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1. INTRODUCTION
We consider the three-dimensional Navier-Stokes equations for viscous

incompressible flows in the whole space

(NS) $\{\begin{array}{l}\partial_{t}v-\triangle v+(v\cdot\nabla)v+\nabla p =0, (x, t)\in \mathbb{R}^{3}\cross(0, T),\nabla\cdot v =0 (x, t)\in \mathbb{R}^{3}\cross(0, T),v|_{t=0} =v_{0} x\in \mathbb{R}^{3}.\end{array}$

Here $v=v(x, t)=(v_{1}(x, t), v_{2}(x, t), v_{3}(x, t))$ and $p=p(x, t)$ denote un-
known velocity field and pressure field, respectively. With the notation of
$L_{\sigma}^{2}(\mathbb{R}^{3})=$ { $u\in(L^{2}(\mathbb{R}^{3}))^{3}|\nabla\cdot u=0$ in the sense of distributions}, we recall
that a weak solution to (NS) with initial velocity $v_{0}\in L_{\sigma}^{2}(\mathbb{R}^{3})$ is defined as
a vector field $v\in L^{\infty}(0, T;L_{\sigma}^{2}(\mathbb{R}^{3}))\cap L^{2}(0, T;(H^{1}(\mathbb{R}^{3}))^{3})$ satisfying

$\int_{0}^{T}\int_{\mathbb{R}}(v\cdot\partial_{t}\varphi+v\cdot(v\cdot\nabla)\varphi-\nabla v\cdot\nabla\varphi)dxdt=-\int_{\mathbb{R}^{3}}v_{0}(x)\cdot\varphi(x, 0)dx$,

for all $\varphi\in(C_{0^{\infty}}(\mathbb{R}^{3}\cross[0, T))^{3}$ with $\nabla\cdot\varphi=0$ . The existence of weak
solutions to the Navier-Stokes equations for viscous incompressible flows is
well-known; see Leray [6] and Hopf [4].

In this report we are interested in axisymmetric flows, that is, the velocity
$v$ is written in the form $v=v_{r}e_{r}+v_{\theta}e_{\theta}+v_{3}e_{3}$ , where

$e_{r}=(\frac{x_{1}}{r}, \frac{x_{2}}{r},0)$ , $e_{\theta}=(\frac{-x_{2}}{r}, \frac{x_{1}}{r},0)$ , $e_{3}=(0,0,1)$ , $r=\sqrt{x_{1}^{2}+x_{2}^{2}}$ ,

and
$v_{r}=v_{r}(r, x_{3}, t),$ $v_{\theta}=v_{\theta}(r, x_{3}, t),$ $v_{3}=v_{3}(r, x_{3}, t)$ .

The associated vorticity field $\omega=\nabla\cross v=\omega_{r}e_{r}+\omega_{\theta}e_{\theta}+\omega_{3}e_{3}$ is then
given by

(1.1) $\omega_{r}=-\partial_{3}v_{\theta},$ $\omega_{\theta}=\partial_{3}v_{r}-\partial_{r}v_{3},$ $\omega_{3}=\frac{1}{r}\partial_{r}(rv_{\theta})$ .

Even in the presence of the axial symmetry, the regularity of weak so-
lutions to (NS) is not known in general, if the swirling component of the
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velocity, i.e., $v_{\theta}$ , is not trivial. On the other hand, due to the results of
Caffarelli-Kohn-Nirenberg [2], it is well-knwon tbat if there is any singular-
ity of axisymmetric suitable weak solutions to (NS), it must be along the
symmetry axis $r=0$ . So in the case of axisymmetric solutions there is a
possibility to get uniform bounds of weighted $L^{p}$ norms of vorticity if the
weight is suitably set near $r=0$ . From this motivation we introduce the
following weighted norms for axisymmetric functions

