
ON THE TIME-GLOBAL EXISTENCE FOR
NON-NEWTONIAN TWO-PHASE FLOW

WITH DIFFERENT DENSITIES

YOSHIHIRO TONEGAWA

1. INTRODUCTION

Two-phase fluid flow problem in a most crude and ‘non-regularized’ form
may be stated as follows: Consider two disjoint domains $\Omega_{+}(t)$ and $\Omega_{-}(t)$

separated by a hypersurface $\Gamma(t)$ so that $\Omega_{+}(t)\cup\Omega_{-}(t)\cup\Gamma(t)=\Omega\subset \mathbb{R}^{n}$

for each $t\geq 0$ . $n$ is either 2 or 3 but can be $\geq 4$ in general. Each domain
is filled with different incompressible fluid whose velocity field obeys the
Navier-Stokes or non-Newtonian flow equation. Namely, let $v$ be the flow
velocity and $p$ be the pressure. Then on each $\zeta\}_{\pm}(t)$ , we have

(1.1) $\{$

$\rho\pm(v_{t}+v\cdot\nabla v)=div(\tau\pm(e,(v)))-\nabla p$
$on\zeta)()nf\}_{\pm}(t)$

,
$divv=0$

Here $\rho\pm$ is the density of the fluid occupying the dornain $\Omega_{\pm}(t),$ $e(v)=$
$(\nabla v+\nabla v^{t})/2$ is the symmetric part of $\nabla v$ and $\tau\pm(e(v))$ is the stress ten-
sor times viscosity coefficient. For the Navier-Stokes equation, $\tau\pm(e(v))=$

$2\alpha\pm e(v)$ with possibly different viscosity constants $\alpha\pm$ , which reduces to
$div\tau\pm(e(v))=\alpha\pm\Delta v$ . For some two-phase non-Newtonian fluid flow equa-
tion, we may consider as an example $\tau\pm(e(v))=\alpha\pm(1+|e(v)|^{2})^{q}e(v)$ for
some $q>0$ . The separating }$iypersurface\Gamma(t)$ moves with the fluid, which
is often called the kinematic condition. There should be natural jump con-
ditions for stress tensor and pressure, which I do not go in for the moment.
While it is easy to imagine that this is a very natural problem to consider
$A’\backslash$ a setting for $tw(\succ$phase fluid fiow, it is an irnpossible problexn to obtain
some reasonable global in time existence results for the Cauchy problem for
general data. One of the reasons for the difficulty is the occurrence of sin-
gularities of interface $\Gamma(t)$ . The fiow may not be regular enough to keep the
interface ‘hypersurface-like’ as time evolves, even if the initial data may be
regular. On the other hand it is a very important and natural engineering
problem and one would like to have a good framework and algorithm to
capture the time evolution numerically.

In recent years the phase field method has been successfully employed to
model such two-phase fluid flow problem ([3, 5, 6, 10]). Much of these works
concern the model formulations and numerical analysis and they pose very
interesting analytical problems. In this note I focus on the model proposed
by Shen and Yang [12] and discuss the relevant sharp-interface problem. I
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also indicate how one can analyze the global existence issue using the recent
developments on the related phase field equations, particularly [8]. The
model has attractive features such as good energy law and the resulting
built-in stability. The reference [12] reports the numerical stability for the
scheme even under a severe density difference between the two phases such as
air bubbles in water. One important feature of the approach of the present
note is that it incorporates the effect of surface tension on the fluid and
the surface energy at the same time. There have been many attempts to
irlcorporate the surface tension to the two-phase flow problerns. To do so,
one needs to define the mean curvature of $\Gamma(t)$ in some weak form. Since
mean curvature is the second order quantity, $\Gamma(t)$ needs to be sufficiently
regular (even in some weak sense) to define it. On $tI_{1}e$ other hand the flow
field is not regular enough to allow such regularity to $\Gamma(t)$ , so there is a fine
balance between the regularity property of the fluids and regularizing effect
of the moving $\Gamma(t)$ itself. The different densities add more difficulties to the
problem. To define some type of approximate mean curvature, we first need
to define tlie $surf\cdot ace$ energy of tlie moving interface. In Section 2 we quickly
review the phase field approxirriation of the surface energy. In Section 3 we
review the expression of mean curvature. In the subsequent sections, we
discuss the topic of this note, the two-pliase fiow problems.

