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Abstract

In this article we report on the decay properties for several hyperbolic-
type equations with dissipation. We first review the general theory on the
decay structure for symmetric hyperbolic systems with relaxation, which
was established in [7, 5]. Then we study the dissipative Timoshenko system
as an example which is not covered by the general theory in [7, 5]. We
observe that the decay structure of the dissipative Timoshenko system is
of the regularity-loss type. Finally, we discuss the dissipative plate equation
and verify a similar regularity-loss property in the decay structure.

1 Introduction
In this article we discuss the decay property for hyperbolic-type equations with
dissipation. First we consider a class of symmetric hyperbolic systems with re-
laxation

$A^{0}u_{t}+ \sum_{j=1}^{n}A^{j}u_{x_{j}}+Lu=0$ , (1.1)

where $u$ is an $m$ vector function, and $A^{0},$ $A^{j}$ and $L$ are $m\cross m$ real symmetric
(constant) matrices such that $A^{0}>0$ and $L\geq 0$ . For such systems, the dissipative
structute is characterized by the stability condition formulated in [5]. It is known
that the stability condition for (1.1) is equivalent to the property

Type (I): ${\rm Re}\lambda(i\xi)\leq-c|\xi|^{2}/(1+|\xi|^{2})$ , (1.2)
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where $\lambda(i\xi)$ denotes the eigenvalues of the system obtained by taking the Fourier
transform of (1.1), and $c$ is a positive constant. In this situation, we have the
decay estimate of the standard type.

On the other hand, there is an example which is not in the above class.
Consider the dissipative Timoshenko system

$w_{tt}-(w_{x}-\psi)_{x}=0$ ,
(1.3)

$\psi_{tt}-a^{2}\psi_{xx}-(w_{x}-\psi)+\psi_{t}=0$ ,

which is written in the form of (1.1) with a non-symmetric $L$ and verifies the
stability condition. However, the dissipative structure of this system with $a\neq 1$

is not charcterized by (1.2) but the property

Type (II): ${\rm Re}\lambda(i\xi)\leq-c|\xi|^{2}/(1+|\xi|^{2})^{2}$ . (1.4)

This dissipative structure is very weak in high frequency region. Consequently,
we have the regularity-loss not only in the optimal decay estimate but also in the
dissipation part of the energy estimate.

A similar dissipative structure of the regularity-loss type is also found for the
dissipative plate equation

$u_{tt}-\triangle u_{tt}+\triangle^{2}u+u_{t}=0$ . (1.5)

The dissipative structure of this equation is characterized by

${\rm Re}\lambda(i\xi)\leq-c|\xi|^{4}/(1+|\xi|^{2})^{3}$ , (1.6)

which is just the same as (1.4) in high frequency region. We will explain the
difficulty caused by the regularity-loss property in solving the corresponding non-
linear problem.

2 Symmetric hyperbolic systems
We consider a class of symmetric hyperbolic systems with relaxation

$A^{0}u_{t}+ \sum_{j=1}^{n}A^{j}u_{x_{j}}+Lu=0$ , (2.1)

where $u=u(x, t)$ is an m-vector function of $x=(x_{1}, \cdots, x_{n})\in \mathbb{R}^{n}$ and $t\geq 0$ ,
and $A^{0},$ $A^{j}$ and $L$ are $m\cross m$ real symmetric (constant) matrices such that $A^{0}$ is
positive definite and $L$ is nonnegative definite.
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First we review the decay property for (2.1). Take the Fourier transform of
(2.1) to get

$A^{0}\hat{u}_{t}+i|\xi|A(\omega)\hat{u}+L\hat{u}=0$ , (2.2)

where $A( \omega)=\sum_{j=1}^{n}A^{j}\omega_{j},$ $\omega=\xi/|\xi$ I $\in S^{n-1}$ . The following structural condition
was introduced in [7, 5] to derive the decay estimate of solutions to the system
(2.1).

