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Abstract

We consider a one-dimensional bipolar hydrodynamic model of
semiconductors. We are concerned with the uniqueness of station-
ary solutions in particular. The most difficult point is to obtain the
bounded estimate of the solutions.

1 Introduction
We study the stationary problem of bipolar hydrodynamic model of semi-
conductors on the open interval $I=(O, 1)$ .

$\{\begin{array}{l}j_{x}=0, (\frac{j^{2}}{n}+n)_{x}=n\phi_{x}-j,k_{x}=0, (\frac{k^{2}}{h}+h)_{x}=-h\phi_{x}-k,\phi_{xx}=n-h-D(x),\end{array}$ (1.1)

where $h$ and $n$ are the density of the electron and the hole respectively. $j$

and $k$ are the current density of the electron and the hole respectively. $\phi$

denotes the electrostatic potential. The doping profile $D\in C(\overline{I})$ is a known
function, which represents the density of impurities in semiconductors.
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Then we consider the boundary problem (1.1) and the boundary condi-
tions

$n|_{x=0}=n|_{x=1}=n_{d}(>0)$ , $h|_{x=0}=h|_{x=1}=h_{d}(>0)$ ,
(1.2)

$\phi|_{x=0}=0,$ $\phi|_{x=1}=\phi_{r}(>0)$ .

From the physical point of view, condition (1.2) represents Ohmic contacts
(see [M], [Sl] and [S2]).

n-MOS FET.
The problem $(1.1)-(1.2)$ represents the motion of the electron and the

hole in MOS FET (metal-oxide-semiconductor field-effect transistor). We
introduce n-MOS FET in particular. N-MOS FET consists of the body, the
source and the drain (see Figure 1). The body consists of $p$ region, where
much hole and little electron exist. The source and the drain consist of $n^{+}$

region, where much more electron and little more hole exist. With sufficient
gate voltage, the hole of the body is driven away from the gate, forming an
n-channel at the interface between the $p$ region and the oxide $(SiO_{2})$ . This
conducting channel extends between the source and the drain, and current
is conducted through it when a voltage is applied between the source and
the drain. In Figure 1, $n_{d},$ $h_{d}$ , and $\phi_{r}$ represents the density of the electron
in the source and the drain, the density of the hole in the source and the
drain, and the electrostatic potential at the drain respectively. Under this
boundary condition, we consider the motion of the electron and the hole on
n-channel. Source $S$ Gate $G$ Drain D

Figure 1: n-MOS FET
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Related results. The hydrodynamic model of semiconductors was in-
troduced by $Bl\emptyset tekjaer[B]$ . In engineering, this model is used for practical
applications, such as the simulation of the flash memory and semiconductors
with high bias.

We first introduce mathematical results for the unipolar hydrodynamics
model $($ i.e., $h=const$ . and $k=0$ in (1.1). $)$ . The pioneer work in this field
is Degond and Markowich [DM]. They investigated the existence and the
uniqueness of stationary solutions. Subsequently, Nishibata and Suzuki [NS]
proved the existence and the asymptotic stability of stationary solutions.

Next, we survey the bipolar case (1.1). Hattori and Zhu [HZ] discussed
the stability of stationary solutions for the Cauchy problem. On the other
hand, Li and Zhou [LZ] studied the existence and some limits of stationary
solutions to a one-dimensional Dirichlet problem. Moreover, Gasser, Hsiao
and Li [GHL] considered the asymptotic stability of classical solutions for
the Cauchy problem. However, the doping profile is not considered in [LZ]
and [GHL].

Now, in practical applications such as the simulation of n-MOS FET, the
hydrodynamic model (1.1) is treated under the following conditions (see [M]
and [Sl] $)$ :

(Cl) (1.1) is supplemented by the Dirichlet boundary conditions, such as
(1.2).

(C2) The doping profile $D(x)$ has large derivative, that is, $D(x)$ is not flat.