(1.2) $\Vert f\Vert_{L_{k}^{p}}=(\int_{\mathbb{R}}\int_{0}^{1}|r^{k}f(r, x_{3})|^{p}rdrdx_{3}+\int_{\mathbb{R}}\int^{\infty}|f(r, x_{3})|^{p}rdrdx_{3})^{\frac{1}{p}}$,

where $k\geq 0$ and $p\in[1, \infty)$ . The case $p=\infty$ is defined in the same manner.
For smooth initial data, the probleln in this direction was firstly discussed

by Chae-Lee [3], and they obtained $\omega_{\theta}\in L^{\infty}(O, T;L_{3}^{2})$ . Their result was
improved by Kim [5], in which it is proved that $\omega_{\theta}\in L^{\infty}(0, T;L_{k}^{p})$ with
$k=(5p-6)/p,$ $2\leq p<\infty$ . Recently, the end point case $(k,p)=(5, \infty)$ was
established by Burke-Zhang [1]. For $\omega_{r}$ and $\omega_{3}$ , it is proved that $\omega_{r},\omega_{3}\in$

$L^{\infty}(0, T;L_{2}^{2})$ in [5], and $\omega_{r},$ $\omega_{3}\in L^{\infty}(0, T;L_{10}^{\infty})$ in [1]. Although it is not
difficult to see $t\}_{1at}$ their argumerlts can be applied to axisymmetric weak
solutions satisfying the strong energy inequality, as far as the author knows,
it is not obtained for the case without the strong energy inequality.

In this report we introduce the results of [7], in which the known weighted
estimates are improved and such estimates are obtained for any axisymmet-
ric weak solutions.

Theorem 1.1 ([7]). Let $v\in L^{\infty}(O, T;L_{\sigma}^{2}(\mathbb{R}^{3}))\cap L^{2}(0, T;(H^{1}(\mathbb{R}^{3}))^{3})$ be an
axisymmetric weak solution to $(NS)$ with initial data $v_{0}\in L_{\sigma}^{2}(\mathbb{R}^{3})$ . Then for
all $\delta\in(0, T)$ we have

(1.3) $\omega_{\theta}\in L^{\infty}(\delta, T;L_{k_{1}}^{p})$ , $k_{1}=\underline{7}_{-}\underline{4}$

$2\leq p<\infty$ ,
2 $p$

’

(1.4) $\omega_{\theta}\in L^{\infty}(\delta, T;L_{7/2+\epsilon}^{\infty})$ , for all $\epsilon>0$ ,

(1.5) $\omega_{r},$ $\omega_{3}\in L^{\infty}(\delta, T;L_{k_{2}}^{p})$ , $k_{2}=3- \frac{4}{p},2\leq p<\infty$ ,

(1.6) $\omega_{r},$
$\omega_{3}\in L^{\infty}(\delta, T;L_{3+\epsilon}^{\infty})$ , for all $\epsilon>0$ .

In Theorem 1.1 we do not need to assume that $v$ satisfies the energy
inequality. Let us focus on the case $p=2$ in Theorem 1.1. Then one will
see that the estimates for $\omega_{r}$ and $\omega_{3}$ are natural from the scaling point of
view. Indeed, it is easy to see that $r\omega$ and $v$ have “the same scaling”,
that is, both have an invariant property with respect to the same scaling
$f_{\lambda}(r, x_{3}, t)=\lambda f\cdot(\lambda r, \lambda x_{3}, \lambda^{2}t)$ . So it is expected that we might show the
components of $\omega$ belong to $L^{\infty}(\delta, T;L_{1}^{2}),$ $\delta\in(0, T)$ , from the assumption
$v\in L^{\infty}(0, T;L_{\sigma}^{2}(\mathbb{R}^{3}))$ , and this is indeed valid at least for $\omega_{r}$ and $\omega_{3}$ by
Theorem 1.1. However, there is an essential difficulty in obtaining this
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regularity for $\omega_{\theta}$ . Especially, it is still open if $\omega_{\theta}\in L^{\infty}(\delta, T;L_{1}^{2})$ holds in
general.

The reason why we can obtain better bounds for $\omega_{r}$ and $\omega_{3}$ is that they
are directly related with the swirling component of the velocity, i.e., $v_{\theta}$ (see
1.1), for which we have the $L^{\infty}$ bound of $rv_{\theta}$ as follows.

