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1 Introduction
In this paper we give a general framework for building bounded arithmetic theories using
complete problems for certain complexity classes. As an application we define a bounded
arithmetic theory for LOGCFL based on the acyclic conjunctive query problem.

Formulations and techniques used here are based mainly on previous works by Kolokolova
[3] and Nguyen [5]. Nevertheless, we treat complexity classes which are seemingly unable to
handled directly by their formulations.

This can be illustrated by comparing two complexity classes, namely NL and LOGCFL.
These two classes both contains the concept of nondeterminism. However, they have rather
different nature.

Consider the st-connectivity problem which is complete for NL. The witness for an in-
stance of it is, of course, a path from the start node $s$ to the goal node $t$ .

On the other hand, it can also be witnessed by all nodes which are reachable from the
node $s$ and this can be computed in deterministic polynomial time.

This means that the nondeterminism of NL has a deterministic alternative with high
feasibility.

On the contrary, it seems unlikely that LOGCFL also has this property.
Since Nguyen’s system VNL for NL heavily depends on the property, the above argument

suggests that it is hard to construct a similar system for LOGCFL.
So instead we consider another property of when a complexity class as a class of predicates

has a nice counterpart in function class.

2 Preliminaries
In this section we give basic concepts on bounded arithmetic and complexity theory.

2.1 Complete problems via $AC^{0}$ reductions
First we will give a brief tour of complexity theories within PTIME. The smallest class we
consider is the class $AC^{0}$ which consists of all predicates decidable by families of constant
depth polynomial circuits of unbounded fan-in.

As we will consider bounded arithmetic theories of two sort, we deal with number and
string objects in complexity theory as well. Lower case variables $x_{0},$ $x_{1},$ $\ldots$ refer to numbers
while upper case variables $X_{0},$ $X_{1},$

$\ldots$ refer to strings.
For most classes within PTIME, complete problems are known under $AC^{0}$ reductions.

Let $C\underline{b}e$ a complexity class and $\mathcal{K}$ be a complete set of $C$ under $AC^{0}$ reductions. Let
$C_{\mathcal{K}}(\overline{x}, X)$ be the characteristic function of $\mathcal{K}$ .
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The functional version of the class $C$ is denoted by $\mathcal{F}C$ and is defined to be the class of
functions of polynomial growth which are bitwise computable in $C$ . We shall give a recursion
theoretic characterization of $\mathcal{F}C$ which will be used to relate $C$ to a two-sort theory.

Definition 1 We define the following initial functions:
$Z(x)=0,$ $S_{0}(X)=X0,$ $S_{1}(X)=X1,$ $|X|=the$ length of $X$ ,
$x+y,$ $x\cdot y,$ $MSP(X, y)$ .

We use the following extremely weak recursion to characterize $AC^{0}$ reductions which
was essentially due to Clote and Takeuti:

Definition 2 A function $F(n,\overline{x},\overline{X})$ is defined by Concatenation Recursion on Notation
$(CRN)$ from $G(\overline{x},\overline{X})$ and $H(n,\overline{x},\overline{X})$ if

$F(O,\overline{x},\overline{X})$ $=$ $G(\overline{x},\overline{X})$ ,
$F(n+1,\overline{x},\overline{X})$ $=$ $\{\begin{array}{l}S_{0}(F(n,\overline{x},\overline{X})) if|H(n,\overline{x},\overline{X})|=0,S_{1}(F(n,\overline{x},\overline{X})) if|H(n,\overline{x},\overline{X})|>0.\end{array}$

Then we have

Theorem 1 Let $\mathcal{K}$ be a complete problem of $C$ under $AC^{0}$ reductions and $C_{\mathcal{K}}$ be its chamc-
teristic function. If the class $C$ is closed under $AC^{0}$ operation then $\mathcal{F}C$ is the smallest class
of hnctions containing initial functions of Definition 1 together with $C_{\mathcal{K}}$ and closed under
composition and $CRN$ operations.

(Proof). Let $\mathcal{F}_{\mathcal{K}}$ be the closure of INITIAL and $C_{\mathcal{K}}$ under composition and CRN operations.
First we prove that $\mathcal{F}C\subseteq \mathcal{F}_{\mathcal{K}}$ . Notice that for any $P(\overline{x},\overline{X})\in C$ , its characteristic function

$f_{P}(\overline{x},\overline{X})=\{\begin{array}{l}1 if P(\overline{x},\overline{X})0 otherwise\end{array}$

is in $\mathcal{F}_{\mathcal{K}}$ . Then any $F\in \mathcal{F}C$ can be defined by CRN operation using such characteristic
functions.

Conversely, we show that any $F\in \mathcal{F}_{\mathcal{K}}$ is in $\mathcal{F}C$ by induction on its recursive definition.
It is readily proved that any function in INITIAL is in $\mathcal{F}C$ . It is also immediate to see that
$c_{\kappa\in \mathcal{F}C}$ .

To prove the closure of $\mathcal{F}C$ under composition, let $F(\overline{x},\overline{X}, Y),$ $G(\overline{x},\overline{X})\in \mathcal{F}C$ . It suffices
to show that for any $i<|F(\overline{x},\overline{X},$ $G(\overline{x},\overline{X})|$ , the ith bit of $F(\overline{x},\overline{X}),$ $G(\overline{x},\overline{X})$ can be determined
by an algorithm in $C$ . To compute it, we first need the value of $G(\overline{x},\overline{X})$ , that is all bits
of $G(\underline{\overline{x}},\overline{X})$ . Since $C$ is closed under complementation, we have C-algorithms to decide both
$G(\overline{x}, X)(i)$ and $\neg G(\overline{x},\overline{X})(i)$ . $Thus-$ by executing both algorithms simultaneously, for all $i$ ,
we may know all bits of $G(\overline{x}, X)$ in $C$ as it is closed under unbounded fan-in AND.

Finally we show that $\mathcal{F}C$ is closed under CRN operation. Let $G(\overline{x},\overline{X}),$ $H(n,\overline{x},\overline{X})\in \mathcal{F}C$

and $F(n,\overline{x},\overline{X})$ be defined by CRN from $G$ and $H$ . Let $i<|F(n,\overline{x},\overline{X})|$ . If $i<|G(\overline{x},\overline{X})|$

then the ith bit of $F(n,\overline{x},\overline{X}, Y)$ is decided by the algorithm for $G$ which is in $C$ by the
inductive hypothesis.

If $i\geq|G(\overline{x},\overline{X})|$ then we check all bits of $H(i-|G(\overline{x},\overline{X})|,\overline{x},\overline{X})$ and take AND of them.
This can be computed by a single application of unbounded fan-in AND of algorithm for $H$ .
Again, we conclude that it is checked in $C$ by the inductive hypothesis and the closure of $C$

under $AC^{0}$ operations. $\square$
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2.2 Two-sort bounded arithmetic
We consider two types of bounded arithmetic theories which turns out to be equivalent.

The first type is based on the Lindst\"om quantffier. First we briefly summarize the concept
of the Lindstr\"om quantifier.

Let $\sigma=\langle P_{1},$
$\cdots,$

$P_{s}\rangle$ be a signature where $P_{1},$
$\ldots,$

$P_{s}$ are relation symbols and $\mathcal{K}\subseteq$

$Struct(\sigma)$ be a set which is complete for a given complexity class $C$ .
Let $\tau=\langle R_{1},$

$\ldots,$
$R_{k},$ $c_{1},$ $\ldots,$

$c_{l}\rangle$ be a signature where $R_{1},$
$\ldots,$

$R_{k}$ are relation symbols and
$c_{1},$ $\ldots,$

$c_{l}$ are constant symbols. For $\tau$ formulae $\phi_{1},$
$\ldots,$

$\phi_{s}$ we define the Lindstr\"om quantffier
$Q_{\mathcal{K}}$ as

$\mathcal{A}\models Q_{\mathcal{K}}[\phi_{1}, \ldots, \phi_{s}]\Leftrightarrow(univ(\mathcal{A}), \phi_{1}^{A}, \ldots, \phi_{s}^{A})\in \mathcal{K}$.

for any $\mathcal{A}\in Struct(\tau)$ .
When we consider the subclass $C$ of $P$ , the membership relation

(univ $(\mathcal{A}),$ $\phi_{1}^{A},$

$\ldots,$
$\phi_{s}^{A}$ ) $\in \mathcal{K}$ .

can be described by some $\Sigma_{1}^{B}$ relation. We will call such relation as the $\Sigma_{1}^{B}$ description of
$\mathcal{K}$ , that is,

Definition 3 The set $\mathcal{K}\subseteq Struct(\sigma)$ has a $\Sigma_{1}^{B}$ description $\varphi(n, P_{1}, \ldots, P_{s})\in\Sigma_{1}^{B}$ if for all
$n,$ $P_{1},$

$\ldots,$
$P_{s}$ ,

$\varphi(n, P_{1}, \ldots, P_{s})\Leftrightarrow(\{0, \ldots, n-1\}, P_{1}, \ldots, P_{s})\in \mathcal{K}$

holds in the standard model.