In addition to the above papers, there are other mathematical papers for
the bipolar case. Unfortunately, few results satisfy (Cl) and (C2). In this
paper, we shall consider a solution for the boundary condition (1.2) and an
arbitrary doping profile.

From (1.1), we have

$\{\begin{array}{ll}j=\frac{\phi_{r}}{\int_{0}^{1}\frac{1}{n}dx}, (\frac{j^{2}}{2n^{2}}+\log n)_{xx}=n-h-D(x)+j\frac{n_{x}}{n^{2}},k=-\frac{\phi_{r}}{\int_{0}^{1}\frac{1}{h}dx}, (\frac{k^{2}}{2h^{2}}+\log h)_{xx}=h-n+D(x)+k\frac{h_{x}}{h^{2}}.\end{array}$ (1.3)

Then our main theorem is as follows.
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Theorem 1 (Main Theorem[T]). If $\phi_{r}$ is small enough, the boundary
value problem (1.2) and (1.3) has a unique classical solution.

In the present paper, we devote to proving the uniqueness. The proof of
existence can be found in [T].

2 Uniqueness of classical solutions
In this section, we consider the uniqueness of classical solutions. To do this,
we first introduce the following notation:

$D_{M}$
$:= \max_{x\in\overline{I}}|D(x)|,$

$a$ $:= \max\{3, D_{M}\}$ ,

$C_{m}$ $:= \min\{n_{d}, h_{d}\},$ $C_{M}$ $:= \max\{n_{d}, h_{d}\}$ .

We first assume the following proposition.

Proposition 2. If $\phi_{r}$ is small enough, classical solutions to the boundary
value problem (1.2) and (1.3) satisfy

$C_{m}e^{a(x^{2}-1)}\leq n(x)\leq C_{M}e^{a(I-x^{2})}$ , $C_{m}e^{a(x^{2}-1)}\leq h(x)\leq C_{M}e^{a(1-x^{2})}$ . (2.1)

The proof of Proposition 2 is postponed in the next section. Using this
proposition, we prove the uniqueness of classical solutions.

Theorem 3. If $\phi_{r}$ is small enough, the classical solution to the boundary
value problem $(1.2)-(1.3)$ is unique.

Proof. In view of (1.3) and Proposition 2, choosing $\phi_{r}$ small enough, $j$ and $k$

are also small. Therefore, for simplicity, we consider the case where $j=k=$
$0$ .

Now we assume $(n_{1}, h_{1})$ and $(n_{2}, h_{2})$ are classical solutions to the bound-
ary problem $(1.2)-(1.3)$ .

Then, from (1.3), we have

$(\log n_{2}-\log n_{1})_{xx}=(n_{2}-n_{1})-(h_{2}-h_{1})$ , (2.2)
$(\log h_{2}-\log h_{1})_{xx}=(h_{2}-h_{1})-(n_{2}-n_{1})$ . (2.3)

Set $m$ $:=\log n_{2}-\log n_{1}$ and $g$ $:=\log h_{2}-\log h_{1}$ .
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Integrating $((2.2)+(2.3))(m+g)$ from $0$ to 1, we have $\Vert(m+g)_{x}\Vert=0$ ,
where $\Vert$ . I is the $L^{2}$-norm. This yields

$m+g=0$ . (2.4)

Then, from (2.4), we have

$m-g=2m$,

$(n_{2}-n_{1})-(h_{2}-h_{1})=m \int_{0}^{1}e^{\log n_{1}+\theta m}d\theta-g\int_{0}^{1}e^{\log h_{1}+\theta g}d\theta$

$=( \int_{0}^{1}e^{\log n_{1}+\theta m}d\theta+\int_{0}^{1}e^{\log h_{1}+\theta g}d\theta)m$ .