Theorem 1.2 ([7]). Let $v\in L^{\infty}(O, T;L_{\sigma}^{2}(\mathbb{R}^{3}))\cap L^{2}(0, T;(H^{1}(\mathbb{R}^{3}))^{3})$ be an
axisymmetric weak solution to $(NS)$ with initial data $v_{0}\in L_{\sigma}^{2}(\mathbb{R}^{3})$ . Then for
all $\delta\in(0, T)$ we have

(1.7) $v_{\theta}\in L^{\infty}(\delta, T;L_{1}^{\infty})$ .

For smooth axisymmetric solutions of the Navier-Stokes equations the a
priori bound of $v_{\theta}\in L^{\infty}(0, T;L_{1}^{\infty})$ when $v_{\theta}|_{t=0}\in L_{1}^{\infty}$ is already known; for
example, see [3]. In fact, it is well-known that the equation for $rv_{\theta}$ enables us
to apply the maximum principle to $rv_{\theta}$ at least when $v$ is smooth. But some
additional arguments are required under the weak regularity assumptions
on $v$ as in Theorem 1.2 in order to verify the estimates of the maximum
principle type.

The key step of the proofs of Theorem 1.1 and 1.2 is to analyze the axisym-
metirc solutions to the linear second-order parabolic equations with a diver-
gence free drift term in the cylindrical coordinates. The divergence free drift
term, written as $u_{r}\partial_{r}+u_{3}\partial_{3}$ in the cylindrical coordinates, is assumed to have
the regularity $u_{r}\in L^{\infty}$ ( $O,$ $T;L^{2}$ (rdrdx$3)$ ) $\cap L^{2}(0, T;\tilde{H}^{1}(rdrdx_{3}))$ and $u_{3}\in$

$L^{\infty}(O, T;L^{2}(rdrdx_{3}))\cap L^{2}(0, T;H^{1}(rdrdx_{3}))$ . Here $L^{p}(rdrdx_{3}),$ $H^{1}(rdrdx_{3})$ ,
and $\tilde{H}^{1}$ (rdrdx3) are $(1efi_{I}1ed$ as

$L^{p}(rdrdx_{3})$ $=$ $\{f=f(r,$ $x_{3})\in L^{p}(\mathbb{R}_{+}^{2})|$ llfll $L_{0}^{p}<\infty\},$ $\mathbb{R}_{+}^{2}=$ ( $0$ , oo) $\cross \mathbb{R}$ ,

$H^{1}(rdrdx_{3})$ $=$ $\{f\in L^{2}$ (rdrdx3) $|\partial_{r}f,$ $\partial_{3}f\in L_{0}^{2}\}$ ,

$\tilde{H}^{1}(rdrdx_{3})$ $=$ $\{f\in H^{1}(rdrdx_{3})|\frac{f}{r}\in L_{0}^{2}\}$ .

The norms of these function spaces are set in the natural way. The
important fact in the axisymmetric framework is that three-dimensional
nature of the problem appear only near the symmetry axis $r=0$ , and
the equation is essentially two-dimensional if it is away from the symmetry
axis. Focusing on this property, we will establish the regularity estimates for
axisymmetric solutions to the linear parabolic equations with a divergence
free drift term. In particular, our estimates reflect two-dimensional nature
of the problem away from the symmetry axis; see Lemma 2.1 and Lemma
2.2. The detailed proofs of these lemmas are given in [7]. The key tool in the
proofs is an interpolation inequality, which is special to three-dimensional
axisymmetric functions; see Lemma 2.4 below.
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2. LINEARIZED PROBLEM AND KEY LEMMA

In this section we state key lemmas on the axisymmetirc solutions to the
linear second-order parabolic equations with a divergence free drift term.
Then a brief outline of the proofs of Theorem 1.1 and Theorem 1.2 will be
also given.

We first observe that the vorticity $\omega$ defined by (1.1) and the swirling
component of the velocity, $v_{\theta}$ , satisfy the following equations

(2.1) $\partial_{t}\omega_{r}+v_{r}\partial_{r}\omega_{r}+v_{3}\partial_{3}\omega_{r}=\partial_{r}^{2}\omega_{r}+\frac{1}{r}\partial_{r}\omega_{r}+\partial_{3}^{2}\omega_{r}-\frac{1}{r^{2}}\omega_{r}+\partial_{r}v_{r}\omega_{r}+\omega_{3}\partial_{3}v_{r}$ ,