Condition (K): There exists $K(\omega)$ with the following properties:
(i) $K(\omega)A^{0}$ is real skew-symmetric for each $\omega\in S^{n-1}$ .
(ii) $(K(\omega)A(\omega))_{1}+L$ is real symmetric and positive definite for each $\omega\in S^{n-1}$ ,

where $X_{1}$ denotes the symmetric part of $X$ .

Theorem 2.1 ([7]). Under the condition (K) we have

$|\hat{u}(\xi, t)|\leq Ce^{-c\rho(\xi)t}|\hat{u}_{0}(\xi)|$ (2.3)

for $\xi\in \mathbb{R}^{n}$ and $t\geq 0$ , where $\rho(\xi)=|\xi|^{2}/(1+|\xi|^{2})$ .

The pointwise estimate (2.3) yields the following decay estimate of solutions
to (2.1).

Corollary 2.2 ([7]). Under the condition (K) we have

$\Vert\partial_{x}^{k}u(t)||L^{2}\leq C(1+t)^{-n/4-k/2}\Vert u_{0}\Vert_{L^{1}}+Ce^{-ct}\Vert\partial_{x}^{k}u_{0}\Vert_{L^{2}}$ , (2.4)

where $k\geq 0$ ; this decay estimate is without loss of regularity.

Under the condition (K), it is shown that the system (2.2) has a Lyapunov
function of the form

$E[ \hat{u}]=\langle A^{0}\hat{u},\hat{u}\rangle-\frac{\alpha|\xi|}{1+|\xi|^{2}}\langle iK(\omega)A^{0}\hat{u},\hat{u}\rangle$ , (2.5)

where $\alpha$ is a small positive constant, and $\langle\cdot,$ $\cdot\rangle$ is the inner product of $\mathbb{C}^{m}$ . In fact,
we have the following inequality:

$\frac{\partial}{\partial t}E[\hat{u}]+\frac{c|\xi|^{2}}{1+|\xi|^{2}}|\hat{u}|^{2}+c|(I-P)\hat{u}|^{2}\leq 0$, (2.6)

where $P$ is the orthogonal projection onto $ker(L)$ . It follows from (2.6) that

$\frac{\partial}{\partial t}E[\hat{u}]+c\rho(\xi)E[\hat{u}]\leq 0$ , (2.7)

where $\rho(\xi)=|\xi|^{2}/(1+|\xi|^{2})$ . Solving this ordinary differential inequality, we
obtain the desired pointwise estimate (2.3).
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Also, (2.6) easily gives an energy estimate for (2.1). In fact, multiplying (2.6)
by $(1+|\xi|^{2})^{s}$ and integrating with respect to $t$ and $\xi$ , we obtain

$\Vert u(t)\Vert_{H^{s}}^{2}+\int_{0}^{t}\Vert\partial_{x}u(\tau)\Vert_{H^{s-1}}^{2}+\Vert(I-P)u(\tau)\Vert_{H^{s}}^{2}d\tau\leq C\Vert u_{0}\Vert_{H^{s}}^{2}$ , (2.8)

where $s\geq 0$ . Note that there is no regularity-loss in the dissipation part of this
energy estimate.

Next we review the general theory on the dissipative structure for the system
(2.1). Let $\lambda=\lambda(i\xi)$ be the eigenvalues which are the solutions to the character-
istic equation

$\det(\lambda A^{0}+i|\xi|A(\omega)+L)=0$ . (2.9)
The following structural condition was introduced in [5] to characterize the dis-
sipative structure of the system (2.1).
Stability condition: Let $\mu\in \mathbb{R},$ $\varphi\in \mathbb{R}^{m}$ and $\omega\in S^{n-1}$ . If $L\varphi=0$ and
$\mu A^{0}\varphi+A(\omega)\varphi=0$ , then $\varphi=0$ .