Thus we obtain

$\int_{0}^{1}(n_{2}-n_{1}-h_{2}+h_{1})(m-g)dx\geq 0$ . (2.5)

Computing $\int_{0}^{1}(2.2)\cross mdx+\int_{0}^{1}(2.3)\cross gdx$, from (2.5), we have

$\Vert m_{x}\Vert^{2}+\Vert g_{x}\Vert^{2}=-\int_{0}^{1}(n_{2}-n_{1}-h_{2}+h_{1})(m-g)dx\leq 0$ .

Therefore, we find $n_{2}=n_{1}$ and $h_{2}=h_{1}$ . We can complete the proof. 口

3 Bounded estimate of classical solutions
The aim in this section is to prove Proposition 2.

Separating three parts, we prove Proposition 2. First, we show that
solutions are positive.

Lemma 4. If $n(x)$ and $h(x)$ are classical solutions to the boundary value
problem $(1.1)-(1.2),$ $n(x)$ and $h(x)$ are positive.

Proof. We prove only $n(x)$ is positive. Since solutions are positive at the
boundary and continuous, it suffices to prove $n(x)\neq 0$ for any $x\in I$ .

First, we notice that $n$ is positive near $x=0$. If $j=0$ , from $(1.1)_{1}$ , we
have $(\log n)_{x}=\phi_{x}$ near $x=0$ . Integrating the equality from $0$ to $x$ , we have

$\log n(x)=\phi(x)+\log n_{d}$ .
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Since the right-hand side is bounded on $I,$ $n(x)\neq 0$ for any $x\in I$ .
Next, we consider the case where $j\neq 0$ . Integrating $(1.1)_{1}$ from $0$ to $x$ ,

we have

$\frac{j^{2}}{n(x)}=-n(x)+\frac{j^{2}}{(n_{d})^{2}}+n_{d}+\int_{0}^{x}(n\phi_{y}-j)dy$

near $x=0$ . Then we similarly find that $n(x)\neq 0$ for any $x\in I$ . $\square$

Second, we prove that any solution is bounded from above.

Lemma 5. If $\phi_{r}$ is small enough, classical solutions to the boundary value
problem $(1.1)-(1.2)$ satisfy

$n(x)\leq C_{M}e^{a(1-x^{2})}$ , $h(x)\leq C_{M}e^{a(1-x^{2})}$ . (3.1)

Proof. We prove only $(3.1)_{I}$ . We can handle the other inequality similarly.
We set $\tilde{n}=e^{ax^{2}}n$ and $\tilde{h}=e^{ax^{2}}h$ . Then, from $(1.3)_{1}$ , we have

$( \frac{1}{n}-\frac{j^{2}}{n^{3}})e^{-ax^{2}}\tilde{n}_{xx}+(\cdots)\tilde{n}_{x}-2a(1-\frac{j^{2}}{n^{2}})+8a^{2}x^{2}\frac{j^{2}}{n^{2}}+2ax\frac{j}{n}$

$+D(x)=e^{-ax^{2}}(\tilde{n}-\tilde{h})$ . (3.2)

Then we consider the case where $\tilde{n}$ attains the maximum at a certain
point $x_{1}\in I$ . In this case, we notice that $\tilde{n}_{x}(x_{I})=0,\tilde{n}_{xx}(x_{1})\leq 0$ and

$\frac{j}{n(x_{1})}=\frac{1}{n(x_{1})}\frac{\phi_{r}}{\int_{0}^{1}\frac{1}{n}dx}\leq\frac{1}{\tilde{n}(x_{1})e^{-a(x_{1})^{2}}}\frac{\phi_{r}}{\int_{0}^{1}\frac{1}{\tilde{n}(x_{1})}dx}\leq\phi_{r}e^{a}$

. (3.3)

Choosing $\phi_{r}$ small enough such that $\phi_{r}\leq e^{-2a}$ , we have $1-j^{2}/(n(x_{1}))^{2’}<0$ ,
which means that (3.2) is subsonic at $x=x_{1}$ . Moreover, at $x=x_{1}$ , we have

- $2a(1- \frac{j^{2}}{n^{2}})+8a^{2}x^{2}\frac{j^{2}}{n^{2}}+2ax\frac{j}{n}+D(x)$

$\leq-2a+2ae^{-2a}+8a^{2}e^{-2a}+2ae^{-a}+D_{M}<0$ .