Now we shall give a presentation of Lindstr\"om quantifier in two sort systems. The idea
is to give a description of the satisfaction relation $\mathcal{A}\models Q_{\mathcal{K}}[\phi_{1}, \ldots, \phi_{s}]$ in the language $L_{2}$ .
Note that a $\tau$-structure is coded by a tuple

$\langle n,$ $c_{1},$ $\ldots,$
$c_{l},$ $R_{1},$

$\ldots,$
$R_{k}\rangle$

where $n$ is the size of the universe. The description of the above satisfaction relation is
obtained by replacing $P_{1},$

$\ldots,$
$P_{s}$ by $\phi_{1}^{A},$

$\ldots,$
$\phi_{S}^{A}$ respectively.

Definition 4 Let $\varphi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s})$ be a $\Sigma_{1}^{B}$ description of $\mathcal{K}$ . Let $\phi_{1},$
$\ldots,$

$\phi_{s}$ be $L_{2}$ for-
mulae. Then we define $\varphi_{\mathcal{K}}(n,\overline{c},\overline{R}, \phi_{1}, \ldots, \phi_{s})$ as the $L_{2}$ formula which is obtained from
$\varphi_{\mathcal{K}}$ by replacing all occurrences of $P_{i}(x_{1}, \ldots, x_{t_{i}})$ by $\phi_{i}(x_{1}, \ldots, x_{t_{i}}, c_{1}, \ldots, c_{l}, R_{1}, \ldots, R_{k})$ for
$1\leq i\leq s$ . We call this scheme the $\Sigma_{1}^{B}$ description of $Q_{\mathcal{K}}$ over the signature $\tau$ .

Let $\Phi$ be a class of $L_{2}$ fomulae. We define $\varphi_{\mathcal{K}}(\Phi)$ to be the class of formulae of the form
$\varphi_{\mathcal{K}}(n,\overline{c},\overline{R}, \phi_{1}, \ldots, \phi_{s})$ where $\phi_{1},$

$\ldots,$
$\phi_{s}\in\Phi$ .

Based on this argument we define a $L_{2}$-system as follows:

Definition 5 Let $\mathcal{K}\subset Struct(\sigma)$ and $\varphi_{\mathcal{K}}$ be the $\Sigma_{i}^{B}$ description of $Q_{\mathcal{K}}$ over the signature
$\tau=\langle i,$ $c_{1},$

$\ldots,$ $c_{l},$ $R_{1},$
$\ldots,$

$R_{k}\rangle$ . The $L_{2}$ theory $V-Q_{\mathcal{K}}$ consists of the following axioms:

$\bullet$ BASIC

$\bullet\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ -COMP

In the next section we will give a general theory for when the system $V-Q_{\mathcal{K}}$ captures the
corresponding complexity class.
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3 Witnessing theorem via complete problems

Our formulation of $V-Q_{\mathcal{K}}$ resembles to the theory defined by Kolokolova [3]. So we mod-
ify Kolokolova‘s criteria for $V-\Phi$ to capture a complexity class in order to suit with our
formulation.

Nevertheless, our proof uses slightly different approach, namely, we will define another
theory $V-\mathcal{K}$ based on the complete problem $\mathcal{K}$ which affords a direct application of Her-
brand $s$ theorem and show the equivalence with $V-Q_{\mathcal{K}}$ .

First let us see how $Y-\mathcal{K}$ is defined. Let $\mathcal{K}$ be a complete problem as above and let $\varphi\kappa$

be its $\Sigma_{1}^{B}$ description. Suppose that the complement $\mathcal{K}^{c}$ of $\mathcal{K}$ also has a $\Sigma_{1}^{B}$ description, say
$\psi_{\mathcal{K}}$ . Note that this condition follows $hom$ another condition that the class $C$ is closed under
complementation.

We define the theory $V-\mathcal{K}$ as follows:

Definition 6 The $L_{2}$ -theory $V-\mathcal{K}$ has the following axioms:

$\bullet$ BASIC

$\bullet$ $\Sigma_{0}^{B}$ -COMP

$\bullet$ the existence of witnesses for $\mathcal{K}\cup \mathcal{K}^{c}$ ;

$(\forall n)(\forall P_{1})\cdots(\forall P_{s})(\varphi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s})\vee\psi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s}))$

We say that $V-\mathcal{K}$ is properly defined if there exist $\Sigma_{1}^{B}$ descriptions $\varphi_{\mathcal{K}}$ and $\psi_{\mathcal{K}}$ for $\mathcal{K}$ and $\mathcal{K}^{c}$

respectively.
We give a slight modification of Kolokolova’s criteria for a system to capture a complexity

class as follows:

$\bullet$ Strong closure : $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ is strongly closed if for all $\psi\in\Sigma_{0}^{B}(\varphi_{\mathcal{K}}(\Sigma_{0}^{B}))$ there exists
$\eta\in\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ such that

$V-Q_{\mathcal{K}}\vdash\psirightarrow\eta$.

$\bullet$ Self-witnessing : $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ is self-witnessing if for all $\Sigma_{1}^{B}$ description $(\exists Z<t)\varphi_{\mathcal{K}}^{0}(\overline{x},\overline{X}, Z)$

if $V-Q_{\mathcal{K}}\vdash(\forall\overline{x})(\forall\overline{X})($ョ$Z<t)\varphi_{\mathcal{K}}^{0}(\overline{x},\overline{X}, Z)$ then there exists a function $F(\overline{x},\overline{X})$ which
is bitwise computable in $V-Q_{\mathcal{K}}$ such that

$V-Q_{\mathcal{K}}\vdash(\forall\overline{x})(\forall\overline{X})\varphi_{\mathcal{K}}^{0}(\overline{x},\overline{X}, F(\overline{x},\overline{X}))$ .

Now we state and prove our main theorems.

Theorem 2 Let $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ be a logic which captures the complexity class $C$ over a given
signature $\tau$ . Suppose that $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ is strongly closed and constructive. If $V-Q_{\mathcal{K}}$ contains $V^{0}$

then $V-Q_{\mathcal{K}}$ is equivalent to $V-\mathcal{K}$ .

We will use the conservative universal extension of $V-\mathcal{K}$ to prove theorem 2. So we first
define this and prove its conservation over $V-\mathcal{K}$ .

Intuitively, the universal extension v-rc is obtained by introducing Skolem functions to
eliminate existential quantifiers.

Let $pd,$ $f_{SE}$ and $F_{\mathcal{K}}$ be new function symbols. We define the language $L_{\mathcal{K}}$ to be the
smallest class satisfying:

$\bullet$ The function symbols $pd,$ $f_{SE}$ and $F_{\mathcal{K}}$ are in $L_{\mathcal{K}}$ .
$\bullet$ For each open $L_{\mathcal{K}}$ formula $\varphi(z,\overline{x},\overline{X})$ and an $L_{2}$ term $t(\overline{x},\overline{X})$ , there are a string function

$F_{\varphi,t}$ and a number function $F_{\varphi,t}$ in $L_{\mathcal{K}}$ .
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The system v-rc consists of axioms for all symbols in $L_{\mathcal{K}}$ .

Definition 7 The $L_{\mathcal{K}}$ system $\overline{V-\mathcal{K}}$ consists of the following axioms:

$\bullet$ BASIC

$\bullet$ $pd(O)=0,$ $pd(x)+1=x$ ,

$\bullet$ Extensionality:

$(f_{SE}(X, Y)\leq|X|)$ A $(z<f_{SE}(X, Y)arrow(X(z)rightarrow Y(z)))$

$\wedge(f_{SE}(X, Y)<|X|arrow(X(f_{SE}(X, Y))\star Y(f_{SE}(X, Y))))$ .