(2.2) $\partial_{t}\omega_{\theta}+v_{r}\partial_{r}\omega_{\theta}+v_{3}\partial_{3}\omega_{\theta}=\partial_{r}^{2}\omega_{\theta}+\frac{1}{r}\partial_{r}\omega_{\theta}+\partial_{3}^{2}\omega_{\theta}-\frac{1}{r^{2}}\omega_{\theta}+\frac{1}{r}v_{r}\omega_{\theta}+\frac{1}{r}\partial_{3}v_{\theta}^{2}$,

(2.3) $\partial_{t}\omega_{3}+v_{r}\partial_{r}\omega_{3}+v_{3}\partial_{3}\omega_{3}=\partial_{r}^{2}\omega_{3}+\frac{1}{r}\partial_{r}\omega_{3}+\partial_{3}^{2}\omega_{3}+\partial_{3}v_{3}\omega_{3}+\omega_{r}\partial_{r}v_{3}$ .

(2.4) $\partial_{t}v_{\theta}+v_{r}\partial_{r}v_{\theta}+v_{3}\partial_{3}v_{\theta}=\partial_{r}^{2}v_{\theta}+\frac{1}{r}\partial_{r}v_{\theta}+\partial_{3}^{2}v_{\theta}-\frac{1}{r^{2}}v_{\theta}-\frac{v_{r}}{r}v_{\theta}$.

Let us introduce the weight function $\Phi_{k}(r)$ as
(2.5) $\Phi_{k}(r)=\chi_{1}(r)r^{k}+\chi_{1}^{c}(r)$ , $r\geq 0$ ,

where $\chi_{1}$ is a smooth nonnegative cut-off function such that $\chi_{1}(r)=1$ for
$0\leq r\leq 1$ and $\chi_{1}(r)=0$ for $r\geq 2$ , and $\chi_{1}^{c}(r)=1-\chi_{1}(r)$ . Then by
considering $\Phi_{k}\omega$ arld $\Phi_{k}v_{\theta}$ and using $(2.1)-(2.4)$ , Theorem 1.1 and Theorem
1.2 are essentially reduced to the regularity problem for solutions to the
linear problem
(2.6)

$\{\begin{array}{ll}\partial_{t}w-Lw=f+\frac{g}{r}+\partial_{r}h_{r}+\partial_{3}h_{3}, (r, x_{3})\in(0, \infty)\cross \mathbb{R}, t>0,w|_{r=0}=0, w|_{t=0}=w_{0}, \end{array}$

where

(2.7) $Lw= \partial_{r}^{2},w+\frac{1+l_{1}}{r}\partial_{r}w+\partial_{3}^{2}w+(b-\frac{l_{2}}{r^{2}})w-(u_{r}+a_{r})\partial_{r}w-(u_{3}+a_{3})\partial_{3}w$ .

Here $l_{1}\in \mathbb{R}$ and $l_{2}\geq 0$ are given numbers, and $a_{r},$ $a_{3},$ $b,$ $u_{r},$ $u_{3},$ $f,$ $g,$ $h_{r},$ $h_{3},$ $w_{0}$

are given functions which possess suitable regularities. We also assume that
$(u_{r}, u_{3})$ satisfies the divergence free condition: $u_{r}/r+\partial_{r}u_{r}+\partial_{3}u_{3}=0$ . Then
the formal adjoint operator $L^{*}$ of $L$ with respect to the inner product of
$L^{2}(rdrdx_{3})$ under the zero boundary condition at $r=0$ is given by

(2.8) $L^{*}w$ $=$ $\partial_{r}^{2}w+\frac{1-l_{1}}{r}\partial_{r}w+\partial_{3}^{2}w+(\frac{a_{r}}{r}+\partial_{r}a_{r}+\partial_{3}a_{3}+b-\frac{l_{2}}{r^{2}})w$

$+(u_{r}+a_{r})\partial_{r}w+(u_{3}+a_{3})\partial_{3}w$ .
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Note that $(2.1)-(2.3)$ have to be considered in the very weak sense, for
we have only $\omega\in L^{2}(0, T;L^{2}(\mathbb{R}^{3}))$ at the first stage. For this reason we
introduce a definition of very weak solutions to (2.6).