2. SURFACE ENERGY

The phase field rnethod starts out by introducing the phase function which
we call $\phi$ . Namely let $\phi$ be a phase field variable of two-phase fluid with
$\phi=1$ indicating the pure $\Omega_{+}(t)$ phase and $\phi=-1$ indicating the pure
$\Omega_{-}(t)$ phase at the point. For the values between $\pm 1$ , we regard $(\phi+1)/2$

as a mixture ratio of the two fluids. Let $W$ : $[$ -1, $1]arrow \mathbb{R}$ be defined by
$W(s)=(1-s^{2})^{2}/2$ which has local minima at $\pm 1$ . Suppose that we have
a thin layer where transition from one phase to the other occurs smoothly,
and additionally assume that the thickness of the thin layer is of order $\epsilon$ ,
which I think to be infinitesiinally small conipared to the dornain size. Now
introduce the following energy functional

(2.1) $E_{\epsilon}( \phi)=\int_{fl}\frac{\epsilon|\nabla\phi|^{2}}{2}+\frac{W(\phi)}{\epsilon}dx$ .

For people who are not familiar with this functional, it is instructive to
consider the minimizing problem of $E_{\epsilon}$ with $\Omega=\mathbb{R}$ and with fixed boundary
values $\phi(-\infty)=-1$ and $\phi(\infty)=+1$ . The minimizer satisfies the Euler-
Lagrange equation $-\epsilon\phi’’+W’(\phi)/\epsilon=0$ and one can check that $\phi(x)=$

$\tanh(x/\epsilon)$ is a solution to this equation, and in fact is the unique minimizer
of $E_{\epsilon}$ with $\phi(0)=0$ with the stated boundary values at both sides of infinity.
In fact, multiply $\phi’$ to the Euler-Lagrange equation, and integrate in $x$ from
$-$ oo to $x$ . One then $obtains-\frac{\epsilon^{2}(\phi’)^{2}}{2}+W(\phi)=0$ holding on $\mathbb{R}$ . Thus we have
$\epsilon\phi’=\sqrt{2W(\phi)}=(1-\phi^{2})$ by the definition of $W$ . Note that $g(x)=\tanh(x)$
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satisfies $g’=1-g^{2}$ , thus the above claim that $\phi(x)=\tanh(x/\epsilon)$ follows.
Since $\epsilon\phi’=\sqrt{2W(\phi)}$ , one can compute $E_{\epsilon}(\phi)$ :

$E_{\epsilon}( \phi)=\int_{\mathbb{R}}\epsilon(\phi’)^{2}dx=\int_{\mathbb{R}}\phi’\sqrt{2W(\phi)}dx=\int_{-1}^{1}\sqrt{2W(\backslash )}d\backslash \cdot(=:\sigma)$

where the last equality follows by the change of variable $s=\phi(x)$ . So for the
simple one-dimensional problem, we note immediately that changing from
$-1$ to 1 costs at least $\sigma$ which is a constant depending only on $W$ , not $\phi$ .

Consider then the multi-dimensional situation. Suppose that domain $\Omega\subset$

$\mathbb{R}^{n}$ are divided into two domains $\Omega+$ and $\Omega$-separated by some hypersurface
$\Gamma$ which we $\dot{\subset}k\backslash suIIle$ to be sufficiently smooth for the moment, for exaxnple,
$C^{2}$ , and also suppose $\Gamma$ is inside of $\zeta l$ to avoid technicalities coming from
boundary issue. Let $d$ : $\Omega$ be the signed distance function to $\Gamma$ , namely,
$d(x)=$ dist $(x, \Gamma)$ if $x\in\Omega+$ and $d(x)=$ -dist $(x, \Gamma)$ if $x\in\Omega_{-}$ . It is
well-known that $d$ is a $C^{2}$ function in some neighorhood of $\Gamma$ . On $\Gamma$ the
vector field $\nabla d$ defines the unit normal to $\Gamma$ pointing towards $\Omega+$ and $\Delta d$