$\bullet$ Witnessing $\mathcal{K}\cup \mathcal{K}^{c}$ :

$(\forall n)(\forall P_{1})\cdots(\forall P_{s})(\varphi_{\mathcal{K}}^{0}(n, P_{1}, \ldots, P_{s}, F_{\mathcal{K}}(n, P_{1}, \ldots, P_{s}))$

$\vee\psi_{\mathcal{K}}^{0}(n, P_{1}, \ldots, P_{s}, F_{\mathcal{K}}(n, P_{1}, \ldots, P_{s})))$

$\bullet$ wiom for $F_{\varphi,t}$ :
$z\in F_{\varphi,t}(\overline{x},\overline{X})rightarrow(z<t(\overline{x},\overline{X})\wedge\varphi(z,\overline{x},\overline{X}))$

$\bullet$ a ciom for $f_{\varphi,t}$ :

$f_{\varphi,t}(\overline{x},\overline{X})\leq t\wedge(w<f_{\varphi,t}(\overline{x},\overline{X})arrow\neg\varphi(w,\overline{x},\overline{X}))$

A $(f_{\varphi,t}(\overline{x},\overline{X})<tarrow\varphi(f_{\varphi,t}(\overline{x},\overline{X}),\overline{x},\overline{X}))$ .

Proposition 1 For any $\varphi\in\Sigma_{0}^{B}(L_{\mathcal{K}})$ there exists an open $L_{\mathcal{K}}$ formula $\varphi’$ such that $\overline{V-\mathcal{K}}\vdash$

$\varphirightarrow\varphi’$ .

(Proof) By induction on the complexity of $\varphi\in\Sigma_{0}^{B}$ . We prove for the case where the
outermost connective is a bounded number quantifier. Let $\varphi\equiv$ $(Ix<t)\varphi_{0}(x)$ . By the
inductive hypothesis, we have an open $L_{\mathcal{K}}$ formula $\varphi_{0}’$ such that V-lC $\vdash\varphi_{0}rightarrow\varphi_{0}’$ . So we
have

$\overline{V-\mathcal{K}}\vdash($ ョ$x<t)(\varphi_{0}(x)rightarrow\varphi_{0}’(f_{\varphi,t}(x)))$ .
The universal case can be treated as $(\forall x<t)\varphi_{0}(x)\equiv\neg($ョ$x<t)\neg\varphi_{0}(x)$ . $\square$

Theorem 3 Assume that $V-\mathcal{K}$ is properly defined. Then $\overline{V-\mathcal{K}}$ is a conservative extension
of $V-\mathcal{K}$ .

(Proof). First we show that $\overline{V-\mathcal{K}}$ extends $V-\mathcal{K}$ . It suffices to show that $\overline{V-\mathcal{K}}$ proves $\Sigma_{0}^{B_{-}}$

COMP. Let $\varphi\in\Sigma_{0}^{B}$ . By Proposition 1 there exists $\varphi^{f}$ such that $\overline{V-\mathcal{K}}\vdash\varphirightarrow\varphi’$ . By the
axiom for $F_{\varphi’,t}$ we have

$(\forall z<t)(z\in F_{\varphi’,t}(\overline{x},\overline{X})rightarrow\varphi’(z,\overline{x},\overline{X}))$

which immediately implies COMP axiom for $\varphi’\equiv\varphi$ .
Next we prove the conservation. Above argument shows that v-rc contains $\overline{V^{0}}$ . So we

take $V^{0}$ as the base theory and define an infinite chain of theories.
Let $\mathcal{L}_{0}$ be the language of $\overline{V^{0}},$

$\mathcal{L}_{1}=\mathcal{L}_{0}\cup\{F_{\mathcal{K}}\}$ and

$\mathcal{L}_{n+1}=\mathcal{L}_{n}\cup$ { $F_{\varphi,t}$ : $\varphi$ is an open $\mathcal{L}_{n}$ formula}
$\cup$ { $f_{\varphi,t}:\varphi$ is an open $\mathcal{L}_{n}$ formula}

Define $\overline{V-\mathcal{K}}_{n}$ to be the $\mathcal{L}_{n}$-theory whose axioms are those of $\overline{V-\mathcal{K}}$ restricted to $\mathcal{L}_{n}$ . Thus
$\overline{V-\mathcal{K}}=\bigcup_{n\in\omega}\overline{V-\mathcal{K}}_{n}$ .
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We will show that $\overline{V-\mathcal{K}}_{n+1}$ is conservative over $\overline{V-\mathcal{K}}_{n}$ . This is proved by showing that
each $F_{\varphi,t}$ and $f_{\varphi,t}$ in $\mathcal{L}_{n+1}$ is definable in $\overline{V-\mathcal{K}}_{n}$ . Since $F_{\varphi,t}$ and $f_{\varphi,t}$ are defined by COMP
axiom and minimization principle for $\varphi\in\Sigma_{0}^{B}(\mathcal{L}_{n})$ respectively, it suffices to show that

$\overline{V-\mathcal{K}}_{n}\vdash\Sigma_{0}^{B}(\mathcal{L}_{n})$ -COMP and $v-rc_{n}\vdash\Sigma_{0}^{B}(\mathcal{L}_{n})-MIN$.

The argument which follows is completely analogous to Nguyen’s proof of Theorem 3.11 a)
in [5] so we omit it. $\square$

(Proof of Theorem 2) First we prove that $V-Q_{\mathcal{K}}$ contains $V-\mathcal{K}$ . By assumption, it suffices
to show that $Varrow Q_{\mathcal{K}}$ proves the axiom

$(\forall n)(\forall P_{1})\cdots(\forall P_{s})(\varphi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s})\vee\psi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s}))$ .

By assumption, $V-Q_{\mathcal{K}}$ proves the closure of $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ under complementation. So in partic-
ular, it proves

$(\forall n)(\forall P_{1})\cdots(\forall P_{s})(\varphi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s})rightarrow\neg\psi_{\mathcal{K}}(n, P_{1}, \ldots, P_{s}))$ .

Therefore we have $\neg\psi_{\mathcal{K}}arrow\varphi_{\mathcal{K}}$ which is equivalent to $\psi_{\mathcal{K}}\vee\varphi_{\mathcal{K}}$ .
For the converse inclusion, we show that $V-\mathcal{K}$ proves the COMP axiom for $\varphi_{\mathcal{K}}(\phi_{1}, \ldots, \phi_{s}0)$

for all $\phi_{1},$
$\ldots,$

$\phi_{s}\in\Sigma_{0}^{B}$ . We reason in V-IC. First we use $\Sigma_{0}^{B}$ -COMP axiom to convert for-
mulae $\phi_{1},$

$\ldots,$
$\phi_{s}$ into strings $P_{1},$

$\ldots,$
$P_{s}$ such that

$(\forall x<t_{i})(x\in P_{i}rightarrow\phi_{i}(x))$

for $1\leq i\leq s$ . By the Skolemized version of the axiom

$(\forall\overline{X})(\varphi_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s})\vee\psi_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s}))$

we have
$(\forall\overline{X})(\varphi_{\mathcal{K}}^{0}(x,\overline{X}, P_{1}, \ldots, P_{s}, F_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s}))$

$\vee\psi_{\mathcal{K}}^{0}(x,\overline{X}, P_{1}, \ldots, P_{s}, F_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s})))$ .
Note that $\varphi_{\mathcal{K}},$

$\psi_{\mathcal{K}}\in\Sigma_{0}^{B}$ . So we can apply COMP axiom to

$\varphi_{\mathcal{K}}^{0}(x,\overline{X}, P_{1}, \ldots, P_{s}, F_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s}))$

to obtain a string $Y<a$ such that

$(\forall x<a)(x\in Yrightarrow\varphi_{\mathcal{K}}^{0}(x,\overline{X}, P_{1}, \ldots, P_{s}, F_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s})))$ .