We say that $w\in L^{2}(0, T;L_{loc}^{2}(rdrdx_{3}))$ is a very weak solution to (2.6)
with initial data $w_{0}\in L_{loc}^{1}(rdrdx_{3})$ if

$- \int_{0}^{T}\int_{\mathbb{R}^{3}}w(\partial_{t}\varphi+L^{*}\varphi)dxdt$ $=$ $\int_{\mathbb{R}^{3}}w_{0}\varphi(\cdot, 0)dx+\int_{0}^{T}\int_{\mathbb{R}^{3}}(f+\frac{g}{r})\varphi dxdt$

(2.9) $- \int_{0}^{T}\int_{\mathbb{R}^{3}}(\frac{h_{r}}{r}\varphi+h_{r}\partial_{r}\varphi+h_{3}\partial_{3}\varphi)dxdt$,

for all $\varphi\in C_{0}^{\infty}(\mathbb{R}_{+}^{2}\cross[0, T))$ . In (2.9) the notation $\int_{\mathbb{R}^{3}}dx$ is interpreted as
$\int_{\mathbb{R}_{+}^{2}}rdrdx_{3}$ and $L^{*}$ is the operator defined by (2.8). On the other hand,
as usual, we say that $w\in L^{\infty}(O, T;L^{2}(rdrdx_{3}))\cap L^{2}(0, T;H^{1}(rdrdx_{3}))$ is a
weak solution to (2.6) if

(2.10)$\int_{0}^{T}\int_{\mathbb{R}^{3}}\{-w\partial_{t}\varphi+(u_{r}\partial_{r}w+u_{3}\partial_{3}w)\varphi+(\partial_{r}w\partial_{r}\varphi+\partial_{3}w\partial_{3}\varphi)dxdt$

$=$ $\int_{\mathbb{R}^{3}}w_{0}\varphi(\cdot, 0)dx+\int_{0}^{T}\int_{\mathbb{R}^{3}}\{\frac{l_{1}}{r}\partial_{r}w-a_{r}\partial_{r}w-a_{3}\partial_{3}w+(b-\frac{l_{2}}{r^{2}})w\}\varphi dxdt$

$+ \int_{0}^{T}\int_{\mathbb{R}^{3}}(f+\frac{g}{r})\varphi dxdt-\int_{0}^{T}\int_{\mathbb{R}^{3}}(\frac{h_{r}}{r}\varphi+h_{r}\partial_{r}\varphi+h_{3}\partial_{3}\varphi)dxdt$ ,

for all $\varphi\in C_{0}^{\infty}(\mathbb{R}_{+}^{2}\cross[0, T))$ . Clearly, if $w$ is a weak solution, then it is a
very weak solution.

The following lemma for very weak solutions to (2.6) is the key of the
proofs of Theorem 1.1. For simplicity we consider the case $2\leq p<\infty$ in
the theorem.

Below we always assume that there are $m_{1},$ $m_{2}\in(3/2, \infty]$ such that

(2.11) $\{\begin{array}{l}u_{r}\in L^{\infty}(0, T;L_{\sigma}^{2}(rdrdx_{3}))\cap L^{2}(0, T;\tilde{H}^{1}(rdrdx_{3})),u_{3}\in L^{\infty}(0, T;L_{\sigma}^{2}(rdrdx_{3}))\cap L^{2}(0, T;H^{1}(rdrdx_{3})),w_{0}\in L^{2}(rdrdx_{3}),a_{r}, a_{3}\in L^{\infty} ( 0, T;L^{2m_{1}} (rdrdx 3)), b\in L^{\infty}(O, T;L^{m2}(rdrdx_{3})),f\in L^{2}(0, T;L^{\frac{6}{5}}(rdrdx_{3})), g, h_{r}, h_{3}\in L^{2}(0, T;L^{2}(rdrdx_{3})).\end{array}$

Lemma 2.1 ([7]). Let (2.11) holds and $l_{2}>0$ . Assume further that
$a_{r}/r,$ $\partial_{r}a_{r},$ $\partial_{3}a_{3}\in L^{\infty}(O, T;L^{m_{1}}(rdrdx_{3}))$ . Let $w\in L^{2}(0, T;L^{2}(rdrdx_{3}))$

be a very weak solution to (2.6) satisfying

(2.12) $\frac{w}{r}\in L^{2}(0, T;L^{2}(rdrdx_{3}))$ .