Here we recall the definition of $a$ .
Therefore, it follows from (3.2) that

$\tilde{n}(x_{1})<\tilde{h}(x_{1})$ . (3.4)
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If $\tilde{h}$ attains the maximum at a certain point $x=x_{2}\in I$ , we similarly find
$\tilde{h}(x_{2})<\tilde{n}(x_{2})$ . (3.5)

Now we investigate the maximum of $\tilde{n}$ and $\tilde{h}$ . Then the following four
cases may occur.

Case 1 $\tilde{n}$ and $\tilde{h}$ attain the maximum at the boundary $x=0,1$ .

Case 2 $\tilde{n}$ attains the maximum at the boundary $x=0,1$ . $\tilde{h}$ attains the
maximum at an interior point $x=x_{2}$ .

Case 3 $\tilde{n}$ attains the maximum at an interior point $x=x_{1}.\tilde{h}$ attains the
maximum at the boundary $x=0,1$ .

Case 4 $\tilde{n}$ and $\tilde{h}$ attain the maximum at an interior point $x=x_{1}$ and $x=x_{2}$

respectively.

Case 1 and Case 3. In these cases, we notice that $\tilde{n}|_{x=0}=n_{d},\tilde{n}|_{x=1}=$

$n_{d}e^{a}$ . Since $\tilde{n}(x)\leq n_{d}e^{a}$ , we have $n(x)\leq n_{d}e^{a(1-x^{2})}\leq C_{M}e^{a(1-x^{2})}$ .
Case 2. In this case, we notice that $\tilde{h}|_{x=0}=h_{d}$ and $\tilde{h}|_{x=1}=h_{d}e^{a}$ . It

follows from (3.4) that $\tilde{n}(x)\leq\tilde{n}(x_{1})<\tilde{h}(x_{1})\leq h_{d}e^{a}$ . Therefore, we have
$n(x)\leq h_{d}e^{a(1-x^{2})}\leq C_{M}e^{a(1-x^{2})}$ .

Case 4. This case cannot occur. In fact, from (3.4) and (3.5), we have
$\tilde{n}(x_{1})<\tilde{h}(x_{1})\leq\tilde{h}(x_{2})<\tilde{n}(x_{2})$ . However, this contradicts the fact that $\tilde{n}$

attains the maximum at $x=x_{1}$ .
We thus conclude $(3.1)_{1}$ . 口

From Lemma 5, we have the following.

Corollary 6. If $\phi_{r}$ is small enough,

$j\leq C_{M}\phi_{r}e^{a}$ , $|\phi_{x}|\leq C$, (3.6)

where $C$ depends only on $n_{d},$ $h_{d}$ and $D_{M}$ .

To complete the proof of Proposition 2, the remainder is to obtain the
lower bound of $n$ and $h$ . This estimate is not similar to the above lemma,
because (3.3) does not hold in this case. We first prove the following.

Lemma 7. If $\phi_{r}$ is small enough, there exists a positive constant $C$ such that
classical solutions to the boundary value problem (1.1) and (1.2) satisfy

$C<n(x)$ , $C<h(x)$ , (3.7)

where $C$ depends only on $n_{d},$ $h_{d}$ and $D_{M}$ .

24



Proof. We prove only $(3.7)_{1}$ . In this proof, we use the same letter $C$ to denote
constants depending only on $n_{d},$ $h_{d}$ and $D_{M}$ .