Thus
$(\exists Y<a)(\forall x<a)(x\in Yrightarrow\varphi_{\mathcal{K}}(x,\overline{X}, P_{1}, \ldots, P_{s}))$

is provable in $\overline{V-\mathcal{K}}$ and hence by Theorem 3 in $V-\mathcal{K}$ . This proves our claim. $\square$

Theorem 4 Let $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ be a logic which capture the complexity class $C$ over a given sig-
nature $\tau$ . If $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ is strongly closed and constructive then $V-\mathcal{K}$ captures $C$ .

First we prove a technical lemma.

Lemma 1 A function is $\Sigma_{1}^{B}$ definable in v-rc if and only if it is in $L_{\mathcal{K}}$ .
(Proof). First note that V-7C is an universally axiomatized theory. Let $\varphi\in\Sigma_{1}^{B}$ . Without
loss of generality, we can assume that $\varphi$ is of the form

$($ョ$\overline{Z}<t\gamma_{\varphi_{0}}(\overline{x},\overline{X}, Y,\overline{Z})$ .
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Suppose that V-7C $\vdash(\forall\overline{x})(\forall\overline{X})(\exists Y)(\exists\overline{Z})\varphi_{0}(\overline{x},\overline{X}, Y,\overline{Z})$. Then by Herbrand $s$ theorem,
there exist $L_{\mathcal{K}}$ -terms $F(\overline{x},\overline{X}),\overline{G}(\overline{x},\overline{X})$ such that

$\overline{V-\mathcal{K}}\vdash(\forall\overline{x})(\forall\overline{X})\varphi_{0}(\overline{x},\overline{X}, F(\overline{x},\overline{X}),\overline{G}(\overline{x},\overline{X}))$ .

We claim that $L_{\mathcal{K}}$ is closed under complementation.
For simplicity, let $F(\overline{x},\overline{X})=G(H(\overline{x},\overline{X}))$ where

$(\forall y<t(X))(y\in G(X)rightarrow\varphi(y, X))$ ,
$(\forall y<s(\overline{x},\overline{X}))(y\in H(\overline{x},\overline{X})rightarrow\psi(\overline{x}, y,\overline{X}))$

where $\varphi,$
$\psi$ are open $L_{\mathcal{K}}$ formulae and $t,$ $s$ are $L_{2}$ terms. Let $\Phi(\overline{x}, y,\overline{X})\equiv\varphi(y,$ $H(\overline{x},\overline{X})$ and

$r(\overline{x},\overline{X})=t(s(\overline{x},\overline{X}))$ . Then it is easy to see that

$(\forall y<r(\overline{x},\overline{X}))(y\in F(\overline{x},\overline{X})rightarrow\Phi(\overline{x}, y,\overline{X}))$.

Thus we have proved the only-if,part.
The if-part is immediately implied by defining axioms of functions in $L_{\mathcal{K}}$ . $\square$

(Proof of Theorem 4). By Theorem 3, it suffices to show that v-rc captures $C$ . Let $\varphi\in\Sigma_{1}^{B}$

and suppose that
$\overline{V-\mathcal{K}}\vdash(\forall\overline{x})(\forall\overline{X})(\exists Y)\varphi(\overline{x},\overline{X}, Y)$ .

By $\Sigma_{0}^{B}$-REPL in v-rc we may assume that $\varphi$ is in strict form. So we have

$\overline{V-\mathcal{K}}\vdash(\forall\overline{x})(\forall\overline{X})(\exists Y)(\exists\overline{W})\varphi_{0}(\overline{x},\overline{X}, Y,\overline{W})$

for $\varphi_{0}\in\Sigma_{0}^{B}$ . Since $\overline{V-\mathcal{K}}$ is an universal axiomatized theory, we can apply Herbrand $s$

theorem. So there exist $L_{\mathcal{K}}$ terms $F,\overline{G}$ such that

$\overline{V-\mathcal{K}}\vdash(\forall\overline{x})(\forall\overline{X})\varphi_{0}(\overline{x},\overline{X}, F(\overline{x},\overline{X}),\overline{G}(\overline{x},\overline{X}))$ .

Thus it suffices to show that the functions in $L_{\mathcal{K}}$ coincide with those bitwise computable in
$C$ .

First we show that any function in $L_{\mathcal{K}}$ is bitwise computable in $C$ . The functions $pd$ and
$f_{SE}$ are known to be $AC^{0}$ computable. For the function $F_{\mathcal{K}}$ , we use the constructiveness
property of $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ . For functions of the form $F_{\varphi,t}$ and $f_{\varphi,t}$ we show that for all $n\geq 1$ ,
$F_{\varphi,t}$ and $f_{\varphi,t}$ in $\mathcal{L}_{n}$ is in $\mathcal{F}C$ by induction on $n$ .

For $n=1$ this is trivial. Let $F_{\varphi,t}\in \mathcal{L}_{n+1}$ . Then for an open $\mathcal{L}_{n}$ formula $\varphi$ and an
$L_{2}$-term $t$

$(\forall z<t)(z\in F_{\varphi,t}(\overline{x},\overline{X}rightarrow\varphi(z,\overline{x},\overline{X}))$ .
This function $F_{\varphi,t}$ is defined by the concatenation recursion on notation. First define

$G(n,\overline{x},\overline{X})=\{$

$\epsilon$ if $n=0$ ,
$G(n-1,\overline{x},\overline{X})*0$ if $\varphi(n,\overline{x},\overline{X})$ ,
$G(n-1,\overline{x},\overline{X})*1$ if $\neg\varphi(n,\overline{x},\overline{X})$ .

Then we have $F_{\varphi,t}(\overline{x},\overline{X})=G(t,\overline{x},\overline{X})$ . Since $\mathcal{F}C$ is closed under the CRN operation, $F_{\varphi,t}$ is
in $\mathcal{F}C$ .

Let $f_{\varphi,t}\in \mathcal{L}_{n+1}$ . Then
$f_{\varphi,t}(\overline{x},\overline{X})=\mu z<t\varphi(z,\overline{x},\overline{X})$ .

It is known (Clote-Takeuti) that $AC^{0}$ is closed under sharply bounded minimization. So
$f_{\varphi,t}$ is in $\mathcal{F}C$ .

Conversely, let $F$ or $f$ be in $\mathcal{F}C$ . Recall that $\mathcal{F}C$ is the $AC^{0}$ closure of the function $F_{\mathcal{K}}$

which is bitwise decidable by $\mathcal{K}$ .

73



We prove by induction on the complexity of $F\in \mathcal{F}C$ that $F$ is in $L\kappa$ .
The base functions of $AC^{0}$ are trivially in $L_{\mathcal{K}}$ . $F_{\mathcal{K}}$ can be defined as $F_{\mathcal{K},t}$ . Furthermore,

closure under composition is already proved.
Let $F(n,\overline{x},\overline{X})$ be defined by CRN as

$F(0,\overline{x},\overline{X})$ $=$ $G(\overline{x},\overline{X})$

$F(n,\overline{x},\overline{X})$ $=$ $\{F(n,\overline{\frac{x}{x}},X)*1F(n,,\overline{X_{-}})*0if\neg\varphi(n,\overline{x},\overline{X})if\varphi(n,\overline{x},X^{-}).$

Define $t(n,\overline{x},\overline{X})=|G(\overline{x},\overline{X})|+n$ and

$\Phi(z,\overline{x},\overline{X})\equiv(z<|G(\overline{x},\overline{X})|arrow z\in G(\overline{x},\overline{X}))$ A $(z\geq|G(\overline{x},\overline{X})|arrow\varphi(z,\overline{x},\overline{X}))$ .

Then we have $F(n,\overline{x},\overline{X})=F_{\Phi,t}(\overline{x},\overline{X})$ which ends the proof. $\square$

Corollary 1 Let $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ be a logic which capture the compleStty class $C$ over a given sig-
nature $\tau$ . If $\varphi_{\mathcal{K}}(\Sigma_{0}^{B})$ is strongly closed and constructive then $V-Q_{\mathcal{K}}$ captures $C$ .

4 A theory based on acyclic conjunctive queries
As an application of the witnessing argument in the previous section, we will construct a
theory based on the Acyclic Conjunctive Query problem. Let Boolean Conjunctive Query
problem be the following problem:

Given a relational database db and a query $Q$ which is a conjunction of relations
in db, decide whether there exists an assignment of values to attributes appearing
in $Q$ so that $Q$ evaluates to true on db by the assignment.