Theorem 2.3 ([5]). The following four conditions are equivalent.
(a) Stability condition.
(b) Condition (K).
(c) ${\rm Re}\lambda(i\xi)\leq-c|\xi|^{2}/(1+|\xi|^{2})$ for any $\xi\in \mathbb{R}^{n}$ .
(d) ${\rm Re}\lambda(i\xi)<0$ for any $\xi\in \mathbb{R}^{n}$ with $\xi\neq 0$ .

We say that the system (2.1) is strictly dissipative if ${\rm Re}\lambda(i\xi)<0$ for any
$\xi\in \mathbb{R}^{n}$ with $\xi\neq 0$ . The above theorem says that the system (2.1) is strictly
dissipative if and only if it has the dissipative srtucture of Type (I) in (1.2); there
is no other type of dissipativity such as Type (II) in (1.4).

3 Dissipative Timoshenko system
As an example of the strict dissipativity of Type (II), we consider the dissipative
Timoshenko system:

$\{\begin{array}{l}w_{tt}-(w_{x}-\psi)_{x}=0,\psi_{tt}-a^{2}\psi_{xx}-(w_{x}-\psi)+\gamma\psi_{t}=0,\end{array}$ (3.1)

where $a$ and $\gamma$ are positive constants. Putting $u=w_{t},$ $v=w_{x}-\psi,$ $y=\psi_{t}$ and
$z=a\psi_{x}$ , we transform (3.1) into the equivalent first order system:

$\{\begin{array}{l}v_{t}-u_{x}+y=0,u_{t}-v_{x}=0,z_{t}-ay_{x}=0,y_{t}-az_{x}-v+\gamma y=0.\end{array}$ (3.2)
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The system is written in the vector form as

$U_{t}+AU_{x}+LU=0$ , (3.3)

$U=(\begin{array}{l}vuzy\end{array})$ , $A=-(_{0}^{0}010001a000$

where

$00a0)$ , $L=(\begin{array}{llll}0 0 0 10 0 0 00 0 0 0-1 0 0 \gamma\end{array})$

Since $A$ is symmetric, (3.3) is a symmetric hyperbolic system with $L$ being not
symmetric but nonnegative definite. Moreover, this system verifies the stability
condition formulated in the previous section. In fact, we have:

Claim 3.1. The dissipative Timoshenko system (3.3) with a non-symmetric $L$

satisfies the stability condition: If $L\varphi=0$ and $\mu\varphi+A\varphi=0$ for $\mu\in \mathbb{R}$ and
$\varphi\in \mathbb{R}^{4_{f}}$ then $\varphi=0$ .

To study the dissipative structure of the above Timoshenko system (3.3),
we compute the eigenvalues $\lambda(i\xi)$ which are the solutions to the characteristic
equation $\det(\lambda+i\xi A+L)=0$ . A direct comptation shows that

$\bullet$ If $a=1$ , then ${\rm Re}\lambda(i\xi)\leq-c\xi^{2}/(1+\xi^{2})$ for any $\xi\in \mathbb{R}$ .
$\bullet$ If $a\neq 1$ , then ${\rm Re}\lambda(i\xi)\leq-c\xi^{2}/(1+\xi^{2})^{2}$ for any $\xi\in \mathbb{R}$ .

This implies that the dissipative Timoshenko system (3.3) is strict dissipative in
the sense of Type (I) for $a=1$ and of Type (II) for $a\neq 1$ . More precisely, when
$a\neq 1$ , one can verify that the eigenvalues $\lambda(i\xi)$ behave as

$\lambda(i\xi)=\pm i\xi\pm\frac{\sigma}{2}(i\xi)^{-1}+\sigma^{2}\gamma(i\xi)^{-2}+O(|\xi|^{-3})$ ,

$\lambda(i\xi)=\pm ai\xi-\frac{\gamma}{2}+O(|\xi|^{-1})$

for $|\xi|arrow\infty$ , where $\sigma=1/(a^{2}-1)$ . The above computations show that the
general theory in Theorem 2.3 on the dissipative structure can not be applied to
the system (2.1) with a non-symmetric $L$ .