Then $w\in L^{\infty}(O, T;L^{2}(rdrdx_{3}))\cap L^{2}(0, T;\tilde{H}^{1}(rdrdx_{3}))$ .
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If in addition there are $p\in(2, \infty))q_{1}\in(1,p],$ $q_{i}\in(1,p/2],$ $i=2,3,4$ ,
such that

$r^{\frac{1}{p}-\frac{1}{q_{1}}}f\in L^{\frac{pq_{1}}{pq_{1}+q_{1}-\rho}}(0, T;L^{q\iota}(rdrdx_{3})),$
$r^{\frac{1}{p}-\frac{1}{2q_{2}}}g\in L^{\frac{2pq_{2}}{pq_{2}+2q_{2}-p}(0,T;L^{2q_{2}}}$ (rdrdx3) $)$ ,

$r^{\frac{1}{p}-\frac{1}{2q_{3}}}h_{r}\in L^{\frac{2pq_{3}}{pq_{3}+2q_{3}-p}(o,\tau;L^{2q_{3}}(rdrd_{X_{3}}))},$ $r^{\frac{1}{p}-\frac{1}{2q_{4}}}h_{3}\in L^{\frac{2pq_{4}}{pq_{4}+2q_{4}-p}(o,\tau;L^{2q_{4}}(rdrd_{X_{3}}))}$,

then $w\in L^{\infty}(\delta, T;L^{p}(rdrdx_{3}))$ for all $\delta>0$ ,

The key lemma for Theorem 1.2 is stated as follows.

Lemma 2.2 ([7]). Let (2.11) holds and $l_{2}\geq 0$ . Assume further that
$a_{r}/r,$ $\partial_{r}a_{r},$ $\partial_{3}a_{3}\in L^{\infty}(O, T;L^{m_{1}}(rdrdx_{3}))$ . Let $w\in L^{2}(0, T;L^{2}(rdrdx_{3}))$

be a very weak solution to (2.6) satisfying

(2.13) $\frac{w}{r}\in L^{2}$ ( $0,$ $T;L^{2}$ (rdrdx3)).

Then $w\in L^{\infty}$ ( $O,$ $T;L^{2}$ (rdrdx$3)$ ) $\cap L^{2}(0, T;\tilde{H}^{1}(rdrdx_{3}))$ .
If in addition there are $\kappa_{i}>0$ and $q_{i}\in(1, \infty),$ $i=1,2,3,4$, such that

$r^{-\frac{1}{q_{1}}}f\in L\overline{q}_{1}q-\overline{1}\lrcorner$ ( $0,$ $T;L^{q_{1}+\kappa_{1}}$ (rdrdx3)), $r^{-\frac{1}{2q_{2}}}g\in L\overline{q}_{2}-\overline{1}2qB$ ( $0,$ $T;L^{2q_{2+\kappa}2}$ (rdrdx3)),
$r^{-\frac{1}{2q_{3}}}h_{r}\in L^{\frac{2q}{q_{3}}L_{1}}-$ ( $0,$ $T;L^{2q_{3+\kappa}3}$ (rdrdx3)), $r^{-\frac{1}{2q_{4}}}h_{3}\in L^{\frac{2q}{q_{4}-1}}(0, T;L^{2q_{4+\kappa}4}(rdrdx_{3}))$ ,

then $w\in L^{\infty}(\delta, T;L^{\infty}(rdrdx_{3}))$ for all $\delta>0_{f}$

Remark 2.3. It is possible to generalize the regularity assumptions on
$a_{r},$ $a_{3},$

$b$ . But we omit it since it is not essential in this work.

Lemma 2.1 and Lemma 2.2 are proved through two steps. Under the
assumptions of lemmas we first establish the existence of weak solutions to
(2.6) satisfying the desired regularities. In particular, for the $L^{\infty}$ estimates
in Lemma 2.2 we use the Nash-Moser iteration arguments. Next we prove
the uniqueness of very weak solutions to (2.6). In this second step the
condition $w/r\in L^{2}(0, T;L^{2}(rdrdx_{3}))$ is essential, which is satisfied by $\Phi_{k}\omega$

and $\Phi_{k}v_{\theta}$ at least when $k\geq 1$ . These two steps clearly ensure the regularity
of very weak solutions to (2.6).