Then an Acyclic Boolean Conjunctive Query problem (ABCQ) is a BCQ in which the query
$Q$ is restricted to have an acyclic hypergraph representation.

Gottlob et.al. [1] proved the following

Theorem 5 (Gottlob et.al.) ABCQ is complete for LOGSPA CE via $AC^{0}$ reductions.
Furthemore, it remains complete even if all relations are restricted to binary.

We will use the binary version of ABCQ to formulate our theory. First we shall formulate
the problem over finite structures of some signature. Let $\sigma_{db}=\{D, Q\}$ where $D$ and $Q$ are
binary predicates. Intuitively, $D$ and $Q$ represent a database and a query such that

$D(x, y)\Leftrightarrow\langle x,$ $y\rangle$ is a record for the relation in $D$

and
$Q(i,j)\Leftrightarrow\langle i,j\rangle$ is a conjunct in $Q$ .

Thus we will define a complete set

$\mathcal{K}_{ABCQ}=$ { $\langle[n],$ $Q,$ $D\rangle$ : the query $Q$ has a solution in the database $D$ }.

Let $Q_{ABCQ}$ be the Lindstr\"om quantifier for the set $\mathcal{K}_{ABCQ}$ . Observing that ABCQ is
complete for LOGCFL, it is not difficult to see that

Proposition 2 The logic $Q_{ABCQ}(FO)$ captures LOGCFL over arbitmry structure.

74



Next we define a $\Sigma_{1}^{B}$ description of $\mathcal{K}_{ABCQ}$ . A solution $S$ is a mapping $[n]arrow[n]$ . So the
following formula expresses that the query $Q$ is true on $D$ by the solution $S$ ;

$CQ(D, Q, S)\Leftrightarrow(\forall i)(\forall j)(\forall x)(\forall y)((Q(i,j)arrow D(S[i]S[j]))$ .

Thus
$(\exists S)CQ(D, Q, S)\Leftrightarrow$ the query $Q$ is true on $D$ .

The property of $\mathcal{K}_{ABCQ}$ is expressed as: either $Q$ is cyclic or $Q$ is true on $D$ . So we define

Cyclic$(Q)\Leftrightarrow($ョ$C)(\forall i)(Q(C[i], C[i+1])\wedge($ョ$i) (]j)(C[i]=C[j]))$ .

Finally let
$\varphi_{ABCQ}(n, Q, D)\Leftrightarrow Cyclic(Q)\vee(\exists S)CQ(D, Q, S)$ .

Let $\varphi_{D}(x, y, n,\overline{c},\overline{R})$ and $\varphi_{Q}(i,j, n,\overline{c},\overline{R})$ be $L_{2}$ formulae. By replacing occurrences of $D$

and $Q$ by $\varphi_{D}$ and $\varphi_{Q}$ respectively, we obtain the $\Sigma_{1}^{B}$ description of $\mathcal{K}_{ABCQ}$ in the language
$L_{2}$ as follows:

$\varphi_{ABCQ}(n,\overline{c},\overline{R}, \varphi_{D}, \varphi_{Q})\Leftrightarrow$

$(]C)(\forall i)(\varphi_{Q}(C[i], C[i+1], n,\overline{c},\overline{R}) A ($ョ$i)($ョ$j)(C[i]=C[j]))\vee$
$($ョ$S)(\forall i)(\forall j)(\forall x)(\forall y)((\varphi_{Q}(i,j, n,\overline{c},\overline{R})arrow\varphi_{D}(S[i], S[j], n,\overline{c},\overline{R}))$ .

Definition 8 The $L_{2}$ -theory $V$ -QABCQ consists of the following axioms:

$\bullet$ BASIC
$\bullet$ $\varphi_{ABCQ}(\Sigma_{0}^{B})$ -COMP

Using the framework given in the previous section, we will show that $V$-QABCQ captures
LOGCFL. To this end, we first need some technical tools.

To prove strong closure and self-witnessing of $V-Q_{ABCQ}$ , we use the circuit characteri-
zation of LOGCFL, that is SACl. In particular, we will make use of a particular form of
SACl circuits. A SACl circuit is in normal form if it satisfies the followings:. there is a single output gate.

$\bullet$ all internal gates $g$ receives inputs from gates on depth depth$(g)-1$ .
$\bullet$ all gates on even depth are AND gates, while all gates on odd depth $>1$ are OR gates,
$\bullet$ gates on depth 1 are input gates all of which are either $x_{i},$ $\neg x_{i}$ or constant true.

We define a formula expressing that a SACl circuit in normal form with depth $d$ , width
$w$ and $\psi$ as its DCL accepts input $X$ of length $n$ . First define a $\Sigma_{0}^{B}$ formula $NF_{\psi}(n)$ which
says that $\psi$ is a DCL of an SACl circuit in normal form with input of length $n$ . Next
we define a formula expressing the conditions for proof trees. Notice that the topological
structure of the witness for SACl circuits in normal form is uniquely determined by the
depth as $SKEL_{d}$ . So we code it as

$SKEL_{d}=\{\langle i,j\rangle : 0\leq i\leq d, 0\leq j<\lceil i/2\rceil\}$ .
Now we define

Proo$f$Tree $(n, d, w, T, X)\Leftrightarrow$

$T:SKEL_{d}arrow[d\cdot w]\wedge$

$(\forall i<d)(\forall j<2\lceil i/2\rceil)(depth(T(i,j))=i\wedge width(T(i,j))<w)\wedge$

$($Even$(i)arrow(\psi(T(i,j),$ $T(i+1,2j),$ $n)\wedge\psi(T(i,j),$ $T(i+1,2j+1),$ $n)))\wedge$

$($Odd$(i)arrow(\psi(T(i,j),$ $T(i+1,j),$ $n)))\wedge$

$(\forall j<2\lceil i/2\rceil)((l(T(0,j))=x_{i}\wedge X(i))\vee(l(T(0,j))=\neg x_{i}\wedge\neg X(i)))$ .
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Finally let

$\varphi_{NF}[\psi](n, d, w, X)\Leftrightarrow NF_{\psi}(n)arrow($ ョ$T)ProofTree(n, d, w, T, X)$ .

Based on these formulations we have

Theorem 6 for any $\psi\in\Sigma_{0}^{B}$ there exist $\eta_{D},$
$\eta_{Q}\in\Sigma_{0}^{B}$ such that $V$ -QABCQ proves

$(\forall X)($ ョ$\overline{c})($ョ$\overline{R})(\varphi_{NF}(|X|, d, w, X)rightarrow\varphi ABCQ(|X|,\overline{c},\overline{R}, \eta D, \eta Q))$ .

(Proof). Let $\psi$ be a DCL of an SACl circuit family in normal form. We will define the
descriptions of a database $\eta_{D}$ and a query $\eta_{Q}$ for $\psi$ as in the proof of Gottlob.

Firstly, $\eta_{Q}$ is given by coding $SKEL_{d}$ , thus can be determined solely by the depth $d$ as

$\eta_{Q}(i,j)$ $\Leftrightarrow$ Pair $(i)\wedge Pair(j)\wedge(i)_{0}=(j)_{0}+1\wedge$

$\wedge(Even((i)_{0})arrow((j)_{1}=2(i)_{1}\vee(j)_{1}=2(i)_{1}+1))$

$\wedge(Odd(i)_{0}0arrow(j)_{1}=(i)_{1})$ .

Secondly, $\eta_{D}$ is the database expression of the circuit defined by $\eta$ with the input bits
and negations that are labeled by 1 at the input level.

$\eta_{D}(x, y, n,\overline{c},\overline{R})$ $\Leftrightarrow$ $\psi(x, y, n)\wedge$

$($ depth$(x)=1arrow(l(x)=1rightarrow width(x)\in bin(\overline{c},\overline{R})))$ .

Let $R$ be an unary predicate such that $R(i)\Leftrightarrow i\in X$ and consider the signature $\langle R\rangle$ . Let
$S$ be a solution to the ABCQ instance defined by $\eta_{D}$ and $\eta_{Q}$ . Then $S$ directly gives the
mapping $SKEL_{d}arrow[d\cdot w]$ satisfying ProofTree$(n, d, w, T,X)$ . $\square$

As a corollary, we have

Corollary 2 $V$ -QABCQ proves $\Sigma_{0}^{B}$ -COMP.