coincides with the mean curvature of $\Gamma$ . Now define $\phi(x)=\tanh(d(x)/\epsilon)$ in
the neighborfiood of $\Gamma$ and suitably taper off $\phi$ to constant $\pm 1$ away from
$\Gamma$ so that for very small $\epsilon>0,$ $\phi=1$ inside $\Omega+$ away from $\Gamma$ , and $=-1$
inside $\zeta$}-away from $\Gamma$ . The energy (2.1) for $\phi$ may be computed rather
explicitly. By ignoring exponentially small numbers and using $|\nabla d|=1$ and
$\tanh(\cdot)’=\sqrt{2W(\tanh())}$ ,

$E_{\epsilon}( \phi)=\int_{\Omega}\frac{1}{\epsilon}(\tanh(\cdot)’)^{2}dx=\int_{\Omega}(\tanh(\cdot)’)\sqrt{2W(\tanh())}\frac{|\nabla d|}{\epsilon}dx$.

By the Co-area formula (see for example [13]), we have

$= \int_{-\infty}^{\infty}ds\int_{\{d(x)/\epsilon=s\}}(\tanh(\cdot)’)\sqrt{2W(\tanh())}d\mathcal{H}^{n-1}$ .

Here $\mathcal{H}^{n-1}$ is the $n-1$-dimensional Hausdorff measure. Since the integrand
inside is constant,

$= \int_{-\infty}^{\infty}ds\mathcal{H}^{n-1}(\{d(x)/\epsilon=s\})(\tanh(\cdot)’)\sqrt{2W(\tanh(}))$ .

Since $\mathcal{H}^{n-1}(\{d(x)/\epsilon=s\})$ is nearly equal to $\mathcal{H}^{n-1}(\Gamma)$ , we obtain

(2.2) $\approx\sigma \mathcal{H}^{n-1}(\Gamma)$

when $\epsilon\approx 0$ . The argument above just says that if $\phi$ is $\tanh(d(x)/\epsilon)$ , then
$\sigma^{-1}E_{\epsilon}(\phi)$ approximate the surface measure of $\Gamma$ . This looks like a very
special and specific choice of $\phi$ . But we now know that such approxima-
tion holds for a surprisingly very generic situation whenever we deal with
variational problems involving $E_{\epsilon}$ . We do not go further into the up-to-date
results on this but I hope that the reader do not feel uncomfortable thinking
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$\sigma^{-1}E_{\epsilon}\approx \mathcal{H}^{n-1}(\Gamma)$ . Similar heuristic argument also indicates that, for any
$\psi\in C_{c}(\Omega)$ ,

$\sigma^{-1}\int_{\zeta\}}\psi(\frac{\epsilon|\nabla\phi|^{2}}{2}+\frac{W(\phi)}{\epsilon})dx\approx\int_{\Gamma}\psi d\mathcal{H}^{n-1}$

as $\epsilon\approx 0$ . Somewhat a crude rule of thumb is that

$\frac{(\tanh(\cdot)’)^{2}}{\epsilon}dx\approx\sigma \mathcal{H}^{n-1}\lfloor_{\Gamma}$

in the following computations.

3. MEAN CURVATURE

Continuing with this specific choice of $\phi$ , let us now consider the first
variation of $E_{\epsilon}$ . It is

$\delta E_{\epsilon}=-\epsilon\triangle\phi+\frac{W’(\phi)}{\epsilon}$ .

Using $-\tanh(\cdot)’’+W’(\tanh(\cdot))=0$ , for $\phi=\tanh(d/\epsilon)$ , we have $\delta E_{\epsilon}=$

$-(\tanh(\cdot)’)\triangle d$. Thus we may expect that $\delta E_{\epsilon}=0$ implies $\Delta d=0$ , which
simply means that $\Gamma$ is a minimal hypersurface. From the previous section
we also note that for $g\in C_{c}(\Omega;\mathbb{R}^{n})$ ,

(3.1) $\int_{fl}(-\epsilon\Delta\phi+\frac{W’(\phi)}{\epsilon})\nabla\phi\cdot gdx=\int_{fl}-\frac{(\tanh(\cdot)’)^{2}\Delta d}{\epsilon}\nabla d\cdot gdx$

