz°%e),, Y=z . (4)
Group 1L
- z _ *
(1) @ =€ (Xa; Xg)ans =P siem - (5)
(11) ‘;0 =€Z(Y[‘2] .‘X.[?,])o:-bﬁ qu[;](a’ﬁ) ) (6)
where
-z 2 (1~ -z _.,5
Xz =((fe )‘(mﬂ*l)e 74 ﬁ))‘l, Y, =€ z - (7)
Group I
. -c _ x
(1) ¢ =7 (X Xsp)-raen) = P51t - (8)
(i1) ? =2 Yy Xis)-geaer) = Prosam - (9)
where
Xy =((F2)eup2’e™) s Yyy=e2707 (10)
Group IV.
(1) P =2 XK Y =P (et (11)
(i1) v =27 (B Xa)s = Prasedr - (12)
where

_a -z z _-(l+a+f -z +f
Xg=((f2°e) upye ") |, Y= 2% (13)
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Operate N-fractional calculus (NFC) operator N to the both sides of equation ( 1),

we have then
@, 2), +(@, (-z+a+D), +(@ B),=f . (f=0).

Now we have
N _ N I'(v+1) B
(<p2 Z)v - z k! I"(,V +1__ k) (¢2)V-k(z')k

k=0

=0 ZY P,V
@, (-z+a+l), =@, (z+a+l) -,V
and
(@ B),=9.° 8 .
respectively, by Lemmas (i) and (1v).
Therefore, we have

¢2+V.Z+(p1+v.(.—2+a +1+V)+(;0v'(ﬂ—V)=f;

from ( 14 ), applyimg (16), (17 ) and ( 18).
Choosing v such that
v=_p
we obtain
Porp 2T (mzra+f+1) = f
Set
Crp = ¢ =¢(z) (p= ¢_(1+,5)) ’

we have then
a+fp+1

9 1)~ 2

z

from (21 ). A particular solution to this linear first order equation is given by
¢ =Xy -

Where X,

Therefore, we obtain

and Y, are the ones shown by (4), respectively.

*

@ =X Y)-aem =P 01t >
from (24 ) and ( 22).

(14)

(15)

(16)
(17)

(18)

(19)

(20)
(21)

(22)

(23)

(24)

(2)
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Inversely ( 24 ) satisfies equation ( 23 ). then ( 2 ) satisfies equation (1 ).
Next, changing the order

X, and Y, in parenthesis ( )-a+8)

we obtain other solution @ (5, 5 Which is different from (2 ) for ~(1+B)EZ
that is,
¢ =00 X -aem =9 210, - (3)
( Refer to Theorem D in the previous paper [ 35 ]. )
Proof of Group II.
Set
p=ey (Y =v(2)),; (25)

we have then

P, z+P, 2@y -D+a++y fzv(y -D+7(a +)+By=fe " (26)

from (1).
Here we choose y such that
Y(y _1) =0 ’
that is,
y=0,1. (27)
When y =0, (26) is reduced to ( 1), therefore, we have the same solutions as
Group I.
When y =1 we have
wz-z+wl-{z+a+1}+w-(a+ﬁ+1)=fe" (28)
from (26)
Operate N~ to the both sides of equation ( 28 ), we have then
W, 2), +@, (z+a+D), +@ (a+B+1), =(fe7), - (29)

Hence, using Lemma (i v ), we obtain
Yoo Z2+Y,,,Crat+tl+V)+y (V+at B+D)=(fe?), - (30)

ChOOSing v such that
v=—(a+f+1) (31)
we obtain
Vi) 2 ¥oaepy @ =B)=(f €7 ) aupen - (32)



from ( 30 ).
Set
w—(a+ﬁ) =¢=¢(Z) (w =¢a+ﬂ) 4

we have then

{ ﬁ -z L1
¢1+¢.\1_;) =(fe )—(a+ﬁ+l) z
from ( 32 ). A particular solution to this equation is given by

¢ = Xm}fﬂ .
Hence we obtain
Y = (X[Z]'YEZJ)m-ﬂ
from (35 ) and ( 33).
Therefore, we obtain
o= (X Yo)aus =Pp100
from (25) and ( 36 ), having v = 1.