(Proof). The idea is to convert a given $\Sigma_{0}^{B}$ formula $\varphi$ into an SACl circuit family and
apply Theorem 6. Since $\Sigma_{0}^{B}$ formulae are converted into an $AC^{0}$ circuit family in a natural
manner, this can be readily done. $\square$

Theorem 7 $\varphi_{ABCQ}(\Sigma_{0}^{B})$ is strongly closed.

The hardest part of the proof of Theorem 7 is to show the closure under complementation.
The idea is to define computations of SACl circuits inside $V$-QABCQ and formalize the proof
the closure of SACl under complementation.

We will omit the details here since it is long and tedious.

4.1 Self witnessing property for $V-Q_{ABCQ}$

Next we prove the self witnessing property of $V-Q_{ABCQ}$ . The idea is to formalize the proof
of the following theorems:

Theorem 8 (Gottlob et.al.) Let $M$ be a bounded tree-size logspace $ATM$ recognizing $A$ .
It is possible to construct a $L^{LOGCFL}$ tmnsducer which for input $w\in A$ outputs a single
accepting tree for $M$ on $w$ .

Theorem 9 (Gottlob et.al.) Computing a solution to an acyclic $CSP$ instance (if any)
is feasible in $L^{LOGCFL}$ .
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We will first overview the outline of our proof. Let $($ョ$Z<t)\varphi 0(\overline{x},\overline{X}, Z)$ be a $\Sigma_{1}^{B}$

description of $\varphi ABCQ(\Sigma_{0}^{B})$ . Describe an ATM algorithm deciding it, as in Theorem 8. It
can be shown that the formalization of of ATM algorithms can be done in $V^{0}$ .

Secondly, formalize the proof of Theorem 8 and Theorem 9 in $V-Q_{\mathcal{K}}$ , the essential change
is that we use bitwise $\varphi_{ABCQ}(\Sigma_{0}^{B})$ computable functions instead of $L^{LOGCFL}$ transducer.

Finally extract a witness $Z$ for $\varphi_{0}(\overline{x},\overline{X}, Z)$ from the accepting tree of the ATM given as
above.

First we will show that computations of bounded tree-size logspace ATMs can be coded
inside $V-Q_{ABCQ}$ .

Definition 9 $A$ (two tape) altemating Turing machine $(ATM)$ is a tuple $M=(\Sigma, Q, q_{0}, \delta,g)$

where $\Sigma$ is an alphabet, $Q$ is the set of states, $q_{0}$ is the initial state, $\delta$ : $Q\cross\Sigma^{2}arrow$

$P(Q\cross\Sigma\cross\{-1,0,1\}^{2})$ is the tmnsition function, and $g$ : $Qarrow\{\wedge, V, O, 1\}$ is the state
function.

The intended meaning of $\delta$ is that if $(q’,j’, m, n)\in\delta(q, i,j)$ then $M$ can make the
following move:

$\bullet$ change the state from $q$ to $q’$

$\bullet$ rewite the letter of work tape head from $j$ to $j’$

$\bullet$ move heads of input and work tapes to $m$ and $n$ respectively,

An accepting computation tree of an ATM $M$ on input $X$ is a labeled rooted tree such
that

$\bullet$ the root is labeled by the initial configuration of $M$ on input $X$ ,

$\bullet$ if a node is labeled by a configuration $c$ with a state $q$ such that $g(q)=\wedge$ then it has
a offspring for each configuration which can be moved from $c$ in one step according to
the transition function,

$\bullet$ if a node is labeled by a configuration $c$ with a state $q$ such that $g(q)=\vee$ then it has
a single offspring which can be moved from $c$ in one step according to the transition
function,

$\bullet$ each leaf node is labeled by a configuration with a state $q$ such that $g(q)=1$ .
An ATM $M$ accepts an input $X$ if there exists an accepting computation tree of $M$ on input
X. The tree-size of an accepting tree of $M$ on an input $X$ is the number of nodes in it. The
space of an accepting tree is the maximal number of cells used in the computation.

Definition 10 For functions $s(n)$ and $t(n)$ , we define $ASPACE-TREESIZE(s(n), t(n))$
to be the class of predicates which are decidable by $s(n)$ tree-size, $t(n)$ space bounded ATMs.

We will express computations of ATMs by the formula ’which asserts the existence of
accepting trees. An accepting tree is coded by a two dimensional array $T$ such that

$\bullet$ Each column of $T$ corresponds to a node in the tree,

$\bullet$ $T[0]$ is the root node corresponding to the initial configuration,
$\bullet$ For all $i>0T[i]$ has an unique direct ancestor $T[j]$ where $j<i$ ,

$\bullet$ if $T[i]$ and $T[i’]$ have direct ancestors $T[j]$ and $T[j’]$ respectively and $i<i’$ then $j<j’$ ,
$\bullet$ if $T[i]$ is a node corresponding to an existential configuration then it has a single

offspring which is obtained by a single step of $M$ ,
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$\bullet$ if $T[i]$ is a node corresponding to an universal configuration then it has an offspring
for each configuration which is obtained by a single step of $M$ ,

$\bullet$ all leaf nodes correspond to accepting configurations.

In order to code configurations of logspace bounded ATMs, we need some coding number
functions. We define the pairing function

$\langle x,$ $y \rangle=\frac{(x+y)(x+y+1)}{2}$

and for any constant $k$ we define

$\langle x_{1},$

$\ldots,$
$x_{k}\rangle=\langle x_{1},$ $\langle x_{2},$

$\ldots,$
$x_{k}\rangle\rangle$ .

We also define the following predicate.

$Pair_{k}(x)\Leftrightarrow($ョ$x_{1})\cdots($ョ$x_{k})(x=\langle x_{1}, \ldots, x_{k}\rangle)$ .

For such pairs we define functions to $ex\acute{tr}act$ elements from them:

$el_{k}^{i}(x)=\{\begin{array}{ll}x_{i} if x=\langle x_{1}, \ldots, x_{k}\rangle,0 otherwise\end{array}$

It is easy to see that these functions are $\Sigma_{0}^{B}$ definable in $V^{0}$ so we can use them freely in
$V-Q_{ABCQ}$ .

Using these functions, we will first give the coding of a configuration of an ATM as

$\langle q,$ $k,$ $l,w\rangle$

where $q\in Q$ is the state, $k,$ $l$ are head positions of input and work tapes respectively, and $w$

is the content of the work tape. So we let each node of the accepting tree $T$ have the form

$T[i]=\langle j,$ $q,$ $k,$ $l,$ $w\rangle$

where $j$ is the position of its direct ancestor and $q,$ $k,$ $l,$ $w$ as above.
Now we will give an $L_{2}$-formula describing accepting trees of ATMs. The first formula

says that given $T$ codes a well-formed tree:

$WF(l, s, T)$ $\Leftrightarrow$ $T<l\cdot s\wedge(\forall i<l)(T[i]<s\wedge Pair_{5}(T[i]))$

$\wedge el_{5}^{1}(T[0])=0\wedge(\forall i<l)(i>0)arrow el_{5}^{1}(T[i])<i)$

$\wedge(\forall i,j<l)(i<jarrow el_{5}^{1}(T[i])\leq el_{5}^{1}(T[j]))$

Since states are divided into five types, namely initial, universal, existential, accepting and
rejecting, we distinguish them as follows:

init $(q)$ $\Leftrightarrow$ $q=0$ ,
univ $(q)$ $\Leftrightarrow$ $q>0\wedge q\equiv 0(mod4)$ ,

$ext(q)$ $\Leftrightarrow$ $q\equiv 1$ (mod4),
$acc(q)$ $\Leftrightarrow$ $q\equiv 2(mod4)$ ,
$rej(q)$ $\Leftrightarrow$ $q\equiv 3(mod4)$ .