To do this, we estimate Riemann invariants. From (1.1), we have

$( \frac{j}{n}+\log n)_{x}=\frac{\phi_{x}-\frac{j}{n}}{1+\frac{j}{n}}$ , $( \frac{j}{n}-\log n)_{x}=\frac{-\phi_{x}+\frac{j}{n}}{1-\frac{j}{n}}$. (3.8)

Set $S_{1}$ $:=\{x\in\overline{I};j/n\leq 2\}$ and $S_{2}$ $:=\overline{I}\backslash S_{1}$ .
If $x\in S_{1}$ , integrating $(3.8)_{1}$ from $0$ to $x$ , we have

$\frac{j}{n(x)}+\log n(x)-\frac{j}{n_{d}}-\log n_{d}=\int_{0}^{x}\frac{\phi_{y}-\frac{j}{n}}{1+\frac{j}{n}}dy$.

Since $0<j/n<2$ in this case, from Corollary 6, there exists $C$ such that
$\log n(x)\geq-C$ , which yields $(3.7)_{1}$ .

Next, we consider the case where $x\in S_{2}$ . Set $x_{l}$ $:= \sup\{y;j/n(y)\leq$

$2,$ $y<x\}$ . Choosing $\phi_{r}$ small enough, from Corollary 6, we find $j/n$ is small
enough at $x=0$ . Since $x=0\in S_{I}$ and $n$ is continuous, we find $x_{l}>0$ and
$j/n(x_{l})=2$ . Then, integrating (3.8) from $x_{l}$ to $x$ , we have

$\frac{j}{n(x)}+\log n(x)-\frac{j}{n(x_{l})}-\log n(x_{l})=\int_{x_{l}}^{x}\frac{\phi_{y}-\frac{j}{n}}{1+^{\underline{j}}}dy$ ,

$n$

$j$

$\frac{j}{n(x)}-\log n(x)-\frac{j}{n(x_{l})}+\log n(x_{l})=\int_{x_{l}}^{x}\frac{-\phi_{y}+_{\overline{n}}}{1-\frac{j}{n}}dy$.

Since $x_{l}\in S_{1}$ , from Corollary 6, we have

$\frac{j}{n(x)}+\log n(x)\geq-C,$ $\frac{j}{n(x)}-\log n(x)\leq C$ ,

which yield $(3.7)_{1}$ . 口

Finally we prove Proposition 2.
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Proof of Proposition 2. We deduce the bounded estimate from below as fol-
lows. We set $\tilde{n}=e^{-ax^{2}}n$ and $\tilde{h}=e^{-ax^{2}}h$ . Then, if $\phi_{r}$ is small enough, from
Lemma 7, $j/n$ is also small enough. Then, investigating the minimum of $\tilde{n}$

and $\tilde{h}$ in a similar manner to Lemma 5, we can complete the proof. $\square$

4 Open problem
Finally, we introduce an open problem. We consider the bipolar hydrody-
namic model with the SRH (Shockley-Read-Hall) term $R(n, h)$ ,

$\{\begin{array}{l}j_{x}=-R(n, h), (\frac{j^{2}}{n}+n)_{x}=n\phi_{x}-j,k_{x}=-R(n, h), (\frac{k^{2}}{h}+h)_{x}=-h\phi_{x}-k,\phi_{xx}=n-h-D(x),\end{array}$ (4.1)

where $R(n, h)=Q(n, h)(nh-1)$ have the form

$R(n, h)=Q(n, h)$ (nh–l)

and $Q$ is a bounded and locally Lipschitz continuous function on $R_{+}\cross R_{+}$ .
The SRH term represents the recombination-generation of the electron and
the hole (see $[M$ , Section 2.2] and [Sl]) and is peculiar to the bipolar case.
Moreover, the boundary data satisfy the following thermal equilibrium con-
dition

$n_{d}h_{d}=1$ .

As long as the author knows, the existence of solutions to the boundary
problem (4.1) and (1.2) has not been obtained yet. It is one of the difficult
points that $j$ and $k$ are not constants.
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