Inversely , ( 35 ) satisfies ( 34 ), then ( 36 ) satisfies equation ( 28 ).

Hence ( 5) satisfies equation (1 ).

Next, changing the order

X, and ¥, in parenthesis( ),,, in(5)

we obtain other solution
z E 3
pg=€ (YEm 'X[z])mﬁ =@ 4)@.8) >
which is different from (5) for (a+B)EZ;

Proof of Group III.
- Set
p=2v  (¥=9(2),

we have then

Hence we obtain

Y, M +, '{—z'M +z}‘(2/1 +a +1)}

ry B -2)+ 2 AR v} = ]

from (1).
Here we choose A such that
AA+a)=0,
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(33)

(34)

(35)

(36)

(5)

(6)

(37)

(38)



that is,
A=0,-a.
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(39)

When A =0 , (38) is reduced to ( 1), therefore, we have the same solutions as

Group 1.
When A =-a we have

Y, z+y {~z+1-a}+y(a +B)=fz"

from ( 38)

Operate N” to the both sides of equation ( 40 ), we have then
Yoo Z+Y, (mZl-a+ V)Y @+ f-V)=(f2°), -

Choosing v such that
v=a+pf

we obtain

w2+a+ﬁ Z +w1+a+ﬁ ‘("Z+ ﬂ +1) =(fza)a+ﬂ

from (41 ), applying ( 42).
Set

wli-a;-ﬁ =¢ = ¢(Z) (7/’ = ¢—(1+a+ﬁ)) r

we have then

(B +1 ' -
b+ 9 1) = (12 g
from ( 43 ).
A particular solution to this equation is given by

¢ = XmYEH :
Where X, and Y, are the ones givenby (10).
Hence we obtain
Y = (X[3]I/E3])—(l+a+ﬂ)
from (44 ) and ( 46).
Therefore, we obtain
—a *
Q= < (‘Xv[3]},[3])-(l+a+ﬂ) E(p[S](a,ﬂ)

from (37 ) and (47), having A =~-a .

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(8)
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Inversely , ( 46 ) satisfies (equation ( 45 ), then ( 47 ) satisfies equation ( 43 ).
Therefore, ( 8) satisfies equation ( 1)

Next, changing the order

X, and ,,in parenthesis ( )_;j,q.5 0(8)
we obtain other solution
—a *
p=2z (}?S]X[S])-(l+a+ﬁ) =Q@16](a, 8) (9)

which is different from ( 8 ) for ~1+a+pB)EZ;,

Proof of Group IV.
First set
o=y (¥ =v(2), (37)
and substitute ( 37 ) into equation ( 1), we have then ( 38 ).
We have then ( 40 ) from ( 38 ), having

A=-a .
Next set
y=e"9 ($=90) , - (48)
We have then
¢, z+ ¢ {z(20 -1) +1-a} |
+¢'{z(52-5)+5(1—-a)+a+[5}=fzae'6z (49)
from ( 40 ), applying ( 48).
Choose § such that
82 -6=0,
that is,
§=0, 1. (50)
When 6 =0 , we obtain ( 40 ) from ( 49 ). Then we have the same solutions as
Group III .
When 6 =1 we have
¢, z+¢ (z+1-a)+¢-(1+B)=fz"e” (51)
from (49).

Operate N” to the both sides of equation ( 51 ), we have then
bro 2+ b, (21— +V) 46, (V14 ) =(f277), . (52)
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Choose v such that

v ==(1+5) (53)
we obtain
b5 2+, (z-a=B)=(f2°€ ") (1p) (54)
from ( 52).
Therefore, setting
P p =u=u(z) (¢ =ug) ., (55)
we have
u1+u-( _a:ﬁ) =(fz%¢ ). qup 2’ (56)

from ( 54 ). A particular solution to this equation is given by
u=X Yy (57)

where X[ o]

Hence we obtain

and Y[41 are the ones shown by (13).

