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1 Introduction
An AND-OR tree is a complete binary tree such that its root is an AND-gate, layers of AND-
gates and those of OR-gates alternate and that leaves are assigned Boolean values. A tree of this
type with $k$ alternations is denoted by $T_{2}^{k}$ . In this context, a probabilistic algorithm denotes a
probability distribution on a set of deterministic algorithms. We restrict ourselves to deterministic
algorithms of a certain type. We assume that a deterministic algorithm finds truth value of the
root by making queries to leaves, and that a deterministic algorithm obeys alpha-beta pruning
method, an efficient version of Min-Max method. In general, a deterministic algorithm of this
type find the value of root without making queries to all the leaves. In this context, the cost of
computation is the number of leaves queried during a computation. For a probabilistic algorithm,
the cost is defined as the expected value of cost.

Then, the value
$\min_{A}\max_{t}cost(\mathcal{A}, t)$ ,

where $\mathcal{A}$ runs over probabilistic algorithms and $t$ runs over truth assignments, is called randomized
complexity [1, chapter 12].

A probability distribution on the truth assignments is easier to handle than a probability
distribution on the algorithms. Fortunately, Yao shows that the randomized complexity equals to
distributional complexity, that is,

$\max_{d}\min_{A}$ cost $(A, d)$ ,

where $A$ runs over deterministic algorithms and $d$ runs over probability distributions of truth
assignments. This equality is a variation of Von-Neumann $s$ Min-Max theorem, and is known as
Yao’s principle. A distribution $d_{0}$ on the truth assignments is called eigen-distribution if it achieves
the distributional complexity, that is, if it satisfies the following.

$\min_{A}$cost $(A, d_{0})= \max_{d}\min_{A}$cost $(A, d)$ ,

C.-G. Liu and K. Tanaka [2] (Eigen-distribution on random assignments for game trees”,
Infom. Process. Lett., 104 pp.73-77 (2007) $)$ define the concept of l-set (0-set) as the set of all
assignments such that the root has value 1 ( $0$ , respectively) and cost is forced to be high in a
certain sense. They define $E_{1}$ -distribution ( $E_{0}$ -distribution) as a distribution on the l-set (0-set)

数理解析研究所講究録
第 1729巻 2011年 111-116 111



such that all the deterministic algorithm has the same cost. They prove the following Assertion 1,
2.
Assertion 1 [2, Theorem 8] For any tree $T_{2}^{k}$ , we have, in the $E^{1}$ -distribution ($E^{0}$ -distribution),
the probability of each assignment of l-set (or 0-set) is equal to $1/(4^{(4^{k}-1)/3})$ .
Assertion 2 [2, Theorem 9] For any tree $T_{2}^{k}$ , the $E^{1}$ -distribution is the unique eigen-distribution
in the global distribution.

In general, an algorithm can change its priority of searching leaves throughout a computation.
For example, an algorithm can decide the next leaf in such a way that, if beta-cut happens at the
current leaf then the next leaf is $x$ , otherwise the next leaf is $y$ . In this note, we consider the case
where an algorithm does not change the priority of searching leaves throughout a computation.
We show that, under this interpretation, (a counterpart of) Assertion 1 fails. In addition, we give
remarks to Assertion 2. We show that, under the above interpretation, there are uncountably many
$E^{1}$-distributions that are not the uniform distribution on the l-set, and that there are uncountably
many eigen-distributions.

2 Notation
The number of alternations of AND-layers and OR-layers in a given tree is called the round. A
l-round uniform binary AND-OR tree $T_{2}^{1}$ denotes a tree of the form in Figure 1. For an integer
$k\geq 2$ , a k-round tree $T_{2}^{k}$ is defined by replacing four leaves of $T_{2}^{1}$ by $T_{2}^{k-1}$ trees.

Definition 1 In the current note, we label each vertex of $T_{2}^{k}$ by a bit string in the canonical way.
A node corresponding to a bit string $s$ is denoted by $v_{s}$ . Figure 2 is an example.