$\approx\int_{\Gamma}\sigma H\nu\cdot gd\mathcal{H}^{n-1}$

where $H(=-\Delta d)$ is the mean curvature of $\Gamma,$ $\nu$ is the unit normal to $\Gamma$

pointing inwards $\Omega+\cdot$ We may call $H\nu$ as the mean curvature vector, and
above indicates

(3.2) $(- \epsilon\triangle\phi+\frac{W’(\phi)}{\epsilon})\nabla\phi dx\approx\sigma H\nu d\mathcal{H}^{n-1}\lfloor r$ .

This correspondence can be proved rigorously in some generalized sense. We
also have

(3.3) $\epsilon^{-1}\int_{f})(-\epsilon\triangle\phi+\frac{W’(\phi)}{\epsilon})^{2}dx=\int_{\zeta\}}\frac{(\tanh(\cdot)’)^{2}}{\epsilon}(\triangle d)^{2}dx$

$\approx\int_{\Gamma}\sigma H^{2}d\mathcal{H}^{n-1}$ .

Though these approximations seem reasonable, it is with some great care
that one can establish how these approximations make sense and under what
conditions. In full generality, these relations are rigorously established only
during the last 10 years. Again I do not go into the details on how they
make sense.
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4. MEAN CURVATURE FLOW WITH TRANSPORT TERM

Given a vector field $v(x, t)$ , consider the following PDE:

(4.1) $\phi_{t}+v\cdot\nabla\phi=\triangle\phi-\frac{W’(\phi)}{\epsilon^{2}}$ .

Substitute $\phi=\tanh(d(x, t)/\epsilon)$ , where we regard $\Gamma=\Gamma(t)$ as a evolving
hypersurface and $d=d(x, t)$ as the signed distance function to $\Gamma(t)$ . We
then obtain

$d_{t}+v\cdot\nabla d=\Delta d$

which says that the velocity vector $V_{\Gamma(t)}$ of $\Gamma(t)$ satisfies

(4.2) $V_{\Gamma(t)}=(v\cdot\nu)\nu+H\nu$ .

When $v=0$ , one can check that

$\frac{d}{dt}\mathcal{H}^{n-1}(\Gamma)=-\int_{\Gamma}H\nu\cdot V_{\Gamma}d\mathcal{H}^{n-1}=-\int_{\Gamma}H^{2}d\mathcal{H}^{n-1}$

so that the hypersurface area is a decreasing function of time. When $v\neq 0$

and $\Gamma$ is assumed to be regular enough,

$\frac{d}{dt}\mathcal{H}^{n-1}(\Gamma)=-\int_{\Gamma}(H^{2}+H(v\cdot\nu))d\mathcal{H}^{n-1}\leq-\frac{1}{2}\int_{\Gamma}(H^{2}-|v|^{2})d\mathcal{H}^{n-1}$

If we would like to have bounded hypersurface area as $\Gamma$ evolves in time,
then we require naturally that

(4.3) $v\in L_{loc}^{2}([0, \infty);L^{2}(\mathcal{H}^{n-1}\lfloor_{\Gamma}))$ .

In [8] we investigated the conditions under which the condition (4.3) can
be guaranteed and at the same time the correspondence between (4.1) and
(4.2) is correct. Roughly speaking, we showed that if $v$ belongs to

(4.4) $L_{loc}^{p}([0, \infty);W^{1,p}(\Omega))$

for $p> \frac{n+2}{2}$ $($ and $n=2,3)$ uniformly with respect to $\epsilon$ , then (4.1) converges
to (4.2) as $\epsilonarrow 0$ and (4.3) is satisfied. In the passing we mention that (4.2)
is satisfied in the sense of Brakke [4]. We use this approximation in the
following.