Although the dissipative Timoshenko system (3.3) is classified into Type (II)
for $a\neq 1$ , the corresponding system obtained by taking the Fourier transform
admits a Lyapunov function of the form

$E[ \hat{U}]=|\hat{U}|^{2}+\frac{\alpha_{1}}{1+\xi^{2}}\{-{\rm Re}(\hat{v}\overline{\hat{y}}+a\hat{u}\overline{\hat{z}})+\frac{\alpha_{2}\xi}{1+\xi^{2}}{\rm Re}(i\hat{v}\overline{\hat{u}}+i\hat{y}\overline{\hat{z}})\}$ , (3.4)
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where $a\neq 1$ , and $\alpha_{1}$ and $\alpha_{2}$ are small positive constants. In fact, by straightfor-
ward computations, we can show that

$\frac{\partial}{\partial t}E[\hat{U}]+cD[\hat{U}]\leq 0$ (3.5)

for $a\neq 1$ , where

$D[ \hat{U}]=\frac{\xi^{2}}{(1+\xi^{2})^{2}}(|\hat{u}|^{2}+|\hat{z}|^{2})+\frac{1}{1+\xi^{2}}|\hat{v}|^{2}+|\hat{y}|^{2}$ .

We can rewrite (3.5) as

$\frac{\partial}{\partial t}E[\hat{U}]+c\eta(\xi)E[\hat{U}]\leq 0$ ,

where $\eta(\xi)=\xi^{2}/(1+\xi^{2})^{2}$ . This gives the following pointwise estimate of solutions
to (3.3) in the Fourier space.

Theorem 3.2 ([1]). When $a\neq 1$ , we have

$|\hat{U}(\xi, t)$ I $\leq Ce^{-c\eta(\xi)t}|\hat{U}_{0}(\xi)|$ (3.6)

for $\xi\in \mathbb{R}$ and $t\geq 0$ , where $\eta(\xi)=\xi^{2}/(1+\xi^{2})^{2}$ .

The above pointwise estimate yields the corresonding decay estimate of solu-
tions to (3.3).

Corollary 3.3 ([1]). When $a\neq 1$ , we have

$\Vert\partial_{x}^{k}U(t)\Vert_{L^{2}}\leq C(1+t)^{-1/4-k/2}\Vert U_{0}\Vert_{L^{1}}+C(1+t)^{-l/2}\Vert\partial_{x}^{k+l}U_{0}\Vert_{L^{2}}$, (3.7)

where $k,$ $l\geq 0$ .

This result shows that we have the decay rate $t^{-l/2}$ for $tarrow\infty$ only by assum-
ing the additional l-th order regularity on the initial data. This regularity-loss
property in the optimal decay estimate would be the typical phenomena in the
strict dissipativity of Type (II).

The ordinary differential inequality (3.5) also gives an energy estimate for
$a\neq 1$ . In fact, multiplying (3.5) by $(1+\xi^{2})^{s}$ and integrating with respect to $t$

and $\xi$ , we have

$\Vert U(t)\Vert_{H^{s}}^{2}+\int_{0}^{t}\Vert\partial_{x}(u, z)(\tau)\Vert_{H^{s-2}}^{2}+\Vert v(\tau)\Vert_{H^{s-1}}^{2}+\Vert y(\tau)\Vert_{H^{s}}^{2}d\tau\leq C\Vert U_{0}\Vert_{H^{s}}^{2},$ $(3.8)$
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where $s\geq 0$ . In the dissipation part of this energy estimate for $a\neq 1$ , we have
the regularity-loss for the componets $(v, u, z)$ , and this regularity-loss property
would be the typical phenomena in the strict dissipativity of type (II).