$v_{00}v_{01}v_{10}v_{11}$

Figure 1: $T_{2}^{1}$ Figure 2: Labels for vertices

Suppose that $k$ is a positive integer. $\mathcal{A}_{D}^{k}$ denotes the class of all deterministic alpha-beta
pruning algorithms calculating the root-value of $T_{2}^{k}$ .

Definition 2 By $\mathcal{A}_{FIX}^{k}$ , we denote the family of all $A\in A_{D}^{k}$ such that $A$ does not change the
priority of searching leaves throughout a computation.

We do not write $k$ of $\mathcal{A}_{D}^{k}$ or $\mathcal{A}_{F^{\backslash }IX}^{k}$ when $k$ is clear from context.
$\mathcal{W}$ is the class of all assignments to leaves of $T_{2}^{k}$ . For $A\in \mathcal{A}_{D}$ and $\omega\in \mathcal{W}$ , by $C(A_{D},\omega)$ , we

denote the number of leaves examined in the computation by $A_{D}$ . By the phrase “the computa-
tional complexity of $A$ with respect to $\omega$”, we denote (not time-complexity but) $C(A_{D},\omega)$ . If $d$ is
a probability distribution on $\mathcal{W}$ then $C(A_{D}, d)$ denotes the expected value of the complexity with
respect to $d$.

Liu and Tanaka define i-set as follows, where $i$ is $0$ or 1. Suppose that $k$ , the round of a tree,
is given. We consider a truth assignment that make root $=i$ . For each AND-gate whose value is
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defined as to be $0$ , we randomly choose a child-node and assign 1 to it, and assign $0$ to the other
child-node. For each OR-gate whose value is defined as to be 1, we randomly choose a child-node
and assign 1 to it, and assign $0$ to the other child-node. Then, the set of all such assignments is
the i-set. The method of making such assignments is called reverse assignment technique of Liu
and Tanaka.

Definition 3 Suppose that $\mathcal{A}$ is a subset of $\mathcal{A}_{D}^{k}$ .
(1) A distribution $d$ on the truth assignments is called eigen-distribution with respect to $A$ if

the following holds.
$\min_{A_{D}\in A}C(A_{D}, d)=\max_{dA}\min_{D\in A}C(A_{D}, d’)$ ,

where d’ runs over all distributions on the truth assignments.
(2) Let $i\in\{0,1\}$ . A distribution $d$ on the i-set is called $E^{i}$ -distribution with respect to $\mathcal{A}$ if

there exists a real number $c$ such that for every $A_{D}\in \mathcal{A}$ , the following holds.

$C(A_{D}, d)=c$ .
(3) [2] If a distribution $d$ on the truth assignments is eigen (respectively, $E^{0},$ $E^{1}$ ) if it is so with

respect to $\mathcal{A}_{D}^{k}$ .

3 The case where $k=1$ and root $=1$

Throughout sections 3-5, let $k=1$ . Table 1 shows the values of $C(A_{D}, \omega)$ in the case where $\omega$ is
an element of the l-set.

Table 1: $C(A_{D}, \omega)$ for $k=1$ ( $\omega\in$ the l-set).

In the table, each $\omega_{i}$ is a name of an assignment. A bit string abcd denotes the assignment such
that $a,$ $b,$ $c,$ $d$ , are assigned to $v_{00},$ $v_{01},$ $v_{10},$ $v_{11}$ , respectively.

In the table, each $A_{j}$ is a name of an element of $A_{FIX}$ . In a permutation xyzw of {1, 2, 3, 4}, each
of $x,$ $y,$ $z,$ $w$ denotes the search-priority of $v_{00},$ $v_{01},$ $v_{10},$ $v_{11}$ , respectively. Since we restrict ourselves
to alpha-beta pruning algorithms, only the eight permutations are considered.

Definition 4 Suppose that $\epsilon$ is a real number such that $0\leq\epsilon\leq 1/2$ . By $d(\epsilon)$ , we denote
the distribution on the l-set such that the probabilities of $\omega_{1},$ $\omega_{2},\omega_{3},$ $\omega_{4}$ are $\epsilon,$ $1/2-\epsilon,$ $1/2-\epsilon,$ $\epsilon$ ,
respectively.