5. Two PHASE FLOW WITH SURFACE ENERGY INTERACTION

Here we first describe the simpler model [10] than the one we would like
to consider eventually. Suppose that we have two-phase fluids with the same
density, viscosity and linear stress tensor. Let $v=v(x, t),$ $p=p(x, t)$ be the
flow field and pressure, respectively, and assume that we have a hypersurface
$\Gamma=\Gamma(t)$ . We postulate that $v,$ $p$ and $\Gamma$ satisfy

(5.1) $\{\begin{array}{l}v_{t}+v\cdot\nabla v=\triangle v-\nabla p+\lambda_{1}H\nu \mathcal{H}^{n-1}\lfloor_{\Gamma},divv=0\end{array}$

in the distributional sense, where $\lambda_{1}>0$ is a constant. We assume that $v$

is continuous across $\Gamma$ in some distributional sense, but $\nabla v$ and $p$ typically
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have jump due to the mean curvature term. We also postulate that $\Gamma$ moves
according to

(5.2) $V_{\Gamma}=(v\cdot\nu)\nu+\lambda_{2}H\nu$

where $\lambda_{2}>0$ is a constant. The law of motion (5.2) is different from just
flowing along the fluid $(\lambda_{2}=0)$ , and it is the mixture of the mean curvature
flow and a simple transport. For sufficiently smooth flow, we have (with
periodic boundary conditions)

Proposition 1.

(5.3) $\frac{d}{dt}(\int_{\zeta)}\frac{1}{2}|v|^{2}dx+\lambda_{1}\mathcal{H}^{n-1}(\Gamma))=-\int_{\zeta)}|\nabla v|^{2}dx-\lambda_{1}\lambda_{2}\int_{\Gamma}H^{2}d\mathcal{H}^{n-1}$.

Proof. By the first variation formula [13] and (5.2) we have

$\frac{d}{dt}\mathcal{H}^{n-1}(\Gamma)=-\int_{\Gamma}H\nu\cdot V_{\Gamma}d\mathcal{H}^{n-1}=-\int_{\Gamma}H(\nu\cdot v)+\lambda_{2}H^{2}d\mathcal{H}^{n-1}$

Then by integration by parts, we can check (5.3) holds. $\square$

Proposition 1 shows that this model combines the two well-known energy
dissipation laws, one is the Navier-Stokes like dissipation, and the other is
the mean curvature flow like dissipation. We next consider what the phase
field approximation of (5.1) and (5.2) would be. According to (4.1) and
(4.2), (5.2) can be approximated by

(5.4) $\phi_{t}+v\cdot\nabla\phi=\lambda_{2}(\triangle\phi-\frac{W’(\phi)}{\epsilon^{2}})$ .

As for (5.1), $divv=0$ is left unchanged. By (3.2), the mean curvature term
can be approximated by

(5.5) $\lambda_{1}H\nu \mathcal{H}^{n-1}\lfloor_{\Gamma}\approx-\frac{\lambda_{1}}{\sigma}\epsilon\nabla\phi\triangle\phi dx$ .

The reason that we dropped $W’(\phi)\nabla\phi$ in (3.2) is that we may include
$W^{f}(\phi)\nabla\phi=\nabla(W(\phi))$ in the pressure term by re-defining $p=p+W(\phi)$ .
The resulting set of equations would be

(5.6) $\{\begin{array}{l}v_{t}+v\cdot\nabla v=\Delta v-\nabla p_{\sigma}^{\lambda}-\lrcorner\epsilon\nabla\phi\triangle\phi,divv=0\end{array}$

with (5.4). It is straightforward to check the following:

Proposition 2.

$\frac{d}{dt}(\int_{\Omega}\frac{1}{2}|v|^{2}dx+\frac{\lambda_{1}}{\sigma}E_{\epsilon}(\phi))$