The above regularity-loss property causes the difficulty in showing the global
existence of solutions to the nonlinear dissipative Timoshenko system. This dif-
ficulty can be overcome by applying the time weighted energy method together
with the optimal decay estimates of lower-order derivatives of solutions. For the
details, we refer to [2].

4 Dissipative plate equation
As a hyperbolic-type equation having the dissipative structure of the regularity-
loss type, we consider the dissipative plate equation

$u_{tt}-\triangle u_{tt}+\triangle^{2}u+u_{t}=0$ . (4.1)

We take the Fourier transform of (4.1) to get

$(1+|\xi|^{2})\hat{u}_{tt}+\hat{u}_{t}+|\xi|^{4}\hat{u}=0$. (4.2)

The fundamental solutions $G(x, t)$ and $H(x, t)$ of (4.1) are given by the formulas

$G(x, t)= \mathcal{F}^{-1}[\frac{e^{\lambda+(\xi)t}-e^{\lambda_{-}(\xi)t}}{\lambda_{+}(\xi)-\lambda_{-}(\xi)}](x)$ ,

$H(x, t)= \mathcal{F}^{-1}[\frac{(1+\lambda_{+}(\xi))e^{\lambda_{-}(\xi)t}-(1+\lambda_{-}(\xi))e^{\lambda+(\xi)t}}{\lambda_{+}(\xi)-\lambda_{-}(\xi)}](x)$ ,

where $\lambda_{\pm}(\xi)$ are the eigenvalues given explicitly by

$\lambda_{\pm}(\xi)=\frac{-1\pm\sqrt{1-4|\xi|^{4}(1+|\xi|^{2})}}{2(1+|\xi|^{2})}$ .

Then the solution to (4.1) is expressed by using the above fundamental solutions
as

$u(t)=G(t)*(u_{0}+u_{1})+H(t)*u_{1}$ , (4.3)
where $u_{0}$ and $u_{1}$ are the initial data for $u$ and $u_{t}$ , respectively, and $*$ denotes the
convolution with respect to $x\in \mathbb{R}^{n}$ .

We see that
${\rm Re}\lambda_{\pm}(\xi)\leq-c|\xi|^{4}/(1+|\xi|^{2})^{3}$ .

Therefore the the dissipative structure of (4.1) is similar to that of Type (II) in
high frequency region. Also, a direct computation applied to (4.2) gives

$\frac{\partial}{\partial t}\tilde{E}+\tilde{D}=0$ , (4.4)
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where

$\tilde{E}=(1+|\xi|^{2})^{2}|\hat{u}_{t}|^{2}+\{\frac{1}{2}+(1+|\xi|^{2})|\xi|^{4}\}|\hat{u}|^{2}+(1+|\xi|^{2}){\rm Re}(\hat{u}_{t}\overline{\hat{u}})$,

$\tilde{D}=(1+|\xi|^{2})|\hat{u}_{t}|^{2}+|\xi|^{4}|\hat{u}|^{2}$ .

Here we note that $\tilde{E}$ is equivalent to $(1+|\xi|^{2})^{2}E$ , where $E=|\hat{u}_{t}|^{2}+(1+|\xi|^{2})|\hat{u}|^{2}$ .
Therefore, multiplying (4.4) by $(1+|\xi|^{2})^{s-2}$ and integrating with respect to $t$ and
$\xi$ , we have the energy estimate for (4.1) as

$\Vert u_{t}(t)\Vert_{H^{s}}^{2}+\Vert u(t)\Vert_{H^{s+1}}^{2}+\int_{0}^{t}\Vert u_{t}(\tau)\Vert_{H^{s-1}}^{2}+\Vert\partial_{x}^{2}u(\tau)\Vert_{H^{s-2}}^{2}d\tau\leq CE_{0}^{2}$ , (4.5)

where $s\geq 0$ and $E_{0}=\Vert u_{0}\Vert_{H^{s+1}}+\Vert u_{1}\Vert_{H^{s}}$ . We have 1 regularity-loss in the
dissipation part of the energy estimate (4.5).