¢=(X[4]'YE4]);; (58)
from (55 ) and ( 57).
Therefore, we have
(4 =ez(1Y[4]'}f4])ﬁ (59)
from (58 ) and ( 48 ), having d =1.
We have then
¢ =2 (X4 Y1)y = Prem (11)

from (59 ) and (37), having A =-a .

Inversely , the function shown by ( 57 ) satisfies equation ( 56 ), then ( 58 )
satisfies equation ( 54 ), and hence ( 59 ) satisfies ( 40 ).

Therefore, the function given by ( 11 ) satisfies equation ( 1 ), by ( 37 ) where
A=—a.

Next, changiﬁg the order

Xieyand X,

we obtain other solution

-a z *
=27 €Y X))y = P81, 0 (12)

which is different from (11 ) for BEZ:,

in parenthesis (), in (11)
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§3.Some Illustrative Example

(I) Let
fe)=¢
we have then the nonhomogeneous Laguerre's equation
P, z+@(~zra+ D+ f=e (z=0) ' (1)
from §2. (1)
A particular solution to this equation is given by
@ =¢Fx](a,ﬁ)= (YEI]'X[]])-(I-*ﬁ) (2)
(G R WEE D (3)
-— e, (4)
a+p+1
since
(), =¢ (5)
and
1
a+p TR ——— F OB+ . ( 6)
SRS
Indeed we have
1 . 1 :
N S d - (7)
& a+/3+1e o & a+ f+1

from (4 ). thence applying (4 ) and ( 7)) we obtain
LHSof(l)=~—-—1-——e2(z—z+a+1+[3’)=ez- (8)
. a+p3+1
(IX) Let
a=0, f=-1 and f(z)=¢"

we have then the nonhomogeneous Laguerre's equation
@, z+@ (~z+)-p=€ (z=0) (9)

from § 2. (1)
A particular solution to this equation is given by



* -1 -z z
¥ = @s530,-1= (X—[z]'}fa])-(um =(f,z7€e7).,e

=¢“logz .
Hence we obtain
3 ;1
@, =€elogz+ &=
z

and
1

: :1_ 1.
@, =¢logz+2e ;-—e o
from ( 11 ), respectively.

Therefore, we have
LHS of (9) = ze*logz + 2€° -¢€* 1
z
: 1 .
~ze'logz —¢* +¢" logz +e* pal logz

z

=e
applying (11). (12) and ( 13).

(D) Let
f@=z"¢

we have then the nonhomogeneous Laguerre's equation
@, z+@  (~z+a+D+e-B=2" (z=0)

from §2. (1)

A particular solutioi to this equation is given by
* z
@ = @Q3)(a,p= € (&2] .}/EZ])a+ﬁ
z -z z _-(1+8) -z 5‘
=€ (((fe )-(a+ﬂ+l)e z )—le z )‘”/3

1 z . ~a
= ez
B+1

since we have

(fe_z)-(amq) = (Z‘a)_(a,,.ﬁ,q)

44

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)



45

- eiﬂ(a+ﬂ+1) r(—‘ﬁ"l) Zﬂ+1 ( r(—ﬁ —1) < ¢ J (20)
I'(a) I'(a)
and
_ L@ I'(a)
Zﬂ =e ix(a+pB) ( ,_____ <o | . (21)
( )a+ﬂ I"( ﬁ) I“(_ﬁ)
by Lemma ( i ), respectively.
Indeed we have
@, =ﬂ11 e’ z'“-az'“"l) (22)
and |
¢2=ﬁ1+1e’[z'“—2az'“'1+a(a +1)z7 %] (23)
from ( 18 ), respectively.
Therefore, we obtain
LHS of (15)= [J’il e[ % -2az" % +a(a+1)z" 7
—2 " taz raz —a’ 2 2 —az” T + B2 (24)
L e g 25
=/3,4_1e[z +Bz 7] (25)
=e'z’% (26)

applying (18 ). (22) and (23).
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