Theorem 1 There are uncountably many (the cardinality of the continuum) $E^{1}$ -distributions with
respect to $\mathcal{A}_{F}^{1}$

Ix that are not the unifom distribution on the l-set. Hence, Assertion 1 fails (under
this interpretation) with respect to $\mathcal{A}_{FIX}^{1}$ .

Proof. Suppose that $\epsilon$ is a real number such that $0\leq\epsilon\leq 1/2$ . Let $j\in\{1,2, \cdots, 8\}$ . By
Table 1, it holds that

$C(A_{j}, d(\epsilon))=\{\begin{array}{l}\epsilon(2+4)+(1/2-\epsilon)(3+3)=3, or\epsilon(3+3)+(1/2-\epsilon)(2+4)=3.\end{array}$ (3.1)
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Therefore, for every $\epsilon$ such that $0\leq\epsilon\leq 1/2,$ $d(\epsilon)$ is a distribution on the l-set such that for
each $j\in\{1,2, \cdots, 8\}$ , the value $C(A_{j}, d)$ is the same. $d(\epsilon)$ is not the uniform distribution on the
l-set unless $\epsilon=1/4$ . $\square$

Note that $d(1/4)$ is the $E^{1}$-distribution $($ for $k=1)$ discussed in [2].

4 Eigen-distribution for $k=1$

Assertion 2 suggests that, in the case where $k=1,$ $d(1/4)$ is the unique eigen-distribution. In this
section, we show that $d(1/4)$ is not the unique eigen-distribution under the interpretation that an
algorithm does not change the priority of searching leaves throughout a computation.

The following Lemma 2 is implicitly shown in [2, p.76]. We explicitly prove it.

Lemma 2 Let $k=1$ . Suppose that $d$ is a distribution on $\mathcal{W}$ .
(1) If $\min_{1\leq J\leq 8}C(A_{j}, d)\geq 3$ then $d$ is a distribution.on the l-set.
$(Z)$ If $d$ is a distribution on the l-set then $\min_{1\leq j\leq 8}C(A_{j}, d)\leq 3$ .
(3) $d$ is eigen with respect to $\mathcal{A}_{D}^{1}$

“ if and only if $d$ is a $distr\dot{\eta}bution$ on the l-set and
$\min_{1\leq J\leq 8}C(A_{j}, d)=3$ ”.

Proof. For each $i$ such that $1\leq i\leq 16$ , let $p_{i}$ denote Prob $[d=\omega_{i}]$ .
(1) Tables 2, 3 show the values of $C(A_{D}, \omega)$ in the case where $\omega$ is not an element of the l-set.

Table 2: $C(A_{D}, \omega)$ for $k=1$ ($\omega\in$ the 0-set).

Table 3: $C(A_{D},\omega)$ for $k=1$ ($\omega\not\in$ the 1-set $U$ the 0-set).

Suppose that $\min_{1\leq j\leq 8}C(A_{j}, d)\geq 3$. Since $C(A_{1}, d)\geq 3$ , by Tables 2 and 3, we get the
following..

$p_{1}+p_{7}+p_{8}+p_{9}+p_{11}+p_{14}+p_{15}+p_{16}\leq p_{4}+p_{6}$ . (4. 1)

For each $j\in\{2, \cdots, 8\}$ , we get similar inequalities. By using these inequalities, it is shown that
$5\leq\forall i\leq 16p_{i}=0$ . Hence, $d$ is a distribution on the l-set.
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(2) Suppose that $d$ is a distribution on the l-set. Assume for a contradiction that we have
$\min_{1\leq j<8}C(A_{j}, d)>3$ . Since $C(A_{1}, d)=2p_{1}+3p_{2}+3p_{3}+4p_{4}>3$ , we have $p_{1}<p_{4}$ . Since
$C(A_{4},$ $d\overline{)}=4p_{1}+3p_{2}+3p_{3}+2p_{4}>3$ we have $p_{1}>p_{4}$ , a contradiction.

(3) Note that $\min_{1\leq j\leq 8}C(A_{j}, d(1/4))=3$ . By this fact and the above (1) and (2), the equiva-
lence holds. $\square$

The following is a remark to Assertion 2.