In the proofs of the above lemmas the following Sobolev embedding the-
orem, which is special to three-dimensional axisymmetric functions, plays
important roles.

Lemma 2.4. Let $f\in L^{\infty}$ ( $O,$ $T;L^{2}$ (rdrdx$3)$ ) $\cap L^{2}(0, T;\tilde{H}’ (rdrdx_{3}))$ . Then
$r^{1/2}f\in L^{2p/(p-2)}(0, T;L^{p}(\mathbb{R}_{+}^{2}))$ for each $2\leq p<\infty$ , and the inequality

$(214)$ $\Vert r^{\frac{1}{2}}f\Vert_{Lp}2arrow-(0,T;L^{p}(\mathbb{R}_{+}^{2}))\leq C\Vert f\Vert_{L^{2}(,T;\tilde{H}^{1}}^{1-\frac{2}{p0}}$

(rdrdx3)
$)\Vert f\Vert_{\infty}^{\frac{2}{Lp}}(0,T;L^{2}(rdrdx_{3}))$

holds.
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Proof of Lemma 2.4. Here we give a sketch of the proof of Lemma 2.4.
By the integration by parts, we observe that for all $f\in\tilde{H}^{1}$ (rdrdx3),
(2.15)

$\int_{\mathbb{R}_{+}^{2}}|\partial_{r}(r^{\frac{1}{2}}f(t, r, x_{3}))|^{2}drdx_{3}=\int_{\mathbb{R}_{+}^{2}}|\partial_{r}f(r, x_{3})|^{2}rdrdx_{3}+\frac{1}{4}\int_{\mathbb{R}_{+}^{2}}|\frac{f(r,x_{3})}{r}|^{2}rdrdx_{3}$.

Hence from the Gagliardo-Nirenberg inequality we have
(2.16)

$\Vert r^{\frac{1}{2}}f\Vert_{L^{p}(\mathbb{R}_{+}^{2})}\leq C\Vert\tilde{\nabla}(r^{\frac{1}{2}}f)\Vert_{L^{2}(\mathbb{R}_{+}^{2})}^{1-\frac{2}{p}}\Vert r^{\frac{1}{2}}f\Vert_{L^{2}(\mathbb{R}_{+}^{2})}^{\frac{2}{p}}\leq C\Vert f\Vert_{\tilde{H}(rdrdx_{3})}^{1-\frac{2}{p}}\Vert f\Vert_{L^{2}(rdrdx_{3})}^{\frac{2}{p}}$,

for each $p\in[2, \infty)$ . Here V $=(\partial_{r}, \partial_{3})$ . Then it is easy to see that $r^{1/2}f\in$

$L^{2p/(p-2)}(0, T;L^{p}(\mathbb{R}_{+}^{2}))$ if $f\in L^{\infty}(O, T;L^{2}(rdrdx_{3}))\cap L^{2}$ ( $0,$ $T;\tilde{H}^{1}$ (rdrdx3))
and (2.14) holds. This completes the proof.

By using Lemma 2.1-2.4 we obtain the main theorems in the following
manner. The whole proof will be given in [7].

(1) We first establish the $L^{\infty}(\delta, T;L_{3/2}^{2})$ bound of $\omega_{\theta}$ by making use of
Lemma 2.1. Indeed, after direct calculations we see that $\Phi_{k}\omega_{\theta}$ satisfies the
following equation in the very weak sense:

(2.17) $\partial_{t}w+v_{r}\partial_{r}w+v_{3}\partial_{3}w=\partial_{r}^{2}w+\frac{1-2k}{r}\partial_{r}w+\partial_{3}^{2}w-a\partial_{r}w+(b-\frac{l}{r^{2}})w+F$,

where
(2.18)

$F= \frac{l+k^{2}-1}{r^{2}}\Phi_{k}\omega_{\theta}+v_{r}\omega_{\theta}(\frac{1+k}{r}\Phi_{k}+r^{k}\chi_{1}’+(\chi_{1}^{c})’-\frac{k}{r}\chi_{1}^{c})+\frac{\Phi_{k}}{r}\partial_{3}(v_{\theta}^{2})$.