(5.7)
$=- \int_{\Omega}|\nabla v|^{2}dx-\frac{\lambda_{1}\lambda_{2}}{\sigma\epsilon}\int_{\Omega}(-\epsilon\triangle\phi+\frac{W^{f}(\phi)}{\epsilon})^{2}dx$ .
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Obviously, one notices that there are one-to-one correspondences between
quantities appearing in (5.3) and (5.7) via (2.2) and (3.3). Existence of weak
solution for (5.4) and (5.6) can be proved using the Galerkin method and
Leray-Schauder fixed point theorem [7]. Mugnai arld R\"oger [11] investigated
$\epsilonarrow 0$ limit problem and showed that the limit interface satisfies the law
of motion (4.2) in the sense of $L^{2}$ velocity. It is interesting to investigate
if (4.2) is satisfied in the sense of Brakke [4], but it is not known so far.
We mention that we could have used our result [8] if $v$ satisfies (4.4) with
$p> \frac{n+2}{2}$ . But the apriori energy estimate (5.3) gives only $p=2$ , which is
equal or less than $\frac{n+2}{2}$ , the equality holding for $n=2$ . We expect that for
$n=2$ , the smallness of initial energy should allow us to push the proof, but
it is still under investigation.

6. NoN-NEWTONIAN TWO-PHASE FLOW WITH SURFACE INTERACTION

We next discuss one-step more complicated situation, where we have dif-
ferent non-Newtonian stress tensors and viscosity on each phase, but still
the same density. We would like to apply the result of [8] and we find the
non-Newtonian flow provides the correct setting, giving a better apriori reg-
ularity for $v$ than the Navier-Stokes flow. Let $\tau+$ and $\tau_{-}$ be the stress tensors
for fluids occupying $\Omega+$ and $\zeta\}_{-}$ , respectively. Assume that, for simplicity,

(6.1) $\tau\pm(S)=\alpha\pm(1+|S|^{2})^{g_{\frac{-2}{2}}}S$

for symmetric $n\cross n$ matrix $S=(S_{i,j})_{1\leq i,j\leq n}$ , where we substitute $S=e(v)$ ,
the symmetric part of $\nabla v$ . The constants $(y\pm>0$ are given. Furthermore
we assume

(6.2) $p> \frac{n+2}{2}$ , $n=2,3$ .

In particular we have $\tau\pm(S)$ : $S= \sum_{1\leq i,j\leq n}(\tau\pm(S))_{i,j}S_{i,j}\geq\alpha_{\pm}|S|^{p}$ . We
jump right in to the phase field approximation now since the limit problem
can be guessed easily from the discussion in Section 5. For $\phi$ we define

(6.3) $\tau(\phi, S)=\frac{\tau_{+}(S)-\tau_{-}(S)}{2}\phi+\frac{\tau_{+}(S)+\tau_{-}(S)}{2}$

so that $\tau(1, S)=\tau_{+}(S)$ and $\tau(-1, S)=\tau_{-}(S)$ . Then consider the following
problem:

(6.4) $\{\begin{array}{l}v_{t}+v\cdot\nabla v=div\tau(\phi, e(v))-\nabla p_{\sigma}^{\lambda}-\lrcorner\epsilon\nabla\phi\triangle\phi,divv=0,\phi_{t}+v\cdot\nabla\phi=\lambda_{2}(\Delta\phi-\frac{W’(\phi)}{\epsilon^{2}}).\end{array}$

The regular solution of (6.4) satisfies the energy law similar to (5.7), the
difference being the replacernent of $|\nabla v|^{2}$ by $\tau(\phi, e(v))$ : $e(v)$ . Due to the
assumptions (6.1) and (6.2), for this problem we have a uniform bound on
the norm of (4.4) independent of $\epsilon$ . Thus we can apply the result of [8]. Here
we just mention that we can show that the limit problem $\epsilonarrow 0$ defines a
well-behaving weak solution with general initial data in the energy class and
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periodic boundary conditions. The detail will appear in [9]. We mention
that the case of $\lambda_{2}=0$ has attracted much attention (see [1, 2, 14]).

7. DIFFERENT DENSlTY CASE

Finally in this section we describe the problem mentioned in Section 1.
The problem is slightly different from the original Shen-Yang model in the
definition of $\rho$ but it is a minor difference. The guiding principle to deal
with the density difference is the correct energy dissipation law. To do so
define

$\Phi(s)=\sigma^{-1}\int_{-1}^{s}\sqrt{2W(t)}dt$,

$\rho(\phi)=\rho+\Phi(\phi)+\rho_{-}(1-\Phi(\phi))$ so that $\rho(1)=\rho+$ and $\rho(-1)=p_{-}$ . We
simply write $\rho$ for $\rho(\phi)$ . Even though it is more difficult to guess what the
limit problem is than the previous cases, we still start out with the phase
field approximation. Consider the following problem:

$(7.1)\{\begin{array}{l}\rho(v_{t}+v\cdot\nabla v)+\frac{1}{2}(p_{t}+v\cdot\nabla\rho)v=div(\tau(\phi,e(v)))-\nabla p_{\sigma}^{\lambda}-\lrcorner\epsilon\nabla\phi\triangle\phi divv=0,\phi_{t}+v\cdot\nabla\phi=\lambda_{2}(\triangle\phi_{\overline{\epsilon}^{T}}^{l}-W,(\phi))\end{array}$

with a set of suitable boundary and initial conditions. Note that the first
equation of (7.1) reduces to (1.1) on each bulk pure phase since $\phi$ and $p$ are
nearly constant.

Proposition 3. The regular solution of (7.1) satisfies the following energy
law:

$\frac{d}{dt}(\int_{\zeta l}\frac{1}{2}\rho|v|^{2}dx+\frac{\lambda_{1}}{\sigma}E_{\epsilon}(\phi))$

(7.2)
$=- \int_{\zeta l}\tau(\phi, e(v)):e(v)+\frac{\lambda_{1}\lambda_{2}}{\epsilon\sigma}(-\epsilon\Delta\phi+\frac{W’(\phi)}{\epsilon})^{2}dx$.

The proof is the consequence of direct computations. It is rather remark-
able that the energy is still dissipative. From what we know already, when
$\epsilonarrow 0,$ $(7.2)$ heuristically represents:

$\frac{d}{dt}\{\int_{\Omega+(t)}\frac{1}{2}\rho_{+}|v|^{2}+\int_{\Omega_{-}(t)}\frac{1}{2}\rho_{-}|v|^{2}+\lambda_{1}\mathcal{H}^{n-1}(\Gamma(t))\}$

$=- \int_{\Omega_{+}(t)}\tau_{+}(e(v)):e(v)-\int_{\Omega_{-}(t)}\tau_{-}(e(v)):e(v)-\lambda_{1}\lambda_{2}\int_{\Gamma(t)}H^{2}d\mathcal{H}^{n-1}$ .

Some heuristic argument using $\tanh(\cdot)$ shows that the jump condition across
$\Gamma(t)$ for problem (7.1) as $\epsilonarrow 0$ reads as

$\lambda_{2}\rho_{gap}(H\cdot\nu)v=(\tau_{+}(e(v)_{+})-\tau_{-}(e(v)_{-}))\cdot\nu-(p_{+}-p_{-})\nu+\lambda_{1}H$

all evaluated on $\Gamma(t)$ and where $\rho_{gap}=(\rho_{+}-\rho_{-})/2$ . Here $p+,$ $e(v)_{+}$ and
$p-,$ $e(v)_{-}$ are limiting values of $p,$ $e(v)$ approaching from $\Omega_{+}(t)$ and $\Omega_{-}(t)$ ,
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respectively. In the distributional sense, the limiting problem as $\epsilonarrow 0$ is
(with $\rho=p(\phi)$ with $\phi=1$ on $\Omega_{+}(t)$ and $\phi=-1$ on $\Omega_{-}(t)$ )

(7.3) $\{\begin{array}{l}\rho(v_{t}+v\cdot\nabla v)=div(\tau(\phi, e(v)))-\nabla p+(-\lambda_{2}p_{gap}(H\cdot\nu)v+\lambda_{1}H)\mathcal{H}^{n-1}\lfloor_{\Gamma(t)},di_{V\uparrow f}=0,V_{\Gamma}=(v\cdot\nu)\nu+\lambda_{2}H.\end{array}$

It is interesting to observe how the difference of density affects the jurnp
conditions. Under the stated assumptions on $\tau\pm$ and some suitable initial
data, we can prove the existence results of the weak solution for the limiting
problem (7.3) by using [8]. We only mention that we need to consider
‘oriented varifold’ to characterize the limit interface since we need to define
$(H\cdot\nu)$ as in (7.3) in a weak form. The detail of the results are now in
preparation.
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