Corollary 3 (to Theorem 1 and Lemma 2) There are uncountably many (the cardinality of the
continuum) eigen-distributions with respect to $A_{FIX}^{1}$ .

Proof. Suppose that $\epsilon$ is a real number such that $0\leq\epsilon\leq 1/2$ . Then, for each $j\in\{1,2, \cdots, 8\}$ ,
it holds that $C(A_{j}, d(\epsilon))=3$ , and hence $d(\epsilon)$ is an eigen-distribution. $\square$

5 The case where $k=1$ and root $=0$

In this section, we discuss a special case where the statement of Assertion 1 holds.

Proposition 4 Let $k=1$ . Suppose that $d$ is an $E^{0}$ -distrebution with respect to $\mathcal{A}_{FIX}^{1}$ . Then, $d$ is
the uniform distribution on the 0-set. Hence, $d$ is the $E^{0}$ -distribution of $[2J$.

Proof. For each $i\in\{5,6,7,8\}$ , let $p_{i}=$ Prob $[d=\omega_{i}]$ . Then we have $2p_{5}+2p_{6}+2p_{7}+2p_{8}=1$ .
Hence, we get the following.

$C(A_{j}, d)= \sum_{r=0}^{1}C_{1eaf=r}(A_{j}, d)=\{\begin{array}{l}2+p_{5}+2p_{6} If j\in\{1,6\},2+2p_{7}+p_{8} If j\in\{2,8\},2+p_{7}+2p_{8} If j\in\{3,5\},2+2p_{5}+p_{6} If j\in\{4,7\}.\end{array}$ (5.1)

Since $d$ is an $E^{0}$-distribution, the right-hand side of (5.1) does not depend on $i$ . Thus it holds
that $p_{5}=p_{6}=p_{7}=p_{8}=1/4$ . $\square$

Now, the following assertion in [2] is justified.

Proposition 5 [2, p. $76J$ Let $k=1$ . Let $E^{0}$ denote the (unique) $E^{0}$ -distribution for $k=1$ . If a
distribution $d$ on $\mathcal{W}$ is such that Prob[root $=0$] $=1$ and that $d$ is not $E^{0}$ , then it holds that

$\min_{A_{D}\in A_{D}}C(A_{D}, d)<\min_{A_{D}\in A_{D}}C(A_{D}, E^{0})=2.75$ . (5.2)

Proof. (sketch) The $0$ value of root is achieved in the case where $i\in$ (the 0-set) $\cup\{13,14,16\}$ .
By using Tables 2 and 3, we can show the proposition. $\square$

6 Eigen-distribution for $k\geq 2$

Corollary 3 holds without assumption of $k=1$ .

Theorem 6 Consider the case where an algorithm does not change the priority of searching leaves
throughout a computation. Under this interpretation, for every positive integer $k$ , there are un-
countably many (the cardinality of the continuum) eigen-distributions.

Proof. (sketch) By means of Lemma 2 and Proposition 5, we can show the following $(^{*})$ .
$(^{*})$ Suppose $n$ is a positive integer. Then, for every $E^{1}$ -distribution $d_{1}$ for $k=1$ , there is an

eigen-distribution $d_{n}$ for $k=n$ such that the first round (the subtree consisting of the root, its
child nodes and their child nodes) of $d_{n}$ is $d_{1}$ .

By Corollary 3, the current theorem holds. $\square$
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7 Appendix
Suppose that $A\in \mathcal{A}_{D}$ and $\omega\in \mathcal{W}$ . For each $r\in\{0,1\}$ , let $C_{1eaf=r}(A_{D}, \omega)$ denote the number of
leaves $v$ satisfying the following two conditions: (1) $v$ is examined in the computation by $A_{D};(2)$

the value of $v$ under $\omega$ is $r$ . If $d$ is a distribution on $\mathcal{W}$ then $C_{1eaf=r}(A_{D}, d)$ is defined in a natural
way.

Table 4 is a list of $C_{1eaf=1}(A_{D}, \omega)$ .

Table 4: $C_{Ieaf=1}(A_{D}, \omega)$ for $k=1$ .
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