On the other hand, we can deduce from (4.4) the following pointwise estimate
$of\backslash$ solutions to (4.2).

Theorem 4.1 ([6]). For the solution of (4.2) we have

$|\hat{u}_{t}(\xi, t)|^{2}+(1+|\xi|^{2})|\hat{u}(\xi, t)|^{2}\leq Ce^{-c\eta(\xi)t}\{|\hat{u}_{1}(\xi)|^{2}+(1+|\xi|^{2})|\hat{u}_{0}(\xi)|^{2}\}$ (4.6)

for $\xi\in \mathbb{R}^{n}$ and $t\geq 0$ , where $\eta(\xi)=|\xi|^{4}/(1+|\xi|^{2})^{3}$ .

. Making use of (4.6), we can show the decay estimates for the solution operators
in (4.3). In fact, we have:

$\Vert\partial_{x}^{k}G(t)*\phi$ Il $L^{2}\leq C(1+t)^{-\frac{n}{8}-\frac{k}{4}}$ II $\phi\Vert_{L^{1}}+C(1+t)^{-\frac{l+1}{2}}\Vert\partial_{x}^{(k+l)_{+}}\phi\Vert_{L^{2}}$ , (4.7)

$\Vert\partial_{x}^{k}H(t)*\psi\Vert_{L^{2}}\leq C(1+t)^{-\frac{n}{8}-\frac{k}{4}-\frac{1}{2}}\Vert\psi\Vert_{L^{1}}+C(1+t)^{-\frac{l}{2}}\Vert\partial_{x}^{k+l}\psi\Vert_{L^{2}}$ , (4.8)

where $l+1\geq 0$ and $(k+l)_{+}= \max\{k+l, 0\}$ in (4.7), and $l\geq 0$ in (4.8). Also,
we have

$\Vert\partial_{x}^{k}\partial_{t}G(t)*\phi\Vert_{L^{2}}\leq C(1+)^{-\frac{n}{8}-\frac{k}{4}-1}$ II $\phi\Vert_{L^{1}}+C(1+t)^{-\frac{l}{2}}\Vert\partial_{x}^{k+l}\phi\Vert_{L^{2}}$ , (4.9)

$\Vert\partial_{x}^{k}\partial_{t}H(t)*\psi\Vert_{L^{2}}\leq C(1+t)^{-\frac{n}{8}-\frac{k}{4}-\frac{3}{2}}\Vert\psi\Vert_{L^{1}}+C(1+t)^{-\frac{l-1}{2}}\Vert\partial_{x}^{k+l}\psi\Vert_{L^{2}},$ $(4.10)$

where $l\geq 0$ in (4.9), and $l\geq 1$ in (4.10). Notice that we have the regularity-loss
in these optimal decay estimates. Applying these decay estimates to the solution
formula (4.3), we can show the decay estimate of solutions to (4.1).

Theorem 4.2 ([6]). Put $E_{1}=\Vert u_{0}\Vert_{H^{s+1}}+\Vert u_{1}\Vert_{H^{s}}+\Vert(u_{0}, u_{1})\Vert_{L^{1}}$ . Then the solution
to (4.1) satisfies the decay estimate

$\Vert\partial_{x}^{k}u(t)\Vert_{H^{s-\sigma_{1}(k,n)}}\leq CE_{1}(1+t)^{-;-\frac{k}{4}}$ (4.11)
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for $k\geq 0$ with $\sigma_{1}(k, n)\leq s$ . Moreover, for each $j$ with $0\leq j\leq 2$ , we have

$\Vert\partial_{x}^{k}u_{t}(t)\Vert_{H^{s-1-\sigma_{1}(k,n)-j}}\leq CE_{1}(1+t)^{-\frac{n}{8}-\frac{k}{4}-2}2$ (4.12)

for $k\geq 0$ with $\sigma_{1}(k, n)+j\leq s-1$ . Here $\sigma_{1}(k, n)=k+[\frac{n+2k-1}{4}]$ .