Here $l>0$ and $a,$
$b$ are smooth bounded functions depending only on $r$

defined by

(2.19) $a(r)= \frac{2}{\Phi_{k}}(r^{k}\chi_{1}’+(\chi_{1}^{c})’-\frac{k}{r}\chi_{1}^{c})$ ,

(2.20) $b(r)=- \frac{1}{\Phi_{k}}(r^{k}\chi_{1}^{(2)}+(\chi_{1}^{c})^{(2)}+r^{k-1}\chi_{1}’+\frac{1-2k}{r}(\chi_{1}^{c})’+\frac{k^{2}}{r^{2}}\chi_{1}^{c})$

$+ \frac{2\Phi_{k}’}{\Phi_{k}^{2}}(r^{k}\chi_{1}’+(\chi_{1}^{c})’-\frac{k}{r}\chi_{1}^{c})$ .

The key observation here is that if $k\geq 3/2$ then we can write $F$ in the
form $f+g/r+\partial_{r}h_{r}+\partial_{3}h_{3}$ with the regularities stated in (2.11).

(2) Next we establish $L^{\infty}(\delta, T;L_{1}^{\infty})$ bound of $v_{\theta}$ from Lemma 2.2. We see
that $\Phi_{k}v_{\theta}$ satisfies the following equation in the weak sense
(2.21)

$\partial_{t}w+v_{r}\partial_{r}w+v_{3}\partial_{3}w=\partial_{r}^{2}w+\frac{1-2k}{r}\partial_{r}w+\partial_{3}^{2}w+(b-\frac{1-k^{2}}{r^{2}})w-a\partial_{r}w+H$,
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where $a$ and $b$ are functions defined by (2.19) and (2.20), an$(1$

(2.22) $H=v,.’ \iota l_{\theta}(\frac{k-1}{r}\Phi_{k}+r^{k}\chi_{1}’+(\chi_{1}^{c})’-\frac{k}{r}\chi_{1}^{c})$ .

In fact, the result of (1) implies that $H$ satisfies the conditions in Lenima
2.2 if $k\geq 1$ .

(3) Thirdly we establish the $L^{\infty}(\delta, T;L_{1}^{2})$ bound of $\omega_{r},$ $\omega_{3}$ from Lemma
2.1. We can check that $\Phi_{k}\omega_{r}$ alld $\Phi_{k}\omega_{3}$ respectively satisfy the following
equations in the very weak sense
(2.23) $\partial_{t}w-Lw=G_{r}$ , $\partial_{t}w-Lw=G_{3}$ ,

where $L$ is the operator defined by (2.7) and

$G_{r}$ $=$ $\frac{l+k^{2}-1}{r^{2}}\Phi_{k}\omega_{r}+v_{r}\omega_{r}(\frac{k}{r}\Phi_{k}+r^{k}\chi_{1}’+(\chi_{1}^{c})’-\frac{k}{r}\chi_{1}^{c})+\Phi_{k}(\partial_{r}v_{r}\omega_{r}+\omega_{3}\partial_{3}v_{r})$ ,

$G_{3}$ $=$ $\frac{l+k^{2}}{r^{2}}\Phi_{k}\omega_{3}+v_{r}\omega_{3}(\frac{k}{r}\Phi_{k}+r^{k}\chi_{1}’+(\chi_{1}^{c})’-\frac{k}{r}\chi_{1}^{c})+\Phi_{k}(\partial_{3}v_{3}\omega_{3}+\omega_{r}\partial_{r}v_{3})$ .

Then the special structures of $G_{r}$ and $G_{3}$ enable us to use the result of
(2) effectively, and we can show that if $k\geq 1$ then $G_{r}$ and $G_{3}$ are written
in the form $g/r+\partial_{r}h_{r}+\partial_{3}h_{3}$ with the regularities stated in (2.11).

(4) Finally we establish from Lemma 2.1 the $L^{\infty}(\delta, T;L_{k}^{p})$ bounds of
$\omega_{\theta},$ $\omega_{r},$ $\omega_{3}$ , by the bootstrap arguments.
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