The transition function of an ATM is given by a finite table $M$ such that

$M(q, q’, u, v, v’, m, m’)\Leftrightarrow(q’, v’, m, m’)\in\delta(q, u, v)$ .
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So we define a formula giving the transition relation between configurations of a given ATM
as follows:

Trans $(c, c’, M, X)\Leftrightarrow$

$($ョ$q, k, l, w, q’, k’, l’, w’)(c=\langle q,$ $k,$ $l,$ $w\rangle\wedge c’=\langle q,$ $k,$ $l,$ $w\rangle$

$\wedge($ョ $-1\leq m, m’\leq 1)(M(q, q’, X(k), bit(w, l), bit(w’, l’), m, m’)\wedge$

$(\forall p<|w|)(p\neq larrow bit(w, l)=bit(w’, l))\wedge k’=k+m\wedge l’=l+m’))$ .
where bit $(w, i)$ is the ith bit of $w$ in binary. Let

$conf(\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\rangle)=\langle x_{2},$ $x_{3},$ $x_{4},$ $x_{5}\rangle$

and define

VNode$(l, s, i, M, X, T)\equiv$

(init $(el_{5}^{1}(T[i]))\vee ext(el_{5}^{1}(T[i]))$

$arrow($ョ$!j<l)(el_{5}^{1}(T[j])=i\wedge Trans(conf(T[i]), conf(T[j]), M, X)))\wedge$

(univ $(el_{5}^{1}(T[i]))$

$arrow(\forall c<s)$ (Trans$(conf(T[i]), conf(T[j]), M, X)$
$rightarrow($ョ$j)(el_{5}^{1}(T[j])=i\wedge conf(T[j])=c)))\wedge$

$(acc(el_{5}^{1}(T[i]))rightarrow\neg($ョ$j<l)(el_{5}^{1}(T[j])=i))$ .

Finally we define

ATREE$(l, s, M, X, T)\Leftrightarrow WF(l, s, M, X, T)\wedge(\forall i<l)VNode(l, s, i, M, X, T)$ .

We will show that for any $\Sigma_{0}^{B}$ definable $M$ , the statement $(\exists T<l. s)$ATREE$(l, s, M, X,T)$
is $Q_{ABCQ}(\Sigma_{0}^{B})$ definable in $V-Q_{ABCQ}$ . The idea is to formalize the translation of ATMs by
SACl circuit.

Theorem 10 For any $\varphi\in\Sigma_{0}^{B}$ and $l,$ $t,$ $s\in L_{2}$ there exist $\psi\in\Sigma_{0}^{B}$ and $d,$ $w\in L_{2}$ such that
$V-Q_{ABCQ}$ proves

$(\forall y<t)(M(x)rightarrow\varphi(y))arrow$

$(\forall X)(($ョ$T)$ ATREE$(l,$ $s,$ $M,$ $X,$ $T)rightarrow(\exists T’)ProofTree_{\psi}(|X|,$ $d,$ $w,$ $T’,$ $X))$ .
(Proof). We will formalize the direct translation of ATMs into SACl circuits given by
Vollmer [7]. We argue inside $V-Q_{ABCQ}$ .

Let $M$ give the transition function of a given ATM with treesize $l$ and space $|s|$ . It is
easy to see that in $V$-QABCQ we can assume that every configuration of $M$ has at most
two successors. For an input $X$ of $M$ we denote the whole computation tree of $M$ on $X$ by
$T_{M}(X)$ . Since $T_{M}(X)$ may be superpolynomial, we do not have a string representing it in
general. However, we may have its $\Sigma_{0}^{B}$ graph as

CTREE$(u, v, M, X)\Leftrightarrow u$ is an offspring of $v$ in $T_{M}(X)$ .

Note that we can suitably code configurations of $M$ on input $X$ by number objects. We
can also code constant numbers of such configurations by numbers. We call a pair $\langle r,$ $s\rangle$ a
hagment where $r$ is a configuration and $s$ is a constant number of configurations.

Now we are ready to give formalized proofs of theorems by Gottlob et.al. Firstly, we
consider Theorem 8.

The essential part of the proof is to compute the predicate OCCURS$(l, s, c, M, X)$ de-
fined as follows:

OCCURS$(l, s, c, M, X)\Leftrightarrow(\exists T)(ATREE(l, s, M, X, T)\wedge(\exists i<l)($ョ$j<l)(T[i]=\langle j, c\rangle))$ .

Intuitively, it asserts that a given configuration $c$ appears in some accepting computation
tree of an ATM $M$ on input $X$ . In [2], it is proven that this predicate can be checked in
LOGCFL. This statement can be formalized in the following manner.
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Lemma 2 $V-Q_{SAC}$ proves that there exists a $Q_{SAC}(\Sigma_{0}^{B})$ formula which is equivalent to the
predicate OCCURS$(l, s, c, M, X)$ .

(Proof). The idea of the original proof is to construct an ATM $M^{f}$ which simulates $M$ and
in addition checks whether $c$ occurs in some accepting computation tree $T$ . It suffices to
show that such ATM $M’$ can be defined by a $\Sigma_{0}^{B}$ formula and thus we can use $M’$ inside
$V-Q_{ABCQ}$ . More formally we prove that for each $\varphi\in\Sigma_{0}^{B}$ and $L_{2}$-terms $l,$ $s,$ $t$ there exist
$\varphi’\in\Sigma_{0}^{B}$ and $L_{2}$-terms $l’,$ $s’,$ $t’$ such that $V$-QABCQ proves

$(\forall x<t)(M(x)rightarrow\varphi(x))\wedge(\forall x<t)(M^{f}(x)rightarrow\varphi(x))$

$arrow(\forall X)((\exists T^{f})ATREE(l, s, M^{f}, \langle X, c\rangle, T^{f})rightarrow OCCURS(l, s, c, M, X))$ .

The description of $\varphi’$ can be easily obtained from $\varphi$ . $\square$

Now we are ready to prove the formalized version of Theorem 8.

Theorem 11 For each $\varphi\in\Sigma_{0}^{B}$ and $L_{2}$ -tems $l,$ $s,$ $t$ there exists a function ACT(X) which
is $\Sigma_{1}^{B}$ definable in $V$ -QABCQ such that

$(\forall x<t)(M(x)rightarrow\varphi(x))\wedge(\exists T)ATREE(l, s, M, X, T)arrow ATREE(l, s, M, X, ACT(X))$

is provable in $V-Q_{ABCQ}$ .

(Proof). The function ACT(X) can be defined as a combination of five functions which are
$\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .

Let $T_{1}$ be the function which lists all configurations which appears in an accepting com-
putation of a given ATM $M$ on input $X$ .
Claim 1. $T_{1}$ is $\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .

(Proof of Claim 1). We can define $T_{1}$ using $Q_{ABCQ}(\Sigma_{0}^{B})$-COMP as

$(\forall c)(T_{1}(l, s, M, X)(c)rightarrow OCCURS(l, s, c, M, X))$ .

Let $T_{2}$ be the function which takes the output of $T_{1}$ as input and outputs the list of all
pairs $\langle c,$ $c’\rangle$ such that $c\vdash_{M}c’$ .

Claim 2. $T_{2}$ is $\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .
(Proof of Claim 2). This is easily defined by $\Sigma_{0}^{B}$-COMP as the transition relation of $M$ is
$\Sigma_{0}^{B}$ definable.

Let $T_{3}$ be the function which takes the output of $T_{2}$ as input and outputs a list of pairs
obtained by removing all $\langle c,$ $c’\rangle$ except the first one for each existential configuration $c$ of $T_{1}$ .
Claim 3. $T_{3}$ is $\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .
(Proof of Claim 3). Using the least number principle, we can determine whether a given
pair $\langle c,$ $c^{f}\rangle$ is the least one for each $c$ by a $\Sigma_{0}^{B}$ relation. More formally

$T_{3}(\langle c, c’\rangle)\Leftrightarrow T_{2}(\langle c, c’\rangle)$ A $c’=\mu_{x<|T_{2}|}T(c, x)$ .
Such a string $T_{3}$ exists by $\Sigma_{0}^{B}$ -COMP.
Let $T_{4}$ be the function which takes the output of $T_{3}$ as input and remove all configurations

that are no longer reachable from the root.

Claim 4. $T_{4}$ is $\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .
(Proof of Claim 4). For each configuration $c$ appearing in $T_{3}$ execute the NL algorithm
checking that it is not reachable from the root configuration. Such an algorithm is definable
in V-Krom due to [3] and so is in $V-Q_{ABCQ}$ . Let REACH$(c, d, G)$ be the expression
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of such algorithm. Since $V-Q_{ABCQ}$ contains V-Krom it is expressed by a $Q_{ABCQ}(\Sigma_{0}^{B})$

formula. So $T_{4}$ can be defined by $Q_{ABCQ}(\Sigma_{0}^{B})$-COMP.
Let $T_{5}$ be the function which takes the output of $T_{4}$ as input and outputs an equivalent

tree.

Claim 5. $T_{5}$ is $\Sigma_{1}^{B}$ deflnable in $V-Q_{ABCQ}$ .
(Proof of Claim 5). Since we know the size bound of the accepting computation tree, we
rewind the DAG obtained by $T_{4}$ while simultaneously checking the size bound.

Now the function ACT can be defined as the composition of the above five functions. $\square$

Next we turn to the formalization of Theorem 9 stating that witnesses for CSP instances
can be effectively extracted from accepting computation trees of the ATM deciding them.

The ATM algorithm in [2] receives ajoin forest $JF(Q)$ of a given query $Q$ as input and
decide whether it is satisfied on a given database $D$ . So in order to formalize the algorithm,
we first need to check that the translation of a query to an equivalent join forest.

A join forest of a given query $Q$ is a labeled forest (that is an acyclic undirected graph)
such that

$\bullet$ each vertex is labeled by a conjunct of $Q$
) and

$\bullet$ if two conjuncts share the same variables then the corresponding vertices are connected.

We will make use of the known algorithm for computing the minimum weight spanning
forest of a given graph [6].

For a query $Q$ let $WG(Q)=(V_{Q}, E_{Q})$ be the Weighted Query Graph whose vertices are
set of all conjuncts in $Q$ and $(c, c’)\in E_{G}$ whenever $c\neq c’$ and $c$ and $c’$ share same variables.

Proposition 3 The function $WG(Q)$ which computes the weighted query gmph is $\Sigma_{1}^{B}$ de-
finable in $V-Q_{ABCQ}$ .

(Proof). Use $\Sigma_{0}^{B}$ -COMP. $\square$

It is readily seen that any spanning forest is ajoin forest of $Q$ . So it suffices to show that
computing a spanning forest of $WG(Q)$ can be defined in $V-Q_{ABCQ}$ . For the construction
of a spanning forest we will use the following fact:

Proposition 4 An edge $e=\{u, v\}$ is in the minimum weight spanning forest of a graph
$G=(V, E)$ if and only if it is not connected in $v$ in the graph $G_{E}=(V, E_{e})$ where $E_{e}=$

$\{e’\in E:index(e’)<index(e)\}$ .

Note that the latter condition of Proposition 4 can be checked using graph reachability.

Lemma 3 The function $SF(Q)$ which computes the spanning forest of $WG(Q)$ is $\Sigma_{1}^{B}$ de-
finable in $V-Q_{ABCQ}$ . Furthermore, $V$ -QABCQ proves that $SF(Q)$ is a join forest.
(Proof). We argue informally inside $V-Q_{ABCQ}$ . Let the index function of edges in $WG(Q)$ be
the code of edges. For each edge $e$ of $WG(Q)$ , we can compute $WG(Q)_{e}=\{e’$ : index $(e’)<$
$index(e)\}$ using $AC^{0}$ function. Then use the NL algorithm to check the connectivity of $e$

and $e’$ in $WG(Q)_{e}$ . Due to Kolokolova, this algorithm can be expressed by an $\Sigma_{1}^{B}$ -Krom
formula, say $\overline{REACH}(WG(Q)_{e}, e, e’)$ .

Finally, we can apply comprehension axiom to obtain a string $T$ such that

$(\forall u, v)(T(u, v)rightarrow\overline{REACH}(WG(Q)_{e}, e, e^{f}))$

which proves the lemma. $\square$
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Lemma 4 There exists a $\Sigma_{1}^{B}$ definable function ATJF$(M, D, Q)$ of $V-Q_{ABCQ}$ such that
$V-Q_{ABCQ}$ proves

$($ョ$T)$ATREE$(l, s, M, \langle D, JF(Q)\rangle, T)arrow ATREE(l, s, M, \langle D, JF(Q)\rangle, ATJF(M, D, Q))$ .

(Proof). The idea is to formalize the ATM algorithm deciding the JTREE satisfaction
problem given in [2]. 口

Theorem 12 $\varphi_{ABCQ}(\Sigma_{0}^{B})$ is self-witnessing.

(Proof). Let $\varphi_{D},$
$\varphi Q\in\Sigma_{0}^{B}$ . We show that the existential quantifier in the $\Sigma_{1}^{B}$ description

of $Q_{ABCQ}[\varphi_{D}, \varphi_{Q}]$ can be witnessed by a function which is $\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .
Note that $\varphi_{D}$ and $\varphi_{Q}$ give a database $D_{n}$ and a query $Q_{n}$ for each size parameter $n$ . So

we first introduce functions

$F_{\varphi_{D}}(n)=D_{n},$ $F_{\varphi Q}(n)=Q_{n}$ .

Note that these functions are $\Sigma_{1}^{B}$ definable in $V-Q_{ABCQ}$ .
It suffices to construct a $\Sigma_{1}^{B}$ definable function witnessing the existential quantifier in

the formula
Cyclic$(F_{\varphi}.(n))V$ $(IS)CQ(F_{\varphi_{D}}(n), F_{\varphi_{Q}}(n), S)$ .

The first conjunct Cydic$(F_{\varphi Q}(n))$ contains an existential quantffier which is witnessed by a
cycle in $F_{\varphi_{Q}}(n)$ . Note that this can be reduced to the reachability problem as follows:

Cyclic(Q) $\Leftrightarrow$ $($ョ$a\in V_{Q})Reach(a, a, Q)$

$\Leftrightarrow$ $(\exists a\in V_{Q})(\exists P)Path(a, a, P, Q)$ .

The existential quantifiers in this predicate can be witnessed within V-Krom due to Kolokolova,
or alternatively we can give an ATM algorithm deciding Cyclic(Q) in space $O(\log n)$ and
$n^{O(1)}$ tree-size and extract the witness $hom$ its accepting tree. More precisely, the algorithm
works as follows:

input $G$

for each $a\in V_{G}$ universally check Reach$(a, a, |V_{G}|, G)$

procedure Reach$(a, b, n, G)$ ;
accept $if(a, b)\in E_{G}$

reject $if(a, b)\not\in E_{g}$ and $n=0$
existentially choose $c\in V_{G}$ such that $(a, c)\in E_{G}$

check Reach$(b, c, n-1, G)$

Each configuration of the ATM on the execution of Reach$(a, b, n, g)$ contains the pair $\langle a,$ $b,$ $n\rangle$ .
So it is readily seen that this algorithm requires $O(\log n)$ space.

It is also easy to see that it computes Cydic$(Q)$ and has polynomial tree-size. We claim
that any path in an accepting computation tree of this ATM on input $G$ contains a list of
vertices which form a cycle in $G$ .

Now applying the formalized version of the witnessing of ATMs, we obtain a $\Sigma_{1}^{B}$ definable
function

Cycle$(Q)arrow Path(CY(Q)[0], CY(Q)[0], CY(Q), Q)$ .
Finally, the self witnessing property of $Q_{ABCQ}(\Sigma_{0}^{B})$ is guaranteed by the combination of
two functions ATJF and $CY$ . $\square$
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5 Future Works
We end the paper by stating an on-going work relating our result.

One of the major problems to go beyond our work is the construction of a theory for
LOGDCFL. A possible idea for this problem is to use tree-size characterizations

Theorem 13 (McKenzie et.al.[4]) LOGDCFL is the class of predicates which are com-
puted by polynomial size multiplex circuits having polynomial size proof trees.

An idea for the theory based on this characterization is to formalize the following type
of statement:

Given a circuit $C$ and an input $X$ , we can decide whether a gate in $C$ has a
polynomial size proof tree on input $X$ .

More precisely, we can write an $L_{2}$-formula describing the following statement:

Let $C$ be a multiplex circuit and $X$ be an input, there exists a string $Z$ such
that $g\in Z$ if and only if $g$ is a gate in $C$ which has a polynomial size proof tree
on input $X$ .

By extending $V^{0}$ by the axiom as above, we may obtain a theory for LOGDCFL.
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