Note that we have $1+ \sigma_{1}(k, n)-k=1+[\frac{n+2k-1}{4}]$ regularity-loss in the optimal
decay estimate (4.11).

The above regularity-loss property causes the difficulty in showing the global
existence of solutions to the nonlinear equation

$u_{tt}- \triangle u_{tt}+\sum_{j_{)}k=1}^{n}\nu^{k}(\partial_{x}^{2}u)_{x_{j}x_{k}}+u_{t}=0$, (4. 13)

where the nonlinear functions $b^{;k}$ satisfy the structural conditions formulated in
[3, 4]. This difficulty can be overcome by applying the time weighted energy
method together with the optimal decay estimates of lower-order derivatives of
solutions. As a result, we obtain the global existence and optimal decay of solu-
tions under smallness and enough regularity assumptions on the initial data; see
[3, 4] for the details. To state the results, we introduce some special notations.
Define

$\sigma(k, n)=\max\{\sigma_{0}(k), \sigma_{1}(k, n)\}$ ,

where $\sigma_{0}(k)=k+[\frac{k+1}{2}]$ , and $\sigma_{1}(k, n)$ is given in Theorem 4.2. Put

$s(n)=\{\begin{array}{ll}7, n=1,2,6, n=3,[\frac{n}{2}]+[\frac{n}{4}]+4, n\geq 4,\end{array}$

which indicates the regularity of the initial data. Then our global existence result
for the nonlinear equation (4.13) is stated as follows.

Theorem 4.3 ([4, 3]). Let $n\geq 1$ and $s\geq s(n)$ . Put $E_{1}=\Vert u_{0}\Vert_{H^{s+1}}+\Vert u_{1}\Vert_{H^{s}}+$

$\Vert(u_{0}, u_{1})\Vert_{L^{1}}$ . If $E_{1}$ is suitably small, then the equation (4.13) has a unique global
solution which satisfies the following optimal decay estimates:

$\Vert\partial_{x}^{k}u(t)\Vert_{H^{s-1-\sigma(k,n)}}\leq CE_{1}(1+t)^{-\frac{n}{8}-\frac{k}{4}}$ , (4.14)

$\Vert\partial_{x}^{k}u_{t}(t)\Vert_{H^{s-4-\sigma(k,n)}}\leq CE_{1}(1+t)^{-\frac{n}{8}-\frac{k}{4}-1}$ (4.15)

for $k\geq 0$ , where $\sigma(k, n)\leq s-1$ in (4.14) and $\sigma(k, n)\leq s-4$ in (4.15).

115



References
[1] K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss

type for dissipative Timoshenko system, Math. Models Meth. Appl. Sci., 18
(2008), 647-667.

[2] K. Ide and S. Kawashima, Decay property of regularity-loss type and non-
linear effects for dissipative Timoshenko system, Math. Models Meth. Appl.
Sci., 18 (2008), 1001-1025.

[3] Y. Liu and S. Kawashima, Global existence and asymptotic behavior of so-
lutions for quasi-linear dissipative plate equation, Discrete Continuous Dy-
namical Systems, A, 29 (2011), 1113-1139.

[4] Y. Liu and S. Kawashima, Global existence and decay of solutions for a
quasi-linear dissipative plate equation, preprint.

[5] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic
type with applications to the discrete Boltzmann equation, Hokkaido Math.
J., 14 (1985), 249-275.

[6] Y. Sugitani and S. Kawashima, Decay estimates of solutions to a semi-linear
dissipative plate equation, J. Hyperbolic Differential Equations, 7 (2010),
471-501.

[7] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to
the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl.
Math., 1 (1984), 435